參考文獻 |
[1] M. Choi, I. Ondicho, N. Park, N. Tsuji, “Strength–ductility balance in an ultrafine-grained non-equiatomic Fe50(CoCrMnNi)50 medium-entropy alloy with a fully recrystallized microstructure”, Journal of Alloys and Compounds, 780, 2019, 959-966.
[2] Y. C. Liao, T. H. Li, P. H. Tsai, J. S. C. Jang, K. C. Hsieh, C. Y. Chen, J. C. Huang, H. J. Wu, Y. C. Lo, C. W. Huang, I. Y. Tsao, “Designing novel lightweight, high-strength and high-plasticity Tix(AlCrNb)100-x medium-entropy alloys”, Intermetallics, 117, 2020, 106673.
[3] Y. Deng, C. C. Tasan, K. G. Pradeep, H. Springer, A. Kostka, D. Raabe, “Design of a twinning-induced plasticity high entropy alloy”, Acta Materialia, 94, 2015, 124-133.
[4] C. C. Tasan, Y. Deng, K. G. Pradeep, M. J. Yao, H. Springer and D. Raabe, “Composition Dependence of Phase Stability, Deformation Mechanisms, and Mechanical Properties of the CoCrFeMnNi High-Entropy Alloy System”, The Minerals, Metals & Materials Society, 66, 2014, 1993-2001.
[5] M. J. Yao, K. G. Pradeep, C. C. Tasan and D. Raabe, “A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility”, Scripta Materialia, 72-73, 2014, 5-8.
[6] K. G. Pradeep, C. C. Tasan, M. J. Yao, Y. Deng, H. Springer, D. Raabe, “Non-equiatomic High entropy alloys: Approach towards rapid alloy screening and property-oriented design”, Materials Science and Engineering: A, 648, 2015, 183-192.
[7] D. C. Ma, M. J. Yao, K. G. Pradeep, C. C. Tasan, H. Springer, D. Raabe, “Phase stability of non-equiatomic CoCrFeMnNi high entropy alloys”, Acta Materialia, 98, 2015, 288-296.
[8] R. Cahn, P. Haasen, “Physical metallurgy”, 4th ed, Amsterdam: North-Holland, 1996.
[9] Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen, P. K. Liaw, “Solid-Solution Phase Formation Rules forMulti-component Alloys”, Advanced Engineering Materials, 10, 2008, 534-538.
[10] X. Yang, Y. Zhang, “Prediction of high-entropy stabilized solid-solution in multi-component alloys”, Materials Chemistry and Physics, 132, 2012, 233-238.
[11] S. Guo, C. T. Liu, “Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase”, Progress in Natural Science: Materials International, 21, 2011, 433-446.
[12] C. S. Wu, P. H. Tsai, C. M. Kuo and C. W. Tsai, “Effect of Atomic Size Difference on the Microstructure and Mechanical Properties of High-Entropy Alloys”, Entropy, 20, 2018, 967.
[13] J. W. Yeh, “高熵合金的發展”, 華岡工程學報, 27 2011 1-18.
[14] R. Swalin, “Thermodynamics of solids”, 2nd ed, New York: Wiley, 1972 35-41.
[15] J. W. Yeh, S. Y. Chang, Y. D. Hong, S. K. Chen, S. J. Lin, “Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements”, Materials Chemistry and Physics, 103, 2007, 41-46.
[16] K. Y. Tsaia, M. H. Tsai, J. W. Yeh, “Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys”, Acta Materialia, 61, 2013, 4887-4897.
[17] L. S. Zhang, G. L. Ma, L. C. Fu and J. Y. Tian, “Recent Progress in High-entropy Alloys”, Advanced Materials Research, 631-632, 2013, 227-232.
[18] T. N. Lam, S. Y. Lee, N. T. Tsou, H. S. Chou, B. H. Lai, Y. J. Chang, R. Feng, T. Kawasaki, S. Harjo, P. K. Liaw, A. C. Yeh, M. J. Li, R. F. Cai, S. C. Lo, E. W. Huang, “Enhancement of fatigue resistance by overload-induced deformation twinning in a CoCrFeMnNi high-entropy alloy”, Acta Materialia, 201, 2020, 412-424.
