參考文獻 |
[1]余威論,2009,「速度-位移相關摩擦係數與巨型山崩運動特性」,國立中央大學應用地質所,碩士論文。
[2]李羿葦,2017,「不同排水速度/滑移速度條件下高嶺土之摩擦特性探討」, 國立中央大學應用地質所,碩士論文。
[3]江宜佳,2020,「氣乾高嶺土之速度-位移相依摩擦律」,國立中央大學應用地質所,碩士論文。
[4]劉學樺,2013,「由斷層泥旋剪試驗推估基底滑脫面於不同深度與滑移速度條件下之摩擦特性」,國立中央大學應用地質所,碩士論文。
[5]賴俊融,2015,「單速與不同頻率變速旋剪試驗條件下高嶺土之速度與位移相依摩擦律」,國立中央大學應用地質所,碩士論文。
[6]Kaneki, S., Oohashi, K., Hirono, T., Noda, H., 2020. Mechanical amorphization of synthetic fault gouges during rotary-shear friction experiments at subseismic to seismic slip velocities. Journal of Geophysical Research: Solid Earth, 125, e2020JB019956.
[7]Honda, G., Hirono, T., Hirai, N., Tanikawa, W., 2013. Quantitative evaluation of polytetrafluoroethylene contamination on rock powder specimens during high-velocity rotary-shear experiments. JAMSTEC Report of Research and Development, 16, 23-29.
[8]Boulton, C., Yao, L., Faulkner, D.R., Townend, J., Toy, V.G., Sutherland, R., Ma, S., Shimamoto, T., 2017. High-velocity frictional properties of Alpine fault rocks: Mechanical data, microstructural analysis, and implications for rupture propagation. Journal of Structural Geology, 97, 71-92.
[9]Kuo, C.Y., Tai, Y.C., Chen, C.C., Chang, K.J., Siau, A.Y., Dong, J.J., Han, R., Shimamoto, T., Lee, C.T., 2011. The landslide stage of the Hsiaolin catastrophe: Simulation and validation. Journal of Geophysical Research, 116, F04007.
[10]Yao, L., Shimamoto, T., Ma, S., Han, R., Mizoguchi, K., 2013. Rapid postseismic strength recovery of Pingxi fault gouge from the Longmenshan fault system: Experiments and implications for the mechanisms of high-velocity weakening of faults. Journal of Geophysical Research: Solid Earth, 118, 4547-4563.
[11]Yang, C.M., Yu, W.L., Dong, J.J., Kuo, C.Y., Shimamoto, T., Lee, C.T., Togo, T., Miyamoto, Y., 2014. Initiation, movement, and run-out of the giant Tsaoling landslide-What can we learn from a simple rigid block model and a velocity-displacement dependent friction law? Engineering Geology, 182, 158-181.
[12]Sawai, M., Shimamoto, T., Togo, T., 2012. Reduction in BET surface area of Nojima fault gouge with seismic slip and its implication for the fracture energy of earthquakes. Journal of Structural Geology, 38, 117-138.
[13]Kitajima, H., Chester, J.S., Chester, F.M., Shimamoto, T., 2010. High-speed friction of disaggregated ultracataclasite in rotary shear: Characterization of frictional heating, mechanical behavior, and microstructure evolution. Journal of Geophysical Research, 115, B08408.
[14]Hu, T. Y., 1982. Characterization of the crystallinity of polytetrafluoroethylene by X‐ray and IR spectroscopy, differential scanning calorimetry, viscoelastic spectroscopy and the use of a density gradient tube. Wear, 82, 369-376.
[15]Tsutsumi, A., Shimamoto, T., 1996. Frictional properties of monzodiorite and gabbro during seismogenic fault motion. Journal Geological Society of Japan, 102(3), 204-248.
[16]Shimamoto, T., Tsutsumi, A., 1994. A new rotary-shear high-speed frictional testing machine: Its basic design and scope of research. Journal of Tectonic Research. Group of Japan, 39, 65-78.
[17]Ikari, M.J., Saffer, D., Marone, C., 2009. Frictional and hydrologic properties of clay-rich fault gouge. Journal of Geophysical Research, 114, B05409.
[18]Togo, T., Shimamoto, T., Ma, S., Hirose, T., 2011. High-velocity frictional behavior of Longmenshan fault gouge from Hongkou outcrop and its implications for dynamic weakening of fault during the 2008 Wenchuan earthquake. Earthquake Science, 24(3), 267-281.
[19]Starkweather, H.W., Zoller, P., Jones, G.A., Vega, A.J., 1982. The heat of fusion of polytetrafluoroethylene. Journal of Polymer Science: Polymer Physics Edition, 20, 751-761.
