博碩士論文 109323088 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.147.62.19
姓名 薛廷威(Ting-Wei Hsueh)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以二維熱影像之溫度序列與深度學習預測生物支架線徑之研究
(A Research on Predicting Line Width of Bio-Scaffold using Temperature Series on Thermal Imager and Deep Learning)
相關論文
★ 雙光子光致聚合微製造系統之研發★ 雙光子光致聚合五軸微製造系統之雷射加工路徑生成研究
★ 椎弓根螺釘定位演算法及導引夾治具自動化設計流程開發★ 雙光子聚合微製造技術以能量均勻橢圓體為基之曝光時間最佳化研究
★ 雙光子光致聚合微製造以弦高誤差為基之切層演算法★ 雙光子光致聚合微製造技術以螺旋線雷射掃描路徑增強微結構強度研究
★ 雙光子聚合微製造技術之三維結構 製造品質改進研究★ 利用二維多重圖像建構三維三角網格模型的生成與品質改進
★ 組織工程用冷凍成型製造系統 之自動化製作流程開發★ 自動相機校正與二維影像輪廓萃取研究
★ 基於雙光子光致聚合技術之四軸微製造系統製作高深寬比結構之研究★ 冷凍成型積層製造之機台設計與組織工程支架製作參數調校研究
★ 基於二維影像輪廓重建三維模型技術之多視角相機群組空間座標系統整合★ 應用於大型物體三維模型重建之多重二維校正板相機校正流程開發
★ 組織工程用冷凍成型積層製造之固態水支撐結構生成研究★ 聚醚醚酮之積層製造系統開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-6-1以後開放)
摘要(中) 積層製造的技術近年來廣泛應用於生物支架的製作,以建構出具有特定孔隙率的支架。支架上的細胞能藉由支架間的孔洞,有效的與外界進行養分及代謝物的交換,促進細胞生長。為了製作具有穩度孔隙率的支架,必須精準的控制支架的線徑寬度,若支架的線徑寬度不均,將導致孔洞大小不一,使組織液在支架的孔隙中流通不易,無法有效的與細胞進行養分交換,且不穩定的線徑,會降低支架整體的機械性能,造成外型坍塌的風險。
水凝膠作為支架的主流材料之一,其特性為材料黏度會隨著溫度的改變而發生變化。因此使用水凝膠做為生物墨水列印時,墨水成形方式若採用溫度感應成型機制,需要精確的掌控沉積面溫度。傳統上大多採用單點接觸式溫度感測器量測墨水沉積面溫度,缺點為無法完整呈現同一層的溫度分佈。在同一層高度,隨著量測位置的不同,得到的溫度也會改變。且量測時為了不要接觸到支架造成溫度變化,會將感測器放置於沉積面上,導致量測的溫度與實際沉積面溫度產生偏差。
本研究之目的為預測支架在不同沉積溫度以及列印參數下的線徑寬度。為獲取溫度 資料,會使用熱像儀拍攝支架預沉積面之二維熱像圖,可快速有效獲得位置溫度資料。 搭配自行建立之深度神經網路訓練,以溫度與列印參數設定值(材料擠出壓力、噴嘴移動 速度)作為輸入參數,支架的線徑寬度作為輸出,預測溫度和列印參數與支架線徑的關係。 本實驗總共製作了 348 筆數據,298 筆用於訓練集,50 筆用於驗證集,R 2 為 98.5%, 證實模型學習的成果具有可信度。利用模型的預測能力,未來可控制生物列印機,在每 一個列印點區間調控噴嘴移動速度,以獲得連續一致的線徑寬度,達到提升支架列印品 質的目的。
摘要(英) Nowadays, the technology of Additive Manufacturing(AM) has been widely applied to the fabrication of biological scaffolds to construct scaffolds with specific porosity. The cells on the scaffold can exchange nutrients and metabolites effectively with the outside environment through the pores between the scaffolds to promote cell growth. In order to make scaffolds with stable porosity, it is necessary to precisely control the linewidth of the scaffolds. If the linewidth of the scaffolds is non-uniform, the pore size will be different, which makes it difficult for the tissue fluid to flow in the pores of the scaffolds and cannot effectively exchange nutrients with cells. Besides, unstable linewidths will reduce the overall mechanical properties of the scaffolds and cause scaffolds collapse.
