參考文獻 |
1. Yang, Z.; Zhou, Y.; Wenninger, J.; Uhlenbrook, S.; Wang, X.; Wan, L. Groundwater and surface-water interactions and impacts of human activities in the Hailiutu catchment, northwest China. Hydrogeology 2017, 25, 1341–1355.
2. An, H.; Yu, S. Finite volume integrated surface-subsurface flow modeling on non-orthogonal grids. Water Resour. Res. 2014, 50, 2312–2328
3. Alley, W. M.; Healy, R. W.; LaBaugh, J. W.; Reilly, T. E. Flow and storage in groundwater systems. Science 2002, 296, 1985–1990.
4. Dragon, K.; Marciniak, M. Chemical composition of groundwater and surface water in the Arctic environment (Petuniabukta region, central Spitsbergen). J. Hydrol. 2010, 386, 160–172.
5. Barthel, R.; Banzhaf, S. Groundwater and Surface Water Interaction at the Regional-scale – A Review with Focus on Regional Integrated Models. Water Resour. Manag. 2016, 30, 1–32.
6. Vasconcelos, V. V. What maintains the waters flowing in our rivers? Appl. Water Sci. 2017, 7, 1579–1593.
7. Huntington, J. L.; Niswonger, R. G. Role of surface-water and groundwater interactions on projected summertime streamflow in snow dominated regions: An integrated modeling approach. Water Resour. Res. 2012, 48, 1–20.
8. Zhang, Z.; Chen, X.; Xu, C. Y.; Hong, Y.; Hardy, J.; Sun, Z. Examining the influence of river-lake interaction on the drought and water resources in the Poyang Lake basin. J. Hydrol. 2015, 522, 510–521.
9. Carroll, R. W. H.; Deems, J. S.; Niswonger, R.; Schumer, R.; Williams, K. H. The Importance of Interflow to Groundwater Recharge in a Snowmelt-Dominated Headwater Basin. Geophys. Res. Lett. 2019, 46, 5899–5908.
10. Wei, X.; Bailey, R.T. Assessment of system responses in intensively irrigated stream-aquifer systems using SWAT-MODFLOW. Water 2019, 11, 1576.
11. Kuffour, B.N.; Engdahl, N.; Woodward, C.; Condon, L.; Kollet, S.; Maxwell, R. Simulating coupled surface-subsurface flows with ParFlow v3.5.0: Capabilities, applications, and ongoing development of an open-source, massively parallel, integrated hydrologic model. Geosci. Model Dev. 2020, 13, 1373–1397.
12. Panday, S.; Huyakorn, P.S. A fully coupled physically-based spatially-distributed model for evaluating surface/subsurface flow. Adv. Water Resour. 2004, 27, 361–382.
13. Muma, M.; Rousseau, A.N.; Gumiere, S.J. Assessment of the impact of subsurface agricultural drainage on soil water storage and flows of a small watershed. Water 2016, 8, 326.
14. Brunner, P.; Simmons, C.T. HydroGeoSphere: A fully integrated, physically based hydrological model. Ground Water 2012, 50, 170–176.
15. Salem, A.; Dezs˝o, J.; El-Rawy, M.; Lóczy, D. Hydrological modeling to assess the efficiency of groundwater replenishment through natural reservoirs in the Hungarian Drava River floodplain. Water 2020, 12, 250.
16. El-Rawy, M.; Zlotnik, V.A.; Al-Raggad, M.; Al-Maktoumi, A.; Kacimov, A.; Abdalla, O. Conjunctive use of groundwater and surface water resources with aquifer recharge by treated wastewater: Evaluation of management scenarios in the Zarqa River Basin, Jordan. Environ. Earth Sci. 2016, 75, 1146.
17. Markstrom, S.L.; Niswonger, R.G.; Regan, R.S.; Prudic, D.E.; Barlow, P.M. GSFLOW Coupled Groundwater and Surface-Water Flow Model Based on the Integration of the Precipitation Runoff Modeling System (PRMS) and the Modular Groundwater Flow Model (MODFLOW-2005); U.S. Geological Survey Techniques and Methods 6-D1; U.S. Geological Survey: Reston, VA, USA, 2008; p. 240.
18. Shu, Y.; Li, H.; Lei, Y. Modelling groundwater flow with MIKE SHE using conventional climate data and satellite data as model forcing in Haihe Plain, China. Water 2018, 10, 1295.
19. Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R.; Haney, E.B.; Neitsch, S.L. Soil and Water Assessment Tool Input / Output File Documentation Version 2009; Texas Water Resources Institute Technical Report No. 365; Texas A&M University System: College Station, TX, USA, 2011.
20. Harbaugh, A.W. MODFLOW-2005, The U.S. Geological Survey Modular Groundwater Model–The Groundwater Flow Process; USGS Techniques and Methods 6-A16; USGS: Reston, VA, USA, 2005.
21. Leavesley, G.H.; Lichty, R.W.; Troutman, B.M.; Saindon, L.G. Precipitation Runoff Modeling System; User’s Manual; USGS Water Resources Investigations Report 83-4238; USGS: Denver, CO, USA, 1983.
22. Demiroǧlu, M.; Dowd, J. The utility of vulnerability maps and GIS in groundwater management: A case study. Turkish J. Earth Sci. 2014, 23, 80–90.
23. Jang, W. S.; Engel, B.; Harbor, J.; Theller, L. Aquifer vulnerability assessment for sustainable groundwater management using DRASTIC. Water (Switzerland) 2017, 9, 792.
24. Vu, T. D.; Ni, C. F.; Li, W. C.; Truong, M. H. Modified index-overlay method to assess spatial-temporal variations of groundwater vulnerability and groundwater contamination risk in areas with variable activities of agriculture developments. Water (Switzerland) 2019, 11, 2492.
25. Vu, T. D.; Ni, C. F.; Li, W. C.; Truong, M. H.; Hsu, S. M. Predictions of groundwater vulnerability and sustainability by an integrated index-overlay method and physical-based numerical model. J. Hydrol. 2021, 596, 126082.
26. Díaz-Alcaide, S.; Martínez-Santos, P. Review: Advances in groundwater potential mapping. Hydrogeol. J. 2019, 27, 2307–2324.
27. Benjmel, K.; Amraoui, F.; Boutaleb, S.; Ouchchen, M.; Tahiri, A.; Touab, A. Mapping of Groundwater Potential Zones in Techniques, and Multicriteria Data Analysis ( Case of the Ighrem Region, Western Anti-Atlas, Morocco). Water 2020, 12, 471.
28. Tolche, A. D. Groundwater potential mapping using geospatial techniques: a case study of Dhungeta-Ramis sub-basin, Ethiopia. Geol. Ecol. Landscapes 2021, 5, 65–80.
29. Kaliraj, S.; Chandrasekar, N.; Magesh, N. S. Identification of potential groundwater recharge zones in Vaigai upper basin, Tamil Nadu, using GIS-based analytical hierarchical process (AHP) technique. Arab. J. Geosci. 2014, 7, 1385–1401.
30. Çelik, R. Evaluation of groundwater potential by GIS-based multicriteria decision making as a spatial prediction tool: Case study in the Tigris River Batman-Hasankeyf Sub-Basin, Turkey. Water (Switzerland) 2019, 11, 2630.
31. Allafta, H.; Opp, C.; Patra, S. Identification of groundwater potential zones using remote sensing and GIS techniques: A case study of the shatt Al-Arab Basin. Remote Sens. 2021, 13, 1–28.
32. Ha, K.; Koh, D. C.; Yum, B. W.; Lee, K. K. Estimation of river stage effect on groundwater level, discharge, and bank storage and its field application. Geosci. J. 2008, 12, 191–204.
33. Saleh, F.; Ducharne, A.; Flipo, N.; Oudin, L.; Ledoux, E. Impact of river bed morphology on discharge and water levels simulated by a 1D Saint-Venant hydraulic model at regional scale. J. Hydrol. 2013, 476, 169–177.
34. Shaban, A.; Khawlie, M.; Abdallah, C. Use of remote sensing and GIS to determine recharge potential zones: The case of Occidental Lebanon. Hydrogeol. J. 2006, 14, 433–443.
35. Yeh, H. F.; Lee, C. H.; Hsu, K. C.; Chang, P. H. GIS for the assessment of the groundwater recharge potential zone. Environ. Geol. 2009, 58, 185–195.
36. Huang, C. C.; Yeh, H. F.; Lin, H. I.; Lee, S. T.; Hsu, K. C.; Lee, C. H. Groundwater recharge and exploitative potential zone mapping using GIS and GOD techniques. Environ. Earth Sci. 2013, 68, 267–280.
37. Bari, M. A.; Smettem, K. R. J. A conceptual model of daily water balance following partial clearing from forest to pasture. Hydrol. Earth Syst. Sci. 2006, 10, 321–337.