[20]Haines, S.H., Kaproth, B., Marone, C., Saffer, D., van der Pluijm, B., 2013. Shear zones in clay-rich fault gouge: A laboratory study of fabric development and evolution. Journal of Structural Geology, 51, 206-225.
[21]Logan, J.M., Freidman, M., Higgs, N., Dengo, C., Shimamoto, T., 1979. Experimental studies of simulated fault gouge and their application to studies of natural fault zones. Proceedings of Conference VIII: Analysis of actual fault zones in bedrock. Open-File Report-U.S. Geological Survey, 305-343.
[22]Logan, J.M., Dengo, C., Higgs, N., Wang, Z.Z., 1992. Fabrics of experimental fault zones: Their development and relationship to mechanical behavior. In: Evans, B., Wong, T.-F. (Eds.), Fault Mechanics and Transport Properties of Rocks. Academic Press, New York, 33-69.
[23]Kuo, L.W., Hung, C.C., Li, H., Aretusini, S., Chen, J., Di Toro, G., Spagnuolo, E., Felice, F.D., Wang, H., Si, J., Sheu, H.S., 2022. Frictional properties of the Longmenshan fault belt gouges from WFSD-3 and implications for earthquake rupture propagation. Journal of Geophysical Research: Solid Earth, 127, e2022JB024081.
[24]Mizoguchi, K., Hirose, T., Shimamoto, T., Fukuyama, E., 2007. Reconstruction of seismic faulting by high-velocity friction experiments: An example of the 1995 Kobe earthquake. Geophysical Research Letters, 34, L01308.
[25]Rao, S.M., Sridharan, A., 1985. Mechanism controlling the volume change behaviour of kaolinite. Clays and Clay Mineral, 33(4), 323-328.
[26]Spagnoli, G., Stanjek, H., Sridharan, A., 2012. Influence of ethanol/water mixture on the undrained shear strength of pure clays. Bulletin of Engineering Geology and the Environment, 71(2), 389-398.
[27]Horpibulsuk, S., Yangsukkaseam, N., Chinkulkijniwat, A., Du, Y.J., 2011. Compressibility and permeability of Bangkok clay compared with kaolinite and bentonite. Applied Clay Science, 52, 150-159.
[28]Khosravi, E., Ghasemzadeh, H., Sabour, M.R., Yazdani, H., 2013. Geotechnical properties of gas oil-contaminated kaolinite. Engineering Geology, 166, 11-16.
[29]White, W.A., 1949. Atterberg limits of clay minerals. American Mineralogist, 34, 508-512.
[30]Mitchell, J.K., Soga, K., 2005. Fundamentals of soil behavior. 3rd ed. John Wiley & Sons, Inc., Hoboken, N.J.
[31]Pham, Q.V., 2019. Velocity-dependent frictional properties of kaolinite clay under different drainage conditions with temperature measurement. National Central University, Master Thesis.
[32]Tran, N.T., 2021. The relationship of kaolinite friction characteristics and temperature changing in submerged conditions. National Central University, Master Thesis.
[33]Ferri, F., Di Toro, G., Hirose, T., Han, R., Noda, H., Shimamoto, T., Quaresimin, M., de Rossi, N., 2011. Low-to high-velocity frictional properties of the clay-rich gouges from the slipping zone of the 1963 Vaiont slide, northern Italy. Journal of Geophysical Research, 116, B09208.
[34]Yao, L., Ma, S., Shimamoto, T., Togo, T., 2013. Structures and high-velocity frictional properties of the Pingxi fault zone in the Longmenshan fault system, Sichuan, China, activated during the 2008 Wenchuan earthquake. Tectonophysics, 599, 135-156.
[35]Ujiie, K., Tsutsumi, A., 2010. High-velocity frictional properties of clay-rich fault gouge in a megasplay fault zone, Nankai subduction zone. Geophysical Research Letters, 37, L24310.
[36]Trivedi, M.K., Sethi, K.K., Panda, P., Jana, S., 2017. Physicochemical, thermal and spectroscopic characterization of sodium selenate using XRD, PSD, DSC, TGA/DTG, UV-vis, and FT-IR. Marmara Pharmaceutical Journal, 21, 311-318.
[37]Hubbard, C.R., Smith, D.K., 1977. Experimental and calculated standards for quantitative analysis by powder diffraction. Advances in X-Ray Analyses, 20, 27-29.
[38]Ong, J.L., Farley, D.W., Norling, B.K., 2000. Quantification of leucite concentration using X-ray diffraction. Dental Materials, 16, 20-25. |