博碩士論文 108326020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:18.224.214.215
姓名 巫晨寧(Chen-Ning Wu)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 鹿林山2020年春季、秋季及臺中市氣膠微量有機成分特性及來源
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 生質燃燒(Biomass burning, BB)對空氣品質、民眾健康和氣候變遷具有重大影響。本文於2020年3~4月(春季)及2020年10月(秋季)在鹿林山大氣背景站 (海拔2,862 m ),2020年4月在臺中市採集分析微量有機成分。
水可溶有機碳(Water-soluble Organic Carbon, WSOC)在鹿林山和臺中市春季有類似濃度,WSOC/OC在鹿林山的BB及弱生質燃燒-自由大氣類型(70-75%)比弱生質燃燒-人為排放類型(50-62%)高,臺中市則是62-64%,表示人為污染排放貢獻的氣膠水可溶有機物占比較生質燃燒小。PM2.5 WSOC形成途徑,在臺中市和鹿林山都受到液相反應影響。左旋葡聚醣在總醣占比鹿林山春季PM2.5較PM10-2.5高,甘露醇則是相反,說明BB氣膠粒徑較小,生物氣膠粒徑較大。甘露醇和阿拉伯醣醇在臺中市隨風速增高而濃度降低,代表為本地排放,但在鹿林山則與風速無關。二元酸及其鹽類包括草酸(C2)、丙二酸(C3)、琥珀酸(C4),春季鹿林山C2濃度不論粒徑都高於臺中市,顯示BB比人為污染貢獻較多C2。臺中市的PM2.5及PM10-2.5的C3/C4分別為0.98及15.53,都高於鹿林山;配合O3趨勢觀察,臺中市受光化學反應影響較鹿林山強烈。除了光化學反應外,臺中市PM10-2.5 C3還受到海洋氣膠影響。鹿林山類腐殖質物質(HUmic-LIke Substances, HULIS)在PM10占比以BB氣流軌跡類型最高,推測鹿林山HULIS主要為BB主導,但其他軌跡類型則有人為污染貢獻。臺中市PM2.5的HULIS/WSOC與相對濕度數值略有相反趨勢,顯示光化學反應對臺中市HULIS形成重要。
總結來說,鹿林山春季氣膠微量有機成分主要受生質燃燒排放貢獻,但也有人為排放源影響以及液相二次反應影響。臺中市氣膠微量有機成分主要受到交通排放及光化學反應影響。
摘要(英) Biomass burning (BB) causes significant impacts on air quality, public health, and climate change. This study collected and analyzed aerosol trace organic components at the Mt. Lulin atmospheric background station (2,862 meters above sea level) from March to April and October 2020, and in Taichung City in April 2020.
Water-soluble organic carbon (WSOC) had similar concentrations at Mt. Lulin and Taichung City in spring. The values of the WSOC/OC in BB and weak BB-free troposphere trajectory types (70-75%) were higher than that of weak BB-anthropogenic trajectory type (50-62%). In Taichung City, the values of the WSOC/OC were 62-64%, indicating that anthropogenic pollution emissions contributed less proportion of water-soluble organic matter than BB. For the formation processes of PM2.5 WSOC, Mt. Lulin and Taichung City are both affected by the liquid phase reactions. The proportion of levoglucosan in total monosaccharide anhydrosugars was higher in PM2.5 than PM10-2.5 at Mt. Lulin in spring. On the contrary, mannitol was higher in PM10-2.5 than PM2.5, which showed that BB aerosol with smaller and bioaerosol with larger particle sizes. The concentration of mannitol and arabitol decreased with the increase in wind speed at Taichung City, which represented local emissions but that of Mt. Lulin was not related to wind speed. Diacids and their salts include oxalic acid (C2), malonic acid (C3), and succinic acid (C4). The concentration of C2 at Mt. Lulin in spring was higher than that in Taichung City regardless of particle size, indicating that BB contributed more C2 than anthropogenic pollution. The C3/C4 values of PM2.5 and PM10-2.5 in Taichung City were 0.98 and 15.53, respectively, which were higher than those of Mt. Lulin. According to the observation of the O3 trend, Taichung City was more strongly affected by photochemical reactions than Mt. Lulin. In addition to photochemical reactions, Taichung PM10-2.5 C3 was also affected by marine aerosols. The proportion of humic-like substances (HULIS) in PM10 is the highest for the BB among all trajectory types at Mt. Lulin, indicating the dominance of BB. The values of HULIS/WSOC in PM2.5 at Taichung City were slightly varied inversely to the relative humidity, implying that the photochemical reaction was important for the formation of HULIS at Taichung City.
