博碩士論文 109323052 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:18.117.192.53
姓名 洪聖凱(Sheng-Kai Hung)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 矩形平板部分埋沒於顆粒體之動態反應與振動特性
(Dynamic Response and Vibration Characteristics of a Rectangular Plate Partially Buried in Particles)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-9-24以後開放)
摘要(中) 板、殼問題在工業領域中是非常重要的研究項目,有相當多的文獻探討平板與各式連續體介質耦合的動態行為。但平板耦合離散體的行為機制至今尚未深入研究與釐清。本文透過實驗量測、有限元素法與離散元素法雙向耦合技術(Two-Way Coupled FEM-DEM Method) 探討等向性矩形平板部分埋沒於顆粒體中的振動特性,以及顆粒對於平板動態行為的振動抑制效果,分析顆粒體的堆積高度、粒徑、楊氏係數及質量密度對於顆粒體-平板耦合系統振動特性的影響。
本文使用有限元素與離散元素雙向耦合之模擬技術,計算平板受動態外力激振之後的時域位移和應變,搭配快速傅立葉轉換(Fast Fourier transform, FFT)至頻譜觀察頻率域之反應,並使用實驗模態分析法(Experimental modal analysis, EMA)獲得平板耦合顆粒體的模態形狀。在實驗量測上,分別使用鋼珠撞擊和激振器推動兩種方法激發平板動態行為,使用貼附於平板上的聚偏二氟乙烯(Polyvinylidene fluoride, PVDF)壓電薄膜感測器量測平板受外力作用後的暫態應變訊號,藉由 FFT轉換至頻域獲得共振頻率和頻率響應。將實驗量測結果與有限元素法模擬之結果比較,驗證有限元法與離散元素法耦合模擬技術之準確性與可行性,並探討顆粒體對於平板動態行為之影響。
本文的研究結果顯示:(1)隨著顆粒堆積高度增加,平板的共振頻率和模態形狀都會出現變化,共振頻率隨堆疊高度增加而上升,模態形狀的腹點區域也向上偏移。(2)與平板耦合的顆粒粒徑越大,離散程度越高,實驗量測結果之訊雜比越差。(3)顆粒的幾何與材料性質中,以顆粒的質量密度對平板動態行為的影響最為顯著。顆粒密度越高,顆粒-板耦合系統將有較高的剛性,因此具有較高的共振頻率。(4)以阻尼因子判斷系統之減振效果得知,粒徑小、楊氏係數小與質量密度小的顆粒體能產生較多的碰撞、摩擦行為,因此將具有較高的系統耗能效果。
總結而言,本研究運用實驗量測、耦合有限元素與離散元素模擬,提供顆粒板的耦合系統之動態行為的深入研究及探討,將提供工業領域設計及檢測相關的運用價值。
摘要(英) Plate and shell are very important research problems in the industrial field, and there are quite a lot of literatures discussing the dynamic problem of plates coupled with various continuum media. However, the dynamic behavior of plates coupled with discrete bodies has not yet been studied and clarified in detail. In this study, the vibration characteristics of an isotropic rectangular plate partially buried in particles and the vibration suppression effects of particles on the plate are investigated by the experimental measurement, and the Two-Way Coupled FEM-DEM Method. Additionally, the influences of particle size, Young′s modulus, and mass density on the vibration characteristics of the particle-plate coupled system were also investigated.
We employed the Two-Way Coupled FEM-DEM Method to calculate the timedepend transverse displacement and in-plane strain of the plate excited by a dynamic external force and utilized the Fast Fourier transform (FFT) to observe the response in the frequency spectrum. In addition, the experimental modal analysis (EMA) was applied to obtain the mode shapes of the particle-plate system. In the experimental measurements, we employed two methods to generate the dynamic behavior of the particle-plate coupled system, a steel ball impact, and a shaker, respectively. The PVDF film sensors attached to the plate are utilized to measure the transient strain so that can be converted by FFT to obtain resonant frequencies and frequency responses. To verify the accuracy and achievability of the Coupled FEM-DEM simulation approach and study the influence of the granular nature on the dynamic behavior of the plate, the results of the experiment and numerical calculation were compared.
The results illustrate that: (1) The mode shapes of the particle-plate coupled system are different from the pure plate. The resonant frequencies increase with the packed height increasing. (2) The signal-to-noise ratio (SNR) becomes worse due to the larger particles resulting in higher discretization. (3) The results show that the particle density has the most significant influence on the dynamic behavior of the plate. The higher density of particles results in higher stiffness so that the resonant frequency of the particle-plate coupled system increases as well. (4) The damping factor is applied to study the vibration suppression of the system. The results show that particles with smaller size, Young’s modulus, and mass density cause more energy consumption.
