博碩士論文 109323001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.143.17.195
姓名 蔡翰林(Han-Lin Tsai)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 熱機處理對六元富鈦中熵合金之微結構與機械性質影響之研究
(The effect of thermo-mechanical treatment on the microstructure and mechanical properties of hexamerous titanium-rich medium-entropy alloy)
相關論文
★ 鋯基與鋯銅基金屬玻璃薄膜應用於7075-T6航空用鋁合金疲勞性質提升之研究★ 非 晶 質 合 金 手 術 刀 與 非 晶 質 合 金 鍍 膜 手 術 刀 之 銳 利 度 研 究
★ 以急冷旋鑄法及機械冶金法製備Zn4Sb3熱電塊材及其熱電性質之研究★ 添加Ti顆粒對MgZnCa非晶質合金之機械性質研究
★ 不同製程對鋯基非晶質合金破裂韌性影響之研究★ 硼碳元素對鐵基非晶質鋼材玻璃形成能力、熱性質及切削性質影響之研究
★ 鋯銅基塊狀金屬玻璃複材和鋯基塊狀金屬 多孔材之製作及其性質分析之研究★ 添加鉭顆粒與球狀鈦合金對鎂鋅鈣非晶質合金機械性質影響之研究
★ 高速火焰熔射製備鐵基非晶質合金塗層及其耐磨耗性與抗腐蝕性之研究★ 不同製程對鋯-銅-鋁非晶質合金內析出ZrCu B2相分布及其機械性質影響之研究
★ 以塊狀金屬玻璃和其複材製作骨科鑽頭及其鑽孔能力之研究★ 鋯基塊狀金屬玻璃與金屬玻璃鍍膜 手術刀切削耐久度之研究
★ 利用急冷旋鑄及真空熱壓製備β-Zn4Sb3 奈米/微 米晶塊材之熱電性質探討★ 無鎳鋯基及鈦基金屬玻璃生物相容性之研究
★ 以鐵基金屬玻璃複材或金屬玻璃鍍膜製作手術用取皮刀並進行模擬切削性能之研究★ 探討不同結晶率對鋯鋁鈷塊狀非晶質合金機械性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-8-31以後開放)
摘要(中) 中熵合金因其具有優異的材料性質以及靈活的設計彈性使其在合金開發上具有重要的影響力。本次實驗基於先前研究開發之Ti65(AlCrNbV)32Ni3中熵合金並採用不同的熱機處理製程:(一) 熱軋50 %後再冷軋70 %、(二) 熱軋50 %後再冷軋80 %以及(三)冷軋85 %等三種加工方式,再搭配不同時間900℃的熱處理,使材料內部的微結構發生改變。藉由分析其拉伸機械性質與微結構的變化探討合金的強化機制以及不同熱機處理參數對富鈦中熵合金之影響。
根據XRD結果顯示,合金經熱機處理後內部有析出物的生成,分析繞射峰比對為Ti2Ni與TiNi之介金屬化合物。在拉伸測試方面,一開始隨著退火熱處理時間增加合金降伏強度急遽下降,並在退火到一定時間後合金機械性質開始呈現穩定。其中,經熱軋後的材料其降伏強度可維持在1200 MPa,而延性則在20%左右;而無經過熱軋後的材料其降伏強度則維持在1100 MPa,而延性則可達25%以上。另外可以發現隨著冷加工量的提高,較高的加工量使合金再結晶溫度降低,亦使熱處理時機械性質穩定的時間越早發生。造成合金機械性質穩定的原因推斷為析出硬化與晶界強化兩種機制的拮抗,當熱處理時間增加,再結晶晶粒成長使得晶界密度降低進而造成強度下降,但熱處理時間的增加亦會使析出物成長提升合金的強度,兩種強化機制的作用使得合金在特定時間內可維持一定機械性質。而當熱處理時間超過臨界值進入過時效階段,析出物無法有效強化合金,使得合金機械性質開始下降。
本次研究中,Ti65(AlCrNbV)32Ni3經熱軋50%冷軋70%後再900℃熱處理30分鐘其降伏強度與延展性可達1203MPa及20%。對比過去快速退火之研究數據(降伏強度1250MPa、延展性16%),其強度略低50MPa左右但延展性大幅提升了約25%。
摘要(英) Medium-entropy alloys (MEAs) possess huge influence in alloy exploration due to their outstanding material properties and alloy design flexibility. This study is based on the previously Ti65(AlCrNbV)32Ni3 MEAs and conduct three different thermomechanical treatment processing: (1) hot rolling 50% and then cold rolling 70%, (2) hot rolling 50% and then cold rolling 80%, and (3) cold rolling 85%, respectively. And then heat treatment at 900 ℃ was used with different times to change the internal microstructure of the MEAs. The strengthening mechanism and the effect of the thermomechanical treatments on the Ti-rich MEAs were discussed by analyzing the results of the microstructure and tensile mechanical properties of the MEAs.
