博碩士論文 109323071 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:18.221.208.183
姓名 林煜祥(Yu-Shiang Lin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 1 kW兩相蒸發冷卻系統設計及性能驗證
相關論文
★ 冷卻水溫度與冰水溫度對離心式冰水主機性能影響之實驗分析★ 不同結構與幾何形狀對熱管性能之影響
★ 油冷卻器熱傳與壓降性能實驗分析★ 水對冷媒R22在板式熱交換器內之性能測試分析
★ 水對水在不同板片型式之板式熱交換器性能測試分析與比較★ 油冷卻器性能測試分析與比較
★ 空調機用水簾式暨光觸媒空氣清淨機 研製及測試★ 水對空氣在板式熱交換器之性能測試分析
★ 板片入出口及入出口管路壓降估計對板式熱交換器壓降性能影響分析★ 微熱交換器之設計與性能測試
★ 板式熱交換器之入出口壓降實驗分析★ 液體冷卻系統中之微熱交換器性能分析與改良
★ 直接模擬蒙地卡羅法於高低速流場之模擬★ 液體微熱交換器之熱傳增強研究
★ 冷媒R22在板式熱交換器內之凝結熱傳及壓降性能實驗分析★ 不同參數對燒結式熱管性能之影響研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 因應下個世代處理器的散熱需求,本研究建立1 kW級泵推動兩相蒸發冷卻系統,為取代目前水冷系統在高發熱量時需較大流量及泵動力的缺點。建立系統設計不同流道高度2 mm、3 mm之直線微流道蒸發器,流道高度3 mm具有較佳的熱傳性能及較小的壓降,因其熱傳面積以及流道截面積的增加所致。而兩者工作流體流量於350 ml/min、1050 W發熱量時達到最高熱傳係數,可處理1 kW級的散熱。
  泵浦方面比較市售不同的離心泵及隔膜泵不致孔蝕現象產生的入口最低過冷度,離心泵所需最低過冷度較小,可以降低整體系統冷凝器及蒸發器的熱阻。在應用方面,考慮蒸發器及冷凝器之間的熱阻平衡,分別比較不同流體工作溫度40℃、45℃及50℃在1 kW的加熱量下熱阻的分佈,而50℃時蒸發器及冷凝器熱阻分別為0.023℃/W及0.024℃/W,達到熱阻平衡。
摘要(英) Due to the heat dissipate need for next generation processor, this research builds a 1 kW pumped two-phase evaporate cooling system, in replace the shortcoming of huge water flow rate and pumping power in liquid cooling system with high heat flux cooling. For the evaporator, we design rectangular channel with different channel height 2 mm and 3 mm, the result shows 3 mm has better heat transfer performance and lower pressure drop owing to higher heat transfer area and channel cross section. Both kind of evaporator get max heat transfer coefficient in flow rate at 350 ml/min and 1050 W heat dissipate, shows the ability to deal with 1 kW heat.
For the pump, cavitation effect needs to be avoid, so we compare the minimum inlet subcooled of commercial centrifugal and diaphragm pump, result shows centrifugal pump needs lower subcooled temperature, means decrease the thermal resistance of condenser and evaporator.
In application, the thermal resistance balance of evaporator and condenser should be considering, test different fluid working temperature in 40℃、45℃ and 50℃ in dissipating of 1 kW heat, evaporator and condenser thermal resistance meets together in 0.023℃/W and 0.024℃/W with working temperature in 50℃.