[19] F. Müller, B. Gorr, H. J. Christ, J. Müller, B. Butz, H. Chen, A. Kauffmann, M. Heilmaier, “On the oxidation mechanism of refractory high entropy alloys”, Corrosion Science, 159, 2019, 108-161.
[20] J. W. Yeh, S. Y. Chang, Y. D. Honga, S. K. Chenc and S. J. Lin, “Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements”, Materials Chemistry and Physics, 103, 2007, 41-46.
[21] X. K. Zhang, J. C. Huang, P. H. Lin, T. Y. Liu, Y. C. Wu, W. P. Li, Y. N. Wang, Y. C. Liao, Jason S. C. Jang, “Microstructure and mechanical properties of Tix(AlCrVNb)100-x light weight multi-principal element alloys”, Journal of Alloys and Compounds, 831, (2020), 154742.
[22] A. Gali, E. P. George, “Tensile properties of high- and medium-entropy alloys”, Intermetallics, 39, 2013, 74-78.
[23] O. N. Senkov, G. B. Wilks, J. M. Scott, D. B. “Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys”, Intermetallics, 19, 2011, 698-706.
[24] O. N. Senkov, S. V. Senkova, D. M. Dimiduk, C. Woodward, D. B. Miracle, “Oxidation behavior of a refractory NbCrMo0.5Ta0.5TiZr alloy”, Journal of Materials Science, 47, 2012, 6522–6534.
[25] K. K. Tseng, Y. C. Yang, C. C. Juan, T. S. Chin, C. W. Tsai, J. W. Yeh, “A light-weight high-entropy alloy Al20Be20Fe10Si15Ti35”, Science China Technological Sciences, 61, 2018, 184–188.
[26] R. Li, J. C. Gao, K. Fan, “Study to Microstructure and Mechanical Properties of Mg Containing High Entropy Alloys”, Materials Science Forum, 650, 2010, 265–271.
[27] Y. L. Chen, C. W. Tsai, C. C. Juan, M. H. Chuang, J. W. Yeh, T. S. Chin, S. K. Chin, “Amorphization of equimolar alloys with HCP elements during mechanical alloying”, Journal of Alloys and Compounds, 506, 2010, 210-215.
[28] N. D. Stepanov, N. Y. Yurchenko, D. G. Shaysultanov, G. A. Salishchev, M. A. Tikhonovsky, “Effect of Al on structure and mechanical properties of AlxNbTiVZr (x = 0, 0.5, 1, 1.5) high entropy alloys”, Materials Science and Technology, 31, 2015, 1184-1193.
[29] W. Chen, Q. H. Tang, H. Wang, Y. C. Xie, X. H. Yan, P. Q. Dai, “Microstructure and mechanical properties of a novel refractory AlNbTiZr high-entropy alloy”, Materials Science and Technology, 34, 2018, 1309-1315.
[30] B. Gludovatz, A. Hohenwarter, D. Catoor, E. H. Chang, E. P. George, R. O. Ritchie, “A fracture-resistant high-entropy alloy for cryogenic applications”, Science, 345, (2014), 1153-1158.
[31] W. D. Callister, D. G. Rethwisch, “Materials Science and Engineering”, Vol. 8, John Wiley & Sons Ltd, 2011.
[32] M. Payet, L. Marchetti, M. Tabarant, F. Jomard, J. P. Chevalier, “Corrosion mechanisms of 316L stainless steel in supercritical water: The significant effect of work hardening induced by surface finishes”, Corrosion Science, 157, 2019, 157-166.
[33] K. Georg, J. Hafner, “Ab initio molecular dynamics for liquid metals”, 47, 1993, 558.