According to the XRD results, the alloy has formed precipitates after thermomechanical treatment. The precipitates were identified as Ti2Ni and TiNi intermetallic compounds. In tensile testing, the yielding strength reduce significantly with the increase of annealing time at the beginning, and the mechanical properties of the MEAs began to stabilize after annealing to a certain time. Among them, the yield strength of MEAs with the hot rolling can be maintained at 1200 MPa, while the ductility is around 20%. The yield strength without hot rolling is maintained at 1100 MPa, and the ductility can reach more than 25%. The reason for the stable mechanical properties is inferred to be the confrontation between precipitation hardening and grain boundary strengthening. When the heat treatment time increases, the growth of recrystallized grains reduces the grain boundary and thus reduce the strength, but the increase of heat treatment time will also improve precipitate. The growth of the precipitiates increases the strength of the alloy, and the effect of the two strengthening mechanisms enables the MEAs to maintain certain mechanical properties. Finally, when the heat treatment time exceeds to critical, the precipitates cannot effectively strengthen the MEAs, and the mechanical properties of the MEAs begin to decline. In addition, with the increasing of cold working, the higher working amount will reduce the recrystallization temperature making the mechanical property stabilization earlier.
In this study, Ti65(AlCrNbV)32Ni3 with hot rolling 50% then cold rolling 80% and then subjected to 30 min with 900℃ annealing, the yield strength and ductility of Ti65(AlCrNbV)32Ni3 can reach to 1203 MPa and 20%, respectively. Compared with the previous study of rapid annealing (the yield strength of 1250 MPa, the ductility of 16%), despite the strength is slightly reduce about 50 MPa, the ductility is greatly improved more than 25%.
關鍵字(中) ★ 中熵合金
★ 輕量化
★ 熱機處理
★ 介金屬化合物
★ 析出強化
關鍵字(英) ★ Medium-entropy alloys
★ lightweight
★ thermomechanical treatment
★ intermetallic compounds
★ precipitation strengthening
論文目次 摘要 i
Abstract ii
致謝 iv

一、緒論 1
1-1 前言 1
1-2 研究目的 1

二、文獻回顧 3
2-1 高熵合金定義 3
2-2 高熵合金發展 3
2-3 高熵合金之固溶相形成條件 4
2-4 高熵合金四大效應 6
2-4-1 高熵效應(high-entropy effect) 6
2-4-2 晶格扭曲效應(lattice distortion effect) 7
2-4-3 延遲擴散效應(sluggish diffusion effect) 7
2-4-4 雞尾酒效應(cocktail effect) 8
2-5 高熵合金之成分設計 9
2-5-1 非等量高熵合金 9
2-5-2 輕量化高熵合金 9
2-6 影響機械行為之因素 10
2-6-1 差排機制 10
2-6-2 固溶機制 12
2-6-3 析出機制 13
2-6-4 異構組織機制 15
2-7 富鈦中熵合金之沿革 16

三、實驗方法
3-1 實驗設計方法 24
3-1-1 鎳元素比例選擇 24
3-1-2 熱處理溫度選擇 24
3-2 試片製備流程細節 25
3-2-1 合金成分配製 25
3-2-2 電弧熔煉 25
3-2-3 高熵合金板材製作-墜落式鑄造 (Drop) 26
3-2-4 均質化熱處理 26
3-2-5 熱軋 26
3-2-6 冷軋 27
3-2-7 退火熱處理 27
3-3 合金密度量測 28
3-4 高熵合金微觀組織分析 28
3-4-1 X光繞射儀(XRD) 28
3-4-2 光學顯微鏡(Optical Microscopy, OM) 28
3-4-3 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 29
3-4-4 能量散射光譜儀(Energy-dispersive X-ray spectroscopy, EDS) 29
3-4-5 電子背向散射繞射(EBSD) 29
3-4-6 穿透式電子顯微鏡(TEM) 30
3-5 機械性質分析 30
3-5-1 維氏硬度分析 30
3-5-2 拉伸測試 31