關鍵字(中) ★ 兩相蒸發冷卻系統
★ 流道高度
★ 孔蝕現象
★ 熱阻分佈
關鍵字(英) ★ two-phase evaporation cooling system
★ channel height
★ cavitation
★ thermal resistance
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 x
符號說明 xi
第一章、前言 1
1.1 研究背景與動機 1
1.2 研究目的 9
第二章、文獻回顧 10
2.1泵推動兩相蒸發冷卻系統 10
2.2 微流道蒸發器流道高度 20
2.3 泵浦 22
2.3.1 孔蝕現象 22
2.3.2 各類泵浦比較 23
2.3.2.1 離心泵浦 23
2.3.2.2 隔膜泵浦 25
2.3.2.3 齒輪泵浦 26
2.3.2.4 螺桿泵浦 27
2.3.2.5 渦卷泵浦 29
2.4 冷凝器 31
2.5 總結 31
第三章、研究方法 33
3.1 兩相蒸發器之流道設計 33
3.2 泵浦挑選 39
3.2.1離心泵挑選 40
3.2.2 隔膜泵浦挑選 42
3.3 冷凝器挑選 43
3.4 實驗系統 45
3.4.1加熱系統 46
3.4.2 實驗量測儀器與設備 49
3.4.2.1 溫度量測 49
3.4.2.2 差壓量測 50
3.4.2.3 流量量測 50
3.4.3資料擷取系統 50
3.5 實驗步驟 54
3.6實驗數據換算 54
3.6.1 加熱瓦數 54
3.6.2 質量流率 55
3.6.3 乾度 55
3.6.4 熱傳係數 56
3.6.5 熱阻值 56
第四章、實驗結果與討論 57
4.1 蒸發器熱傳熱傳性能 57
4.1.1 流量對蒸發器熱傳性能影響 57
4.1.2 流道高度對熱傳性能差異比較 61
4.2 蒸發器壓降性能 64
4.2.1 流量對蒸發器壓降影響 65
4.2.2 流道高度對壓降差異比較 66
4.2.3 不同流道高度蒸發器運作性能 67
4.3 系統工作溫度點 68
4.4 過冷度對系統影響 72
4.4.1 泵浦過冷度實驗結果 73
4.4.2 過冷度與冷凝器大小關係 74
4.5 整體系統最佳工作點 75
第五章、結論 77
參考文獻 78
附錄(一)、實驗誤差分析 83
附錄(二)、冷凝器大小sizing 87
參考文獻 [1] Kulkarni, D., Steinbrecher, R., 2016, “Compact Liquid Enhanced Air Cooling Thermal Solution for High Power Processors in Existing Air-cooled Platforms,” IEEE 32nd Thermal Measurement, Modeling & Management Symposium (SEMI-THERM), pp.81-85.
[2] Agostini, B., Fabbri, M., Park, J. E., Wojtan, L., Thome, J. R., & Michel, B., 2007, “State of the art of high heat flux cooling technologies,” Heat transfer engineering,” 28(4), pp 258-281.
[3] “Two-Phase Evaporative Precision Cooling Systems For heat loads form 3 to 300 kW,” 2011 Parker Hannifin Corporation. (https://www.parker.com/literature/CIC%20Group/Precision%20Cooling/New%20literature/Two_Phase_Evaporative_Precision_Cooling_Systems.pdf)
[4] https://www.1-act.com/advanced-technologies/pumped-two-phase-cooling/
[5] Munson, Bruce R., Donald F. Young, and Theodore H. Okiishi., 1995, “Fundamentals of fluid mechanics,” 9th edition, John Wiley & Sons, New work.
[6] Hanneman, R., Marsala, J., Pitasi M, 2004, “Pumped liquid multiphase cooling,” ASME International Mechanical Engineering Congress and Exposition, Vol. 47071, pp. 469-473.
[7] “Cooling IGBT Modules with VDF,” 2008 Parker Hannifin Corporation. (https://www.parker.com/literature/CIC%20Group/Precision%20Cooling/Parker%20Hannifin%20IMAPS%20France%20presentation%20on%202%20phase%20cooling.pdf)
[8] Saums, D.L., 2010, “Vaporizable dielectric fluid cooling for IGBT power semiconductors,” IEEE 6th International Conference on Integrated Power Electronics Systems, pp. 1-7.
[9] “High Power Modular AC Drive with Advanced Cooling Technology (500 - 2200HP),” Parker Hannifin Corporation. (https://www.parker.com/literature/SSD%20Drives%20Division%20North%20America/Catalogs%20and%20Brochures/AC890PX%20Advanced%20Cooling%20US%20HA471950%20ISS3.pdf)
[10] Yakhshi-Tafti, E., Pearlman, H., Seung M. You, 2014, “Flow Boiling Heat Transfer Enhancement in Subcooled and Saturated Refrigerants in Minichannel Heat Sinks,” ASME International Conference on Nanochannels, Microchannels, and Minichannels, Vol. 46278, pp. V001T03A004.