38. Watson, A.; Miller, J.; Fink, M.; Kralisch, S.; Fleischer, M.; De Clercq, W. Distributive rainfall-runoff modelling to understand runoff-to-baseflow proportioning and its impact on the determination of reserve requirements of the Verlorenvlei estuarine lake, west coast, South Africa. Hydrol. Earth Syst. Sci. 2019, 23, 2679–2697.
39. Meles Bitew, M.; Jackson, C. R.; Goodrich, D. C.; Younger, S. E.; Griffiths, N. A.; Vaché, K. B.; Rau, B. Dynamic domain kinematic modelling for predicting interflow over leaky impeding layers. Hydrol. Process. 2020, 34, 2895–2910.
40. Taylor, A. R.; Lamontagne, S.; Crosbie, R. S. Measurements of riverbed hydraulic conductivity in a semiarid lowland river system (Murray-Darling Basin, Australia). Soil Res. 2013, 51, 363–371.
41. Crosbie, R. S.; Taylor, A. R.; Davis, A. C.; Lamontagne, S.; Munday, T. Evaluation of infiltration from losing-disconnected rivers using a geophysical characterization of the riverbed and a simplified infiltration model. J. Hydrol. 2014, 508, 102–113.
42. Harvey, J. W.; Gooseff, M. River corridor science: Hydrologic exchange and ecological consequences from bedforms to basins. Water Resour. Res. 2015, 51, 6893–6922.
43. Cui, G.; Su, X.; Liu, Y.; Zheng, S. Effect of riverbed sediment flushing and clogging on river-water infiltration rate: a case study in the Second Songhua River, Northeast China. Hydrogeol. J. 2021, 29, 551–565.
44. Grodzka-Łukaszewska, M.; Nawalany, M.; Zijl, W. A Velocity-Oriented Approach for Modflow. Transp. Porous Media 2017, 119, 373–390.
45. Diaz, M.; Sinicyn, G.; Grodzka-łukaszewska, M. Modelling of groundwater-surface water interaction applying the hyporheic flux model. Water (Switzerland) 2020, 12, 1–19.
46. McCallum, A.M.; Andersen, M.S.; Giambastiani, B.M.S.; Kelly, B.F.J.; Ian Acworth, R. River aquifer interactions in a semi-arid environment stressed by groundwater abstraction. Hydrol. Process. 2013, 27, 1072–1085.
47. Wu, B.; Zheng, Y.; Wu, X.; Tian, Y.; Han, F.; Liu, J.; Zheng, C. Optimizing water resources management in large river basins with integrated surface water-groundwater modeling: A surrogate-based approach. Water Resour. Res. 2015, 51, 2153–2173.
48. Joo, J.; Tian, Y.; Zheng, C.; Zheng, Y.; Sun, Z.; Zhang, A.; Chang, H. An integrated modeling approach to study the surface water-groundwater interactions and influence of temporal damping effects on the hydrological cycle in the Miho catchment in South Korea. Water 2018, 10, 1529.
49. Moriasi, D. N.; Arnold, J. G.; Van Liew, M. W.; Bingner, R. L.; Harmel, R. D.; Veith, T. L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900.
50. Moriasi, D. N.; Gitau, M. W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance measures and evaluation criteria. Trans. ASABE 2015, 58, 1763–1785.
51. Golmohammadi, G.; Prasher, S.; Madani, A.; Rudra, R. Evaluating three hydrological distributed watershed models: MIKE-SHE, APEX, SWAT. Hydrology 2014, 1, 20–39.
52. Nasiri, S.; Ansari, H.; Ziaei, A. N. Simulation of water balance equation components using SWAT model in Samalqan Watershed (Iran). Arab. J. Geosci. 2020, 13, 421.
53. Leavesley, G.H.; Restrepo, P.J.; Markstrom, S.L.; Dixon, M.; Stannard, L.G. The Modular Modeling System (MMS): User’s Manual; U.S. Geological Survey Open-File Report 96-151; U.S. Geological Survey: Denver, CO, USA, 1996.
54. Niswonger, R.G.; Prudic, D. E. Documentation of the Streamflow-Routing (SFR2) Package to include unsaturated flow beneath streams - A modification to SFR1; U.S. Geological Survey Techniques and Methods 6-A13, 2005; p. 62.