四、結果討論 50
4-1 目標合金及溫度參數分析 50
4-1-1 鑄態合金之密度、機性與熱性質之分析 50
4-1-2 長時間退火熱處理之溫度選擇 50
4-2 合金加工硬化製程及熱機製程分析 51
4-2-1 均質化熱處理後的微觀組織 51
4-2-2 試片滾軋及長時間退火熱處理 51
4-2-3 X-ray繞射分析 52
4-2-4 拉伸測試分析 52
4-2-5 硬度分析 53
4-3 再結晶熱處理分析 53
4-3-1 再結晶退火熱處理時間之選擇 53
4-3-2 成份分析 54
4-3-3 OM微觀結構分析 54
4-3-4 X-ray繞射分析 56
4-3-5 背向散射電子繞射(EBSD)分析 56
4-3-6 機械性質分析 57
4-3-7 異構組織強化分析 61
4-3-8 TEM分析 62
4-4 析出物分析 62
4-4-1 X-ray繞射分析 63
4-4-2 TEM分析 63
4-5 強化機制整合分析 64
4-5-1 熱滾軋之影響 64
4-5-2 析出強化與晶粒強化的動態平衡 65
4-5-3 不同溫度退火之驅動力差異 66
4-5-4 Ti2Ni與TiNi對試片影響分析 67
4-5-5 長時間熱處理退火整合分析 68

五、 結論 106

六、 參考文獻 108
參考文獻 [1] M. Choi, I. Ondicho, N. Park, N. Tsuji, “Strength–ductility balance in an ultrafine-grained non-equiatomic Fe50(CoCrMnNi)50 medium-entropy alloy with a fully recrystallized microstructure”, Journal of Alloys and Compounds, 780, 2019, 959-966.
[2] Y. C. Liao, T. H. Li, P. H. Tsai, J. S. C. Jang, K. C. Hsieh, C. Y. Chen, J. C. Huang, H. J. Wu, Y. C. Lo, C. W. Huang, I. Y. Tsao, “Designing novel lightweight, high-strength and high-plasticity Tix(AlCrNb)100-x medium-entropy alloys”, Intermetallics, 117, 2020, 106673.
[3] Y. Deng, C. C. Tasan, K. G. Pradeep, H. Springer, A. Kostka, D. Raabe, “Design of a twinning-induced plasticity high entropy alloy”, Acta Materialia, 94, 2015, 124-133.
[4] C. C. Tasan, Y. Deng, K. G. Pradeep, M. J. Yao, H. Springer and D. Raabe, “Composition Dependence of Phase Stability, Deformation Mechanisms, and Mechanical Properties of the CoCrFeMnNi High-Entropy Alloy System”, The Minerals, Metals & Materials Society, 66, 2014, 1993-2001.
[5] M. J. Yao, K. G. Pradeep, C. C. Tasan and D. Raabe, “A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility”, Scripta Materialia, 72-73, 2014, 5-8.
[6] K. G. Pradeep, C. C. Tasan, M. J. Yao, Y. Deng, H. Springer, D. Raabe, “Non-equiatomic High entropy alloys: Approach towards rapid alloy screening and property-oriented design”, Materials Science and Engineering: A, 648, 2015, 183-192.
[7] D. C. Ma, M. J. Yao, K. G. Pradeep, C. C. Tasan, H. Springer, D. Raabe, “Phase stability of non-equiatomic CoCrFeMnNi high entropy alloys”, Acta Materialia, 98, 2015, 288-296.
[8] R. Cahn, P. Haasen, “Physical metallurgy”, 4th ed, Amsterdam: North-Holland, 1996.
[9] Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen, P. K. Liaw, “Solid-Solution Phase Formation Rules forMulti-component Alloys”, Advanced Engineering Materials, 10, 2008, 534-538.
[10] X. Yang, Y. Zhang, “Prediction of high-entropy stabilized solid-solution in multi-component alloys”, Materials Chemistry and Physics, 132, 2012, 233-238.
[11] S. Guo, C. T. Liu, “Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase”, Progress in Natural Science: Materials International, 21, 2011, 433-446.
[12] C. S. Wu, P. H. Tsai, C. M. Kuo and C. W. Tsai, “Effect of Atomic Size Difference on the Microstructure and Mechanical Properties of High-Entropy Alloys”, Entropy, 20, 2018, 967.
[13] J. W. Yeh, “高熵合金的發展”, 華岡工程學報, 27 2011 1-18.
[14] R. Swalin, “Thermodynamics of solids”, 2nd ed, New York: Wiley, 1972 35-41.