As one of the mainstream materials for scaffolds, hydrogel is characterized by changes in material viscosity with changes in temperature. Therefore, when using hydrogel as a bio-ink for printing, the ink forming method requires precise control of the deposition surface temperature if a temperature-sensitive forming mechanism is used. Normally, single-point contact temperature sensor is used to measure the temperature of the ink deposition surface, which has the disadvantage of not being able to accurately present the exact temperature distribution of the same layer. In the same layer height, with the different measurement position, the temperature obtained will also change, and in order not to touch scaffolds to cause temperature changes, the sensor will be placed above the deposition surface, resulting in the measured temperature and the actual temperature of the deposition surface deviation.
The purpose of this study is to predict the linewidth of the scaffold at different deposition temperatures and printing parameters. To obtain temperature data, 2D thermal images of the pre-deposited surface of the scaffolds is taken using a thermal imaging camera. The temperature and print parameters (pressure, speed) were used as inputs and the linewidth of the scaffolds is used as output to predict temperature and printing parameters versus linewidth. In this study, a total of 348 data were produced, 298 for the training set and 50 for the validation set, with an R 2 of 98.5%, confirming the reliability of the model learning results. With the predictive capability of the model, the bio-printing can be controlled in the future to regulate the nozzle movement speed at each printing point to obtain a continuous and uniform linewidth to improve the scaffolds quality.
關鍵字(中) ★ 生物列印
★ 紅外線熱像儀
★ 影像處理
★ 深度學習
關鍵字(英) ★ Bioprinting
★ Infrared Imager
★ Image process
★ Deep Learning
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 X
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-3 研究動機與目的 8
1-4 論文架構 10
第二章 理論說明 11
2-1 積層製造暨生物支架之簡介 11
2-2 溫度感測器介紹 14
2-3 影像處理介紹 17
2-4 深度學習 21
2-5 三維生物列印機介紹 28
第三章 研究方法 31
3-1 實驗流程 31
3-2 熱像儀溫度之發射率校準 32
3-3 熱像儀及攝像機與龍門座標之轉換 34
3-4 人機介面 41
3-5 生物支架之設計與數據處理 43
3-6 溫度序列取得與圖像轉換 50
3-7 深度學習模型架構 50
第四章 實驗結果與討論 53
4-1 熱像儀溫度校準結果 53
4-2 龍門比例換算結果 54
4-3 座標直角確認 55
4-4 列印數據 56
4-5 深度學習之線徑預測結果與討論 59
第五章 實驗結果與討論 71
5-1 結論 71
5-2 未來展望 71
第六章 參考文獻 73
參考文獻 [1] J. P. Krutha, M. C. Leu and T. Nakagawac, “Progress in Additive Manufacturing and Rapid Prototyping”, CIRP Annals, Vol. 47, pp. 525-540, 1998.
[2] D. T. Pham, S. Dimov and F. Lacan, “Selective Laser Sintering: Applications and Technological Capabilities”, Manufacture, Vol. 213, pp. 435-449, 1999.
[3] H. Gudupati, M. Dey and I. Ozbolat, “A Comprehensive Review on Droplet-based Bioprinting: Past, Present and Future”, Biomaterials, Vol. 102, pp. 20-42, 2016.
[4] G. Gao, B. S. Kim, J. Jang and D. W. Cho, “Recent Strategies in Extrusion-Based ThreeDimensional Cell Printing toward Organ Biofabrication”, Acs Biomaterials Science & Engineering, Vol. 5, pp. 1150-1169, 2019.
[5] J. Stampfl, S. Baudis, C. Heller, R. Liska, A. Neumeister, R. Kling, A. Ostendorf and M. Spitzbart, “Photopolymers with Tunable Mechanical Properties Processed by Laser-Based High-Resolution Stereolithography”, Journal of Micromechanics and Microengineering, Vol. 18, 125014, 2008.