55. Hill, M.C.; Banta, E.R.; Harbaugh, A. W. MODFLOW-2000, the U.S. Geological Survey Modular Groundwater Model - User Guide to the observations, sensitivity, and parameter-estimation processes and three post-processing programs; U.S. Geological Survey Open-File Report 00-184, 2000.
56. Smith, R. E.; Hebbert, R. H. B. Mathematical simulation of interdependent surface and subsurface hydrologic processes. Water Resour. Res. 1983, 19, 987–1001.
57. Brooks, R.H.; Corey, A.T. Properties of porous media affecting fluid flow. Irrig. Drain. Div. 1966, 92, 61–88.
58. Hamon, W. R. Estimating Potential evapotranspiration: Proceedings of the American Society of Civil Engineers. J. Hydraul. Div. 1961, 87, 107–120.
59. Jensen, M. E.; Rob, D. C. N.; Franzoy, C. E. Scheduling irrigations using climate-crop-soil data; National Conference on Water Resources Engineering of the American Society of Civil Engineers: New Orleans, 1969; p. 20.
60. Saaty, T. L. How to make a decision: The analytic hierarchy process. Eur. J. Oper. Res. 1970, 48, 9–26.
61. Niswonger, R.G.; Prudic, D.E.; Regan, R.S. Documentation of the Unsaturated-Zone Flow (UZF1) Package for Modeling Unsaturated Flow between the Land Surface and the Water Table with MODFLOW-2005; U.S. Geological Survey Techniques and Methods 6-A19; U.S. Geological Survey: Reston, VA, USA, 2006; p. 74.
62. Suppe, J. Kinematics of arc-continental collision, flipping of subduction, and back-arc spreading near Taiwan. Mem. Geol. Soc. China 1984, 6, 21–33.
63. Ting, C.S.; Zhou, Y.X.; De Vries, J.J.; Simmers, I. Development of a preliminary groundwater flow model for water resources management in the Pingtung Plain, Taiwan. Ground Water 1997, 36, 20–36.
64. Taiwan, C.G.S. Hydrogeological Survey Report of Pingtung Plain, Taiwan; Central Geological Survey Ministry of Economic Affairs Executive Yuan: Taiwan, 2002; pp. 97–142.
65. Liang, C.P.; Jang, C.S.; Liang, C.W.; Chen, J.S. Groundwater vulnerability assessment of the Pingtung plain in Southern Taiwan. Int. J. Environ. Res. Public Health 2016, 13, 1167.
66. Taiwan Government Report. Review on the Regulation Planning of Kaoping River; Taiwan Water Resources Agency, 2008.
67. Water Resources Agency. The preliminary investigation and tests of interflow resources and riverbank water intake works evaluation near the Kaoping river; Southern Region Water Resources Office: Kaosiung, Taiwan, 2012.
68. Tran, Q. D.; Ni, C. F.; Lee, I. H.; Truong, M. H.; Liu, C. J. Numerical modeling of surface water and groundwater interactions induced by complex fluvial landforms and human activities in the Pingtung plain groundwater basin, Taiwan. Appl. Sci. 2020, 10, 1–25.
69. Chen, C. H.; Wang, C. H.; Hsu, Y. J.; Yu, S. B.; Kuo, L. C. Correlation between groundwater level and altitude variations in land subsidence area of the Choshuichi Alluvial Fan, Taiwan. Eng. Geol. 2010, 115, 122–131.
70. Chang, F. J.; Huang, C. W.; Cheng, S. T.; Chang, L. C. Conservation of groundwater from over-exploitation – Scientific analyses for groundwater resources management. Sci. Total Environ. 2017, 598, 828–838.
71. Obi Reddy, G. P.; Maji, A. K.; Gajbhiye, K. S. Drainage morphometry and its influence on landform characteristics in a basaltic terrain, Central India - A remote sensing and GIS approach. Int. J. Appl. Earth Obs. Geoinf. 2004, 6, 1–16.
72. Siddayao, G. P.; Valdez, S. E.; Fernandez, P. L. Analytic Hierarchy Process (AHP) in Spatial Modeling for Floodplain Risk Assessment. Int. J. Mach. Learn. Comput. 2014, 4, 450–457.
73. Nithya, C. N.; Srinivas, Y.; Magesh, N. S.; Kaliraj, S. Assessment of groundwater potential zones in Chittar basin, Southern India using GIS based AHP technique. Remote Sens. Appl. Soc. Environ. 2019, 15, 100248.
74. Saaty, T. L. The Analytic Hierarchy Process. McGraw-Hill, New York, 1980. |