[15] J. W. Yeh, S. Y. Chang, Y. D. Hong, S. K. Chen, S. J. Lin, “Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements”, Materials Chemistry and Physics, 103, 2007, 41-46.
[16] K. Y. Tsaia, M. H. Tsai, J. W. Yeh, “Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys”, Acta Materialia, 61, 2013, 4887-4897.
[17] L. S. Zhang, G. L. Ma, L. C. Fu and J. Y. Tian, “Recent Progress in High-entropy Alloys”, Advanced Materials Research, 631-632, 2013, 227-232.
[18] T. N. Lam, S. Y. Lee, N. T. Tsou, H. S. Chou, B. H. Lai, Y. J. Chang, R. Feng, T. Kawasaki, S. Harjo, P. K. Liaw, A. C. Yeh, M. J. Li, R. F. Cai, S. C. Lo, E. W. Huang, “Enhancement of fatigue resistance by overload-induced deformation twinning in a CoCrFeMnNi high-entropy alloy”, Acta Materialia, 201, 2020, 412-424.
[19] F. Müller, B. Gorr, H. J. Christ, J. Müller, B. Butz, H. Chen, A. Kauffmann, M. Heilmaier, “On the oxidation mechanism of refractory high entropy alloys”, Corrosion Science, 159, 2019, 108-161.
[20] J. W. Yeh, S. Y. Chang, Y. D. Honga, S. K. Chenc and S. J. Lin, “Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements”, Materials Chemistry and Physics, 103, 2007, 41-46.
[21] X. K. Zhang, J. C. Huang, P. H. Lin, T. Y. Liu, Y. C. Wu, W. P. Li, Y. N. Wang, Y. C. Liao, Jason S. C. Jang, “Microstructure and mechanical properties of Tix(AlCrVNb)100-x light weight multi-principal element alloys”, Journal of Alloys and Compounds, 831, (2020), 154742.
[22] A. Gali, E. P. George, “Tensile properties of high- and medium-entropy alloys”, Intermetallics, 39, 2013, 74-78.
[23] O. N. Senkov, G. B. Wilks, J. M. Scott, D. B. “Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys”, Intermetallics, 19, 2011, 698-706.
[24] O. N. Senkov, S. V. Senkova, D. M. Dimiduk, C. Woodward, D. B. Miracle, “Oxidation behavior of a refractory NbCrMo0.5Ta0.5TiZr alloy”, Journal of Materials Science, 47, 2012, 6522–6534.
[25] K. K. Tseng, Y. C. Yang, C. C. Juan, T. S. Chin, C. W. Tsai, J. W. Yeh, “A light-weight high-entropy alloy Al20Be20Fe10Si15Ti35”, Science China Technological Sciences, 61, 2018, 184–188.
[26] R. Li, J. C. Gao, K. Fan, “Study to Microstructure and Mechanical Properties of Mg Containing High Entropy Alloys”, Materials Science Forum, 650, 2010, 265–271.
[27] Y. L. Chen, C. W. Tsai, C. C. Juan, M. H. Chuang, J. W. Yeh, T. S. Chin, S. K. Chin, “Amorphization of equimolar alloys with HCP elements during mechanical alloying”, Journal of Alloys and Compounds, 506, 2010, 210-215.
[28] N. D. Stepanov, N. Y. Yurchenko, D. G. Shaysultanov, G. A. Salishchev, M. A. Tikhonovsky, “Effect of Al on structure and mechanical properties of AlxNbTiVZr (x = 0, 0.5, 1, 1.5) high entropy alloys”, Materials Science and Technology, 31, 2015, 1184-1193.
[29] W. Chen, Q. H. Tang, H. Wang, Y. C. Xie, X. H. Yan, P. Q. Dai, “Microstructure and mechanical properties of a novel refractory AlNbTiZr high-entropy alloy”, Materials Science and Technology, 34, 2018, 1309-1315.
[30] B. Gludovatz, A. Hohenwarter, D. Catoor, E. H. Chang, E. P. George, R. O. Ritchie, “A fracture-resistant high-entropy alloy for cryogenic applications”, Science, 345, (2014), 1153-1158.
[31] W. D. Callister, D. G. Rethwisch, “Materials Science and Engineering”, Vol. 8, John Wiley & Sons Ltd, 2011.
[32] M. Payet, L. Marchetti, M. Tabarant, F. Jomard, J. P. Chevalier, “Corrosion mechanisms of 316L stainless steel in supercritical water: The significant effect of work hardening induced by surface finishes”, Corrosion Science, 157, 2019, 157-166.