In summary, the trace organic components of the spring aerosol at Mt. Lulin are mainly contributed by biomass burning but also influenced by anthropogenic pollution sources and secondary reactions in the liquid phase. The trace organic components of aerosols at Taichung City are mainly affected by traffic emissions and photochemical reactions.
關鍵字(中) ★ 高山測站
★ 都市測站
★ 氣膠微量有機成分
★ 生質燃燒氣膠
關鍵字(英)
論文目次 摘要 I
Abstract II
誌謝 IV
目錄 V
圖目錄 VIII
表目錄 X
一、前言 1
1.1研究緣起 1
1.2研究目的 2
二、文獻回顧 3
2.1鹿林山氣膠研究 3
2.1.1中南半島生質燃燒 3
2.1.2氣膠傳輸特性 4
2.2都市氣膠研究 4
2.2.1都市相比其他地區研究結果 4
2.2.2臺中市氣膠研究 5
2.3氣膠微量有機成分特性 7
2.3.1水溶性有機碳 7
2.3.2氣膠單醣脫水醣類 10
2.3.3氣膠二元酸及其鹽類 12
2.3.4 HULIS (Humic-Like Substances) 16
三、研究方法 19
3.1研究架構 19
3.2採樣地點介紹 21
3.2.1鹿林山空氣品質背景監測站 21
3.2.2中山醫學大學(臺中市採樣點) 22
3.3採樣觀測儀器 25
3.3.1 R&P Model 3500自組式蜂巢式套管化學採樣器 25
3.3.2 高量採樣器 27
3.4濾紙前處理、運輸及保存程序 28
3.4.1 濾紙前處理 28
3.4.2 樣本運送與保存 29
3.5樣本分析方法 30
3.5.1 樣本質量濃度秤重 30
3.5.2 氣膠碳成分分析 30
3.5.3 氣膠水溶性離子分析 32
3.5.4 氣膠水可溶有機碳分析 33
3.5.5 氣膠單醣脫水醣類分析 34
3.5.6 氣膠二元酸分析 35
3.5.7 氣膠腐殖質分析 36
3.6 判別生質燃燒事件方法 38
3.6.1 逆推氣流軌跡線 38
3.6.2 美國太空總署(NASA)自然災害網 38
3.6.3 美國太空總署全球火災監測中心(GFMC) 39
3.7 環保署測站其他自動監測儀器 39
4.1鹿林山氣膠微量有機成分特性 40
4.1.1氣流軌跡線分類方式 40
4.1.2水溶性有機碳 43
4.1.3單醣脫水醣類 45
4.1.4二元酸及其鹽類 53
4.1.5類腐殖質物質(HULIS) 56
4.2臺中市氣膠微量有機成分特性 60
4.2.1臺中市高濃度事件與微量有機成分關聯探討 60
4.2.2水溶性有機碳 62
4.2.3單醣脫水醣類 65
4.2.4二元酸及其鹽類 72
4.2.5類腐殖質物質(HULIS) 78
4.3 鹿林山及臺中市氣膠觀測成果彙整比較 82
4.3.1 水溶性有機碳 83
4.3.2 單醣脫水醣類 91
4.3.3 二元酸及其鹽類 96
4.3.4 類腐殖質物質(HULIS) 105
五、結論與建議 112
5.1結論. 112
5.2建議. 114
六、參考文獻 115
附錄一 微量有機成分與相關指標物相關性矩陣 138
附錄二 微量有機成分相互相關性矩陣 143
附錄三 鹿林山秋季逆推軌跡圖 146
附錄四 鹿林山春季逆推軌跡圖 158
附錄五 鹿林山春季逆推軌跡圖分類 171
附錄六 鹿林山春季觀測火點圖 174
附錄七 臺中市測站高濃度事件期間逆推氣流軌跡及PM2.5流場模擬圖 176
附錄八 春季鹿林山PM10-2.5 不穩定貢獻表示圖 178
附錄九 鹿林山及臺中市PM2.5 二元酸與溫度趨勢圖 179
附錄十 鹿林山及臺中市PM2.5 HULIS與溫度趨勢圖 180
附錄十一 口試委員意見與回覆 181
參考文獻 Abramson, E., Imre, D., Beránek, J., Wilson, J., Zelenyuk, A. (2013). Experimental determination of chemical diffusion within secondary organic aerosol particles. Physical Chemistry Chemical Physics, 15(8), 2983-2991.