關鍵字(中) ★ 有限元素法
★ 離散元素法
★ 振動
★ PVDF 壓電薄膜感測器
★ 顆粒阻尼器
關鍵字(英) ★ FEM
★ DEM
★ Vibration
★ PVDF film sensor
★ Particle damper
論文目次 摘要 i
Abstract iii
Acknowledgement v
Table of Contents vii
List of Tables xi
List of Figures xiii
Chapter 1. Introduction 1
1.1 Literature review 1
1.2 Motivation and purpose of research 5
1.3 Content synopsis 6
Chapter 2. Experimental Methods and Equipment 9
2.1 Simple tests for material properties of granular matter 9
2.2 Polyvinylidene difluoride (PVDF) films 11
2.3 Experimental modal analysis (EMA) 14
2.4 Experiment setup 14
Chapter 3. Two-Way Coupled FEM-DEM Method 33
3.1 Finite element model for an elastic continuum 33
3.2 Discrete element model for granular nature 36
3.3 Two-way communication between continuum and discrete elements 39
3.4 Time step for coupled FEM-DEM simulations 41

3.5 Benchmark tests for the Two-way coupled FEM-DEM method 42
3.5.1 Elastic normal impact of two identical beads 42
3.5.2 Elastic normal impact of a bead with a rigid plane 42
3.5.3 Normal contact with various restitution coefficients 43
3.5.4 Oblique impact of a bead with a rigid plane with a constant resultant
velocity but at various incident angles 44
3.5.5 Inelastic normal impact of two identical beads 45
3.6 Discussion and conclusion 45
Chapter 4. Vibration Analysis for Rectangular Plates 53
4.1 Theoretical analysis 53
4.1.1 Classical plate theory and Kirchhoff plate assumptions 53
4.1.2 Superposition method 55
4.2 Finite element method 63
4.2.1 FEM (Frequency) 64
4.2.2 FEM (Dynamic, Explicit) 64
Chapter 5. Results and Discussion 75
5.1 Vibration characteristics of a pure rectangular plate 75
5.2 Vibration characteristics of a particle-plate coupled system 77
5.2.2 Results of the experiments 79
5.2.3 Results of the coupled FEM-DEM method 80
5.2.4 Comparison among various methods 82
5.3 Parametric analyses for particle properties 84
5.3.1 The influence of particle density 84
5.3.2 The influence of particle Young’s modulus 85
Chapter 6. Conclusion and Future Work 209
6.1 Conclusion 209
6.2 Future work 210
References 213
Appendix A: Specification of PVDF 217
參考文獻 [1]P. A. Cundall, and O. D. Strack, “A Discrete Numerical Model for Granular Assemblies”, Geotechnique, Vol 29.1, 1979, pp. 47-65.
[2]F. Fleissner, T. Gaugele, and P. Eberhard, “Applications of the Discrete Element Method in Mechanical Engineering”, Multibody System Dynamics, Vol 18.1, 2007, pp. 81-94.
[3]D. Q. Wang, and C. J. Wu, “Vibration Response Prediction of Plate with Particle Dampers Using Cosimulation Method”, Shock and Vibration, Vol 2015, 2015.
[4]K. Murugaratnam, S. Utili, and N. Petrinic, “A Combined DEM–FEM Numerical Method for Shot Peening Parameter Optimisation”, Advances in Engineering Software, Vol 79, 2015, pp. 13-26.
[5]J. W. Pan, et al., “A Mapping Discrete Element Method for Nonlinear Dynamics of Vibrating Plate-Particle Coupling System”, Powder Technology, Vol 385, 2021, pp. 478-489.
[6]A. R. Timmins, and R. E. Heuser, “A Study of First-Day Space Malfunctions”, No. NASA-TN-D-6474, 1971.
[7]P. Veeramuthuvel, K. Shankar, and K. K. Sairajan, “Application of Particle Damper on Electronic Packages for Spacecraft”, Acta Astronautica, Vol 127, 2016, pp. 260-270.
[8]H. V. Panossian, “Structural Damping Enhancement via Non-Obstructive Particle Damping Technique”, Journal of Vibration and Acoustics, Vol 114.1 , 1992, pp. 101-105.
[9]Z. W. Xu, M. Y. Wang, and T. Chen, “Particle Damping for Passive Vibration Suppression: Numerical Modelling and Experimental Investigation”, Journal of Sound and Vibration, Vol 279.3-5, 2005, pp. 1097-1120.
[10]C. X. Wong, M. C. Daniel, and J. A. Rongong, “Energy Dissipation Prediction of Particle Dampers”, Journal of Sound and Vibration, Vol 319.1-2, 2009, pp. 91-118.
[11]X. Fang, and J. Tang, “Granular Damping in Forced Vibration: Qualitative and Quantitative Analyses”, Journal of Vibration and Acoustics, Vol 128.4, 2006, pp. 489-500.
[12]J. A. Rongong, and G. R. Tomlinson, “Amplitude Dependent Behaviour in the Application of Particle Dampers to Vibrating Structures”, 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2005.
[13]W. Q. Xiao, et al., “Investigation into the Influence of Particles′ Friction Coefficient on Vibration Suppression in Gear Transmission”, Mechanism and Machine Theory, Vol 108, 2017, pp. 217-230.