[33] K. Georg, J. Hafner, “Ab initio molecular dynamics for liquid metals”, 47, 1993, 558.
[34] N. Yurchenko, E. S. Panina, S. V. Zherebtsov, M. A. Tikhonovsky, G. A. Salishcheva, N. D. Stepanova. “Microstructure evolution of a novel low-density Ti–Cr–Nb–V refractory high entropy alloy during cold rolling and subsequent annealing”, Materials Characterization, 158, 2019.
[35] C. Y. Hsu, W. R. Wang, W. Y. Tang, S. K. Chen, J. W. Yeh, “Microstructure and Mechanical Properties of New AlCoxCrFeMo0.5Ni High-Entropy Alloys”, Advanced Engineering Materials, 12, 2010, 44-49.
[36] A. Cuniberti, A. Tolley, M. V. C. Riglos, R. Giovachini, “Influence of natural aging on the precipitation hardening of an AlMgSi alloy”, Materials Science and Engineering, 527, 2010, 5307–5311.
[37] K. M. Youssefa, A. J. Zaddach, C. Niu, D. L. Irving, C. C. Koch, “A Novel Low-Density, High-Hardness, High-entropy Alloy with Close-packed Single-phase Nanocrystalline Structures”, Materials Research Letters, 14, 2014, 95-99.
[38] T. Gladman, “Precipitation hardening in metals”, 15, 2013, 30-36.
[39] A. M. A. Mohamed, F. H. Samuel, “A rview on the heat treatment of Al-Si-Cu/Mg casting alloys", in Heat Treatment - Conventional and Novel Applications”, Heat Treatment, 2012.
[40] Q. Wang, Z. Li, S. J. Pang, X. O. Li, C. Dong, P. K. Liaw, “Coherent Precipitation and Strengthening in Compositionally Complex Alloys: A Review”, Entropy, 20, 2108, 878.
[41] M. Marteleur, F. Sun, T. Gloriant, P. Vermaut, P. J. Jacquesa, F. Prima, “On the design of new b-metastable titanium alloys with improved work hardening rate thanks to simultaneous TRIP and TWIP effects”, Scripta Materialia, 66, 2012, 749–752.
[42] J. R. Lin, “The effect of minor nickel on the microstructure and mechanical properties of five-element titanium-rich high-entropy alloy”, National Central University, (2021).
[43] H. T. Takeshita, H. Tanaka, N. Kuriyama, T. Sakai, I. Uehara, M. Haruta, “Hydrogenation characteristics of ternary alloys containing Ti4Ni2X (X = O, N, C)”, Journal of Alloys and Compounds, 311, 2000, 188-193.
[44] N. Jin, S. ZHOU, T. S. Chang, “Identification of impacting factors of surface defects in hot rolling processes using multi-level regression analysis”, Society of Manufacturing Engineers, 2000.
[45] M. Hillert, “On the theory of normal and abnormal grain growthSur la theorie des croissances granulaires normale et anormaleZur theorie des normalen und des anomalen kornwachstums”, Acta Metallurgica, 13, 1965, 227-238.
[46] Z. Zhang, D. L. Chen, “Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites”, Materials Science and Engineering: A, 483-484, 2008, 148-152.
[47] Z. Zhang, D. L. Chen, “Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength”, Scripta Materialia, 54, 2006, 1321-1326.
[48] S. R. Feng, H. B. Tang, S. Q. Zhang, H. M. Wang, “Microstructure and wear resistance of laser clad TiBíTiC/TiNiíTi2Ni intermetallic coating on titanium alloy”, Trans. Nonferrous Met. Soc., 22, 2012, 1667-1673.
[49] Y. J. Zhang, X. W. Cheng, H. N. Cai, “Fabrication, characterization and tensile property of a novel Ti2Ni/TiNi micro-laminated composite”, Materials and Design, 92, 2016, 486–493.
[50] Z. Li, S. Zhao, R. O. Ritchie, M. A. Meyers, “Mechanical properties of high-entropy alloyswith emphasis on face-centered cubic alloys”, Materials Science, 102, 2019, 296-345.
[51] R. Natalia, B. Sergey, “Entropy change in the B2 → B19’ martensitic transformation in TiNi alloy”, Thermochimica Acta, 602, 2015, 30–35.
指導教授 鄭憲清(Shian-Ching Jang) 審核日期 2022-9-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明