Alves, C. A., Vicente, A. M. P., Calvo, A. I., Baumgardner, D., Amato, F., Querol, X., Pio. C., Gustafsson, M. (2020). Physical and chemical properties of non-exhaust particles generated from wear between pavements and tyres. Atmospheric Environment, 224, 117252.
Alves, C. A., Gonçalves, C., Mirante, F., Rocha, A. C., Evtyugina, M., Pio, C., Caseiro, A., Puxbaum, H. (2009). SMOKE EMISSIONS FROM A PRESCRIBED BURNING OF A MEDITERRANEAN FOREST.
Andreae, M.O., Merlet, P. (2001). Emission of trace gases and aerosols from biomass
burning. Glob. Biogeochem. Cycles 15 (4), 955–966.
Armentia, A., Martín-Armentia, S., Moral, A., Montejo, D., Martín-Armentia, B., Sastre, R., Fernándeza, S., Corellc, A., Fernandez, D. (2019). Molecular study of hypersensitivity to spores in adults and children from Castile & Leon. Allergologia et immunopathologia, 47(4), 350-356.
Asa-Awuku, A., Engelhart, G.J., Lee, B.H., Pandis, S.N., Nenes, A. (2009). Relating CCN activity, volatility, and droplet growth kinetics of β-caryophyllene secondary organic aerosol. Atmos. Chem. Phys. 9, 795–812.
Asa-Awuku, A., Sullivan, A. P., Hennigan, C. J., Weber, R. J., Nenes, A. (2008). Investigation of molar volume and surfactant characteristics of water-soluble organic compounds in biomass burning aerosol. Atmospheric Chemistry and Physics, 8(4), 799-812.
Axelrod, K., Samburova, V., Khlystov, A. Y. (2021). Relative abundance of saccharides, free amino acids, and other compounds in specific pollen species for source profiling of atmospheric aerosol. Science of The Total Environment, 799, 149254.
Baduel, C., Voisin, D., Jaffrezo, J.L. (2010). Seasonal variations of concentrations and
optical properties of water soluble HULIS collected in urban environments. Atmos.
Chem. Phys. 10, 4085–4095.
Bao, M., Zhang, Y. L., Cao, F., Lin, Y. C., Hong, Y., Fan, M., Zhang, Y., Yang, X., F. (2022). Light absorption and source apportionment of water soluble humic-like substances (HULIS) in PM2.5 at Nanjing, China. Environmental research, 206, 112554.
Bauer, H., Claeys, M., Vermeylen, R., Schueller, E., Weinke, G., Berger, A., Puxbaum, H. (2008). Arabitol and mannitol as tracers for the quantification of airborne fungal spores. Atmospheric Environment, 42(3), 588-593.
Bhardwaj, P., Naja, M., Kumar, R., Chandola, H. C. (2016). Seasonal, interannual, and long-term variabilities in biomass burning activity over South Asia. Environmental Science and Pollution Research, 23(5), 4397-4410.