[14]C. Y. Liao, and C. C. Ma, “Vibration Characteristics of Rectangular Plate in Compressible Inviscid Fluid”, Journal of Sound and Vibration, Vol 362, 2016, pp. 228-251.
[15]C. Y. Liao, et al., “Theoretical Analysis Based on Fundamental Functions of Thin Plate and Experimental Measurement for Vibration Characteristics of a Plate Coupled with Liquid”, Journal of Sound and Vibration, Vol 394, 2017, pp. 545-574.
[16]C. Y. Liao, and C. C. Ma, “Transient Behavior of a Cantilever Plate Subjected to Impact Loading: Theoretical Analysis and Experimental Measurement”, International Journal of Mechanical Sciences, Vol 166, 2020, pp. 105-217.
[17]L. Liu, J. Li, and C. Wan, “Nonlinear Dynamics of Excited Plate Immersed in Granular Matter”, Nonlinear Dynamics, Vol 91.1, 2018, pp. 147-156.
[18]W. Kang, et al., “Granular Layers on Vibrating Plates: Effective Bending Stiffness and Particle-Size Effects”, The Journal of the Acoustical Society of America, Vol 121.2, 2007, pp. 888-896.
[19]H. Kawai, “The Piezoelectricity of Poly (Vinylidene Fluoride)”, Japanese Journal of Applied Physics, Vol 8.7, 1969, pp. 975.
[20]H. Gu, Y. Zhao, and M. L. Wang, “A Wireless Smart PVDF Sensor for Structural Health Monitoring”, Structural Control and Health Monitoring: The Official Journal of the International Association for Structural Control and Monitoring and of the European Association for the Control of Structures, Vol 12.3‐4, 2005, pp. 329-343.
[21]P. Benech, E. Chambered, and C. Monllor, “Acceleration Measurement Using PVDF”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol 43.5, 1996, pp. 838-843.
[22]A. V. Shirinov, and W. K. Schomburg, “Pressure Sensor from a PVDF Film”, Sensors and Actuators A: Physical , Vol 142.1, 2008, pp. 48-55.
[23]K. C. Chuang, H. C. Liou, and C. C. Ma, “Investigation of Polyvinylidene Fluoride (PVDF) Films in Identifying High-Frequency Vibration Modes of Flexible Plates”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol 61.6, 2014, pp. 1047-1058.
[24]F. Bauer, “Properties of Ferroelectric Polymers under High Pressure and Shock Loading”, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol 105.1-4, 1995, pp. 212-216.
[25]B. J. Schwarz, and M. H. Richardson, “Experimental Modal Analysis”, CSI Reliability Week, Vol 35.1, 1999, pp. 1-12.
[26]Y. C. Chung, et al., “A Rapid Granular Chute Avalanche Impinging on a Small Fixed Obstacle: DEM Modeling, Experimental Validation and Exploration of Granular Stress. ”, Applied Mathematical Modelling, Vol 74, 2019, pp. 540-568.
[27]O.C. Zienkiewicz, and R.L. Taylor, “The Finite Element Method”, Solid Mechanics, Fifth ed., Butterworth-Heinemann, Oxford, Vol 2, 2000.
[28]Y.C. Chung, and J.Y. Ooi, “Linking of Discrete Element Modelling with Finite Element Analysis for Analysing Structures in Contact with Particulate Solid”, Powder Technol., Vol 217, 2012, pp. 107-120.
[29]C. O′Sullivan, and J. D. Bray, “Selecting a Suitable Time Step for Discrete Element Simulations that Use the Central Difference Time Integration Scheme”, Engineering Computations, Vol 21.2-4, 2004, pp. 278-303.
[30]Y.C. Chung, and J.Y. Ooi, “Benchmark Tests for Verifying Discrete Element Modelling Codes at Particle Impact Level”, Granular Matter, Vol 13.5, 2011, pp. 643-656.
[31]D. J. Gorman, “Accurate Free Vibration Analysis of the Completely Free Orthotropic Rectangular Plate by the Method of Superposition”, Journal of Sound and Vibration, Vol 165.3, 1993, pp. 409-420.
[32]吳亦莊、馬劍清:〈理論解析與實驗量測壓電平板的面外振動及特性探討〉。碩士論文,國立台灣大學機械工程研究所,2009年。
[33]廖展誼、馬劍清:〈矩形平板於流固耦合問題的振動特性與暫態波傳之理論分析、數值計算與實驗量測〉。博士論文,國立台灣大學機械工程研究所,2018年。
[34]陳冠瑋、馬劍清:〈矩形平板部分浸泡於流場中的振動特性,暫態波傳與反算問題之理論解析,數值計算與實驗量測〉。博士論文,國立台灣大學機械工程研究所,2021年。
指導教授 廖展誼 鍾雲吉(Chan-Yi Liao Yun-Chi Chung) 審核日期 2022-9-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明