[6] M. Guvendiren, J. Molde, R. M. D. Soares and J. Kohn, “Designing Biomaterials for 3D Printing”, ACS Biomaterials Science & Engineering, Vol. 2, pp. 1679-1693, 2016.
[7] L. Deng and D. Yu, “Deep Learning: Methods and Applications”, Foundations and Trends in Signal Processing, Vol. 7, pp. 197-387, 2014.
[8] L. Ouyang, J. P. K. Armstrong, Q. Chen, Y. Lin, and M. M. Stevens, “Void-Free 3D Bioprinting for In Situ Endothelialization and Microfluidic Perfusion”, Advanced Functional Materials, Vol. 30, 1908349, 2019.
[9] J. Lee1, S. J. Oh, S. H. An, W. D. Kin and SH. Kin, “Machine Learning-Based Design Strategy for 3D Printable Bioink: Elastic Modulus and Yield Stress Determine Printability”, Biofabrication, Vol. 12, 035018, 2020.
[10] K. Ruberu, M. Senadeera, S. Rana, S. Gupta, J. Chung, Z. Yue, S. Venkatesh and G. Wallace, “Coupling Machine Learning with 3D Bioprinting to Fast Track Optimisation of Extrusion Printing”, Applied Materials Today, Vol. 22, 100914, 2021.
[11] Z. Jin, Z. Zhang, X. Shao and G. X. Gu, “Monitoring Anomalies in 3D Bioprinting with Deep Neural Networks”, ACS Biomaterials Science & Engineering, 1c03485 , 2021.
[12] J. Zhang, P. Wang and R. X. Gao, “Deep Learning-Based Tensile Strength Prediction in Fused Deposition Modeling”, Computers in Industry, Vol. 107, p. 11-21, 2019.
[13] L. L. Y. Chiu, Z. Chu and M. Radisic, “Tissue Engineering”, Comprehensive Nanoscience and Technology, Vol. 2, pp. 175-211, 2011.
[14] R. Langer and J. Vacanti, “Tissue Engineering”, Science, Vol. 260, pp. 920-926, 1993.
[15] G. Y. Huang, F. Li, X. Zhao, Y. F. Ma, Y. H. Li, M. Lin, G. R. Jin, T. J. Lu, G. M. Genin and F. Xu, “Functional and Biomimetic Materials for Engineering of the ThreeDimensional Cell Microenvironment”, Chemical Review, Vol. 117, pp. 12764-12850, 2017.
[16] M. Boffito, S. Sartoria and G. Ciardelli, “Polymeric Scaffolds for Cardiac Tissue Engineering: Requirements and Fabrication Technologies”, Polymer International, Vol. 63, pp. 2-21, 2014.
[17] S. Vijayavenkataraman, W. C. Yan, W. F. Lu and J. Y. H. Fuh, “3D Bioprinting of Tissues and Organs for Regenerative Medicine”, Advanced Drug Delivery Reviews, Vol. 132, pp. 296-332, 2018.
[18] X. Cui, J. Li, Y. Hartanto, M. Durham, J. Tang, H. Zhang, G. Hooper, K. Lim and T. Woodfield, “Advances in Extrusion 3D Bioprinting: A Focus on Multicomponent Hydrogel-Based Bioinks”, Advanced Healthcare Materials, Vol. 9, 1901648, 2020.
[19] S. V. Murphy and A. Atala, “3D Bioprinting of Tissues and Organs”, Nature Biotechnology, Vol. 32, pp. 773-785, 2014.
[20] L. Yu, W. Wang, X. Zhang and W. Zheng, “A Review on Leaf Temperature Sensor: Measurement Methods and Application”, Computer and Computing Technologies in Agriculture, Vol. 478, pp. 216-230, 2016.
[21] P. R. N. Childs, J. R. Greenwood and C. A. Long, “Review of Temperature Measurement”, Review of Scientific Instruments, Vol.71, pp. 2959-2978, 2000.