Bikkina, S., Kawamura, K., Miyazaki, Y., Fu, P. (2014). High abundances of oxalic, azelaic, and glyoxylic acids and methylglyoxal in the open ocean with high biological activity: implication for secondary OA formation from isoprene. Geophys. Res. Lett. 41, 3649–3657
Bikkina, S., Kawamura, K., Sarin, M. (2017). Secondary organic aerosol formation over Coastal Ocean: Inferences from atmospheric water-soluble low molecular weight organic compounds. Environmental science & technology, 51(8), 4347-4357.
Bikkina, P., Sarma, V. V. S. S., Kawamura, K., Bikkina, S., Kunwar, B and Sherin, C. K. (2020). Chemical characterization of wintertime aerosols over the Arabian Sea: Impact of marine sources and long-range transport. Atmospheric Environment, 239, 117749.
Blatzer, M., Latgé, J. P. (2021). Fungal spores are future-proofed. Nature Microbiology, 6(8), 979-980.
Boreddy, S. K., Parvin, F., Kawamura, K., Zhu, C., Lee, C. T. (2021). Influence of forest fires on the formation processes of low molecular weight dicarboxylic acids, ω-oxocarboxylic acids, pyruvic acid and α-dicarbonyls in springtime fine (PM2.5) aerosols over Southeast Asia. Atmospheric Environment, 246, 118065.
Bukowiecki, N., Steinbacher, M., Henne, S., Nguyen, N.A., Nguyen, X.A., Hoang, A.L., Nguyen, D.L., Duong, H.L., Engling, G., Wehrle, G., Gysel-Beer, M., Baltensperger, U. (2019). Effect of Large-scale Biomass Burning on Aerosol Optical Properties at the GAW Regional Station Pha Din, Vietnam. Aerosol Air Qual. Res. 19: 1172-1187. https://doi.org/10.4209/aaqr.2018.11.0406
Cao, C., Lee, X., Liu, S., Schultz, N., Xiao, W., Zhang, M., Zhao, L. (2016). Urban heat islands in China enhanced by haze pollution. Nature communications, 7(1), 1-7
Čapka, L., Mikuška, P., Křůmal, K. (2020). Determination of dicarboxylic acids in atmospheric aerosols using continuous aerosol sampler with on-line connected ion chromatography system. Atmospheric Environment, 222, 117178.
Cavalli, F., Facchini, M. C., Decesari, S., Mircea, M., Emblico, L., Fuzzi, S., Ceburnis, D., Yoon, Y. J., O’Dowd, C. D., Putaud, J. P., Dell’Acqua, A. (2004). Advances in characterization of size‐resolved organic matter in marine aerosol over the North Atlantic. Journal of Geophysical Research: Atmospheres, 109(D24).
Chang, J. L., Thompson, J. E. (2010). Characterization of colored products formed during irradiation of aqueous solutions containing H2O2 and phenolic compounds. Atmospheric environment, 44(4), 541-551.
Chang, S. C., Lee, C. T. (2007). Secondary aerosol formation through photochemical reactions estimated by using air quality monitoring data in Taipei City from 1994 to 2003. Atmospheric Environment, 41(19), 4002-4017.
Chang, S. Y., Fang, G. C. (2007). Springtime soluble particles in a suburban area of Taichung in central Taiwan. Atmospheric research, 86(1), 30-41.
Cheng, M. T., Tsai, Y. I. (2000). Characterization of visibility and atmospheric aerosols in urban, suburban, and remote areas. Science of the total environment, 263(1-3), 101-114.
Cheng, Y., Engling, G., He, K. B., Duan, F. K., Ma, Y. L., Du, Z. Y., Liu, J. M., Zheng, M and Weber, R. J. (2013). Biomass burning contribution to Beijing aerosol. Atmospheric Chemistry and Physics, 13(15), 7765-7781.
Chen, C. F., Liang, J. J. (2013). Integrated chemical species analysis with source-receptor modeling results to characterize the effects of terrain and monsoon on ambient aerosols in a basin. Environmental Science and Pollution Research, 20(5), 2867-2881.