[34] N. Yurchenko, E. S. Panina, S. V. Zherebtsov, M. A. Tikhonovsky, G. A. Salishcheva, N. D. Stepanova. “Microstructure evolution of a novel low-density Ti–Cr–Nb–V refractory high entropy alloy during cold rolling and subsequent annealing”, Materials Characterization, 158, 2019.
[35] C. Y. Hsu, W. R. Wang, W. Y. Tang, S. K. Chen, J. W. Yeh, “Microstructure and Mechanical Properties of New AlCoxCrFeMo0.5Ni High-Entropy Alloys”, Advanced Engineering Materials, 12, 2010, 44-49.
[36] A. Cuniberti, A. Tolley, M. V. C. Riglos, R. Giovachini, “Influence of natural aging on the precipitation hardening of an AlMgSi alloy”, Materials Science and Engineering, 527, 2010, 5307–5311.
[37] K. M. Youssefa, A. J. Zaddach, C. Niu, D. L. Irving, C. C. Koch, “A Novel Low-Density, High-Hardness, High-entropy Alloy with Close-packed Single-phase Nanocrystalline Structures”, Materials Research Letters, 14, 2014, 95-99.
[38] T. Gladman, “Precipitation hardening in metals”, 15, 2013, 30-36.
[39] A. M. A. Mohamed, F. H. Samuel, “A rview on the heat treatment of Al-Si-Cu/Mg casting alloys", in Heat Treatment - Conventional and Novel Applications”, Heat Treatment, 2012.
[40] Q. Wang, Z. Li, S. J. Pang, X. O. Li, C. Dong, P. K. Liaw, “Coherent Precipitation and Strengthening in Compositionally Complex Alloys: A Review”, Entropy, 20, 2108, 878.
[41] M. Marteleur, F. Sun, T. Gloriant, P. Vermaut, P. J. Jacquesa, F. Prima, “On the design of new b-metastable titanium alloys with improved work hardening rate thanks to simultaneous TRIP and TWIP effects”, Scripta Materialia, 66, 2012, 749–752.
[42] J. R. Lin, “The effect of minor nickel on the microstructure and mechanical properties of five-element titanium-rich high-entropy alloy”, National Central University, (2021).
[43] H. T. Takeshita, H. Tanaka, N. Kuriyama, T. Sakai, I. Uehara, M. Haruta, “Hydrogenation characteristics of ternary alloys containing Ti4Ni2X (X = O, N, C)”, Journal of Alloys and Compounds, 311, 2000, 188-193.
[44] N. Jin, S. ZHOU, T. S. Chang, “Identification of impacting factors of surface defects in hot rolling processes using multi-level regression analysis”, Society of Manufacturing Engineers, 2000.
[45] M. Hillert, “On the theory of normal and abnormal grain growthSur la theorie des croissances granulaires normale et anormaleZur theorie des normalen und des anomalen kornwachstums”, Acta Metallurgica, 13, 1965, 227-238.
[46] Z. Zhang, D. L. Chen, “Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites”, Materials Science and Engineering: A, 483-484, 2008, 148-152.
[47] Z. Zhang, D. L. Chen, “Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength”, Scripta Materialia, 54, 2006, 1321-1326.
[48] S. R. Feng, H. B. Tang, S. Q. Zhang, H. M. Wang, “Microstructure and wear resistance of laser clad TiBíTiC/TiNiíTi2Ni intermetallic coating on titanium alloy”, Trans. Nonferrous Met. Soc., 22, 2012, 1667-1673.
[49] Y. J. Zhang, X. W. Cheng, H. N. Cai, “Fabrication, characterization and tensile property of a novel Ti2Ni/TiNi micro-laminated composite”, Materials and Design, 92, 2016, 486–493.
[50] Z. Li, S. Zhao, R. O. Ritchie, M. A. Meyers, “Mechanical properties of high-entropy alloyswith emphasis on face-centered cubic alloys”, Materials Science, 102, 2019, 296-345.
[51] R. Natalia, B. Sergey, “Entropy change in the B2 → B19’ martensitic transformation in TiNi alloy”, Thermochimica Acta, 602, 2015, 30–35. |