[22] FLIR Systems 官方網站,取自 https://www.flir.asia/。
[23] OMEGA 官方網站,取自 https://www.omega.com/en-us/resources/how-thermocoupleswork。
[24] InfraTec 官方網站,取自 https://www.infratec.eu/sensor-division/servicesupport/glossary/infrared-radiation/。
[25] Optex FA 官方網站,取自 https://www.optexfa.com/tech_guide/thermo_magazine/magazine-02.html。
[26] National Instruments 官方網站,取自 https://www.ni.com/zh-tw/innovations/whitepapers/06/overview-of-temperature-sensors.html。
[27] M. Nixon and A. Aguado, Feature Extraction and Image Processing for Computer Vision, 3rd Edition, Academic Press, 2019.
[28] N. Phuangsaijai, J. Jakmunee and S. Kittiwachana, “Investigation into the Predictive Performance of Colorimetric Sensor Strips using RGB, CMYK, HSV, and CIELAB Coupled with Various Data Preprocessing Methods: A Case Study on an Analysis of Water Quality Parameters”, Journal of Analytical Science and Technology, Vol. 12, 19, 2021.
[29] 李立宗,科班出身的 AI 人必修課: Opencv 影像處理使用 Python,深智數位出版社,臺北,2019。
[30] J. F. Canny, “A Computational Approach To Edge Detection”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-8, pp. 679-698, 1986. [31] P. E. Hart, “How the Hough Transform was Invented”, IEEE Signal Processing Magazine, Vol. 26, pp. 18-22, 2009.
[32] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. V. D. Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel and D. Hassabis, “Mastering the Game of Go with Deep Neural Networks and Tree Search”, Nature, Vol. 529, pp. 484-489, 2016.
[33] F. Rosenblatt, “The Perceptron: a Probabilistic Model for Information Storage and Organization in the Brain.”, Psychological review, Vol. 65, pp. 386-408,1958.
[34] N. Aloysius and M. Geetha, “A Review on Deep Convolutional Neural Networks”, IEEE International Conference on Communications and Signal Processing, 2017.
[35] Z. Wang and T. Oates, “Encoding Time Series as Images for Visual Inspection and Classification using Tiled Convolutional Neural Networks”, Twenty-Ninth AAAI Conference on Artificial Intelligence, pp. 3939-3945, 2015.
[36] N. Hatami, Y. Gavet and J. Debayle, “Classification of Time-Series Images Using Deep Convolutional Neural Networks”, The 10th International Conference on Machine Vision,2017.
[37] C. L. Yang, Z. X. Chen and C. Y. Yang, “Sensor Classification Using Convolutional Neural Network by Encoding Multivariate Time Series as Two-Dimensional Colored Images”, Sensors, Vol. 20, 168, 2020.
[38] Z. Qin, Y. B. Zhang, S. Y. Meng, Z. Qin and K. K. R. Choo, “Imaging and Fusing Time Series for Wearable Sensor-Based Human Activity Recognition”, Information Fusion, Vol. 53, pp. 80-87, 2020.
[39] J. J. Jiang, C. T. Tai, “Product Quality Prediction for Wire Electrical Discharge Machining with Markov Transition Fields and Convolutional Long Short-Term Memory Neural Networks”, Applied Sciences, Vol. 11, 5922, 2021.
[40] Geeksforgeeks 官方網站,取自 https://www.geeksforgeeks.org/。
[41] E. Buah, L. Linnanen, H. Wu and M. A. Kesse, “Can Artificial Intelligence Assist Project Developers in Long-Term Management of Energy Projects? The Case of CO2 Capture and Storage”, Energies, Vol. 13, 6259, 2020.
[42] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville and Y. Bengio, “Generative Adversarial Networks”, Communications of the ACM, Vol. 26, pp. 139-144, 2020.
[43] 廖昭仰,「雙光子聚合微加工之產品模型建立與模擬」,國立臺灣大學,博士論文,民國 97 年。
[44] Pyts 官方網站,取自 https://pyts.readthedocs.io/。
[45] 黃鍾易,「將感測器信號和加工參數編碼成圖像用於雷射切割的遷移學習」,國立中央大學,碩士論文,民國 110 年。
[46] 陳柏任,「組織工程應用之平面與旋轉兩用式三維生物列印機開發」,國立中央大學,碩士論文,民國 111 年。
指導教授 廖昭仰(Chao-Yaug Liao) 審核日期 2022-9-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明