[11] Kulkarni, D., Tang, X., Ahuja, S., Dischler, R., Mahajan, R., 2018, “Experimental Study of Two-Phase Cooling to Enable Large-Scale System Computing Performance,” 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), pp.596-601.
[12] Slippey, A., Schroedermeier, A., Folts, D., Pellicone, D., & Rockhill, A, 2021, “Pumped 2-Phase Cooling as an Enabler for a Modular, Medium-Voltage, Solid-State Circuit Breaker,” International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, pp.1144-1151.
[13] Harirchian, T., & Garimella, S. V., 2008, “Microchannel size effects on local flow boiling heat transfer to a dielectric fluid,” International Journal of Heat and Mass Transfer, Vol 51, Issues 15-16, pp.3724-3735.
[14] 李至誠,2017,不同流道型式之蒸發熱交換器的熱傳性能研究,國立中央大學機械工程研究所碩士論文,中壢,台灣。
[15] Plesset, M. S., & Chapman, R. B., 1971, “Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary,” Journal of Fluid Mechanics, 47(2), pp 283-290.
[16] Majidi, K., 2005, “Numerical study of unsteady flow in a centrifugal pump,” Journal of Turbomachinery., 127(2), pp 363-371.
[17] Li, W., & Yu, Z., 2021, “Cavitating flows of organic fluid with thermodynamic effect in a diaphragm pump for organic Rankine cycle systems,” Energy, 237, pp 121495.
[18] Lee, J. K., Jung, J. K., Chai, J. B., & Lee, J. W., 2015, “Mathematical modeling of reciprocating pump,” Journal of mechanical science and technology, 29(8), pp 3141-3151.
[19] White, Frank M., 1990, “Fluid Mechanics,” 8th edition, John Wiley & Sons, New work.
[20] Eaton, M. Keogh, P. S. Edge, K. A., 2006, “The modelling, prediction, and experimental evaluation of gear pump meshing pressures with particular reference to aero-engine fuel pumps,” Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 220(5), pp 365-379.
[21] Yan, D., Kovacevic, A., Tang, Q., Rane, S., & Zhang, W., 2017, “Numerical modelling of twin-screw pumps based on computational fluid dynamics,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 231(24), pp 4617-4634.
[22] Zheng, S., Wei, M., Song, P., Hu, C., & Tian, R., 2020, “Thermodynamics and flow unsteadiness analysis of trans-critical CO2 in a scroll compressor for mobile heat pump air-conditioning system,” Applied Thermal Engineering, 175, pp 115368.
[23] Fritz, W.,1935, “Berechnungen des Maximalvolumens von Dampfblasen,” Phys. Z., Vol. 36.
[24] Shah, M. M., 1976, “A New Correlation for Heat Transfer during Boiling Flow Through Pipes,” ASHRAE Transaction, Vol. 82, No. 2, pp. 66-86.
[25] Kandlikar, S. G., and Balasubramanian, P., 2004, “An extension of the flow boiling correlation to transition, laminar, and deep laminar flows in minichannels and microchannels,” Heat Transfer Engineering, Vol. 25, pp. 86-93.
[26] Friedel, L., 1979, “Improved friction pressure drop correlation for horizontal and vertical two-phase pipe flow, ”Proc. of European Two-Phase Flow Group Meet., Ispra, Italy.
[27] TOPSFLO, TL-A02, https://www.symtek.com.tw/wp-content/uploads/2019/03/TL-A02.pdf
[28] HITON, HF-8366, https://www.gau-jiuh.com.tw/product_info.php?info=p240_HITON.html
[29] CoolerMaster, MasterLiquid ML360, https://coolermaster.egnyte.com/dl/3rcGvtI2Hw
[30] DELTA, PFC1212DE, https://www.mouser.tw/datasheet/2/632/PFC1212DE-F00(REV02)--5500-595509.pdf
[31] Webb, R. L., 1981, “Performance evaluation criteria for use of enhanced heat transfer surfaces in heat exchanger design,” international journal of heat and mass transfer, Vol.24(4), pp. 715-726.
指導教授 楊建裕(Chien-Yuh Yang) 審核日期 2022-9-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明