Chen, J., Li, C., Ristovski, Z., Milic, A., Gu, Y., Islam, M. S., Wang, S., Hao, J., Zhang, H., He, C., Guo, H., Fu, H., Miljevic, B., Morawska, L., Thai, P., Lam, Y. F., Pereira, G., Ding, A., Huang, X., Dumka, U. C. (2017). A review of biomass burning: Emissions and impacts on air quality, health and climate in China. Science of the Total Environment, 579, 1000-1034.
Cheng, Y., Engling, G., He, K. B., Duan, F. K., Ma, Y. L., Du, Z. Y., Liu, J. M., Zheng, M., Weber, R. J. (2013). Biomass burning contribution to Beijing aerosol. Atmospheric Chemistry and Physics, 13(15), 7765-7781.
Cheung, K. L., Polidori, A., Ntziachristos, L., Tzamkiozis, T., Samaras, Z., Cassee, F. R., Gerlofs, M., Sioutas, C. (2009). Chemical characteristics and oxidative potential of particulate matter emissions from gasoline, diesel, and biodiesel cars. Environmental science & technology, 43(16), 6334-6340.
Chio, C. P., Cheng, M. T., Wang, C. F. (2004). Source apportionment to PM10 in different air quality conditions for Taichung urban and coastal areas, Taiwan. Atmospheric Environment, 38(39), 6893-6905.
Chuang, M. T., Chou, C. C. K., Sopajaree, K., Lin, N. H., Wang, J. L., Sheu, G. R., Chang, Y. J., Lee, C. T. (2013). Characterization of aerosol chemical properties from near-source biomass burning in the northern Indochina during 7-SEAS/Dongsha experiment. Atmospheric Environment, 78, 72-81.
Chuang, M. T., Lee, C. T., Chou, C. C. K., Lin, N. H., Sheu, G. R., Wang, J. L., Huang, H. (2014). Carbonaceous aerosols in the air masses transported from Indochina to Taiwan: Long-term observation at Mt. Lulin. Atmospheric Environment, 89, 507-516.
Chuang, M. T., Lee, C. T., Chou, C. C. K., Engling, G., Chang, S. Y., Chang, S. C., Sheu, G. R., Lin, N. H., Sopajaree, K., Chang, Y. J., Hong, G. J. (2016). Aerosol transport from Chiang Mai, Thailand to Mt. Lulin, Taiwan–Implication of aerosol aging during long-range transport. Atmospheric Environment, 137, 101-112.
Cong, Z., Kang, S., Kawamura, K., Liu, B., Wan, X., Wang, Z., Gao S., Fu, P. (2015). Carbonaceous aerosols on the south edge of the Tibetan Plateau: concentrations, seasonality and sources. Atmospheric Chemistry and Physics, 15(3), 1573-1584.
Crahan, K. (2006). The thermodynamic and kinetic impacts of organics on marine aeroso ls. University of Washington.
Dall’Antonia, F., Pavkov-Keller, T., Zangger, K., Keller, W. (2014). Structure of allergens and structure based epitope predictions. Methods, 66(1), 3-21.
Després, V., Huffman, J. A., Burrows, S. M., Hoose, C., Safatov, A., Buryak, G., Fröhlich, J., Elbert, W., Andreae, M., Pöschl, U., Jaenicke, R. (2012). Primary biological aerosol particles in the atmosphere: a review. Tellus B: Chemical and Physical Meteorology, 64(1), 15598.
Deshmukh, D. K., Haque, M. M., Kawamura, K., Kim, Y. (2018). Dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls in fine aerosols over central Alaska: implications for sources and atmospheric processes. Atmospheric Research, 202, 128-139.
Deshmukh, D. K., Kawamura, K., Deb, M. K. (2016). Dicarboxylic acids, ω-oxocarboxylic acids, α-dicarbonyls, WSOC, OC, EC, and inorganic ions in wintertime size-segregated aerosols from central India: Sources and formation processes. Chemosphere, 161, 27-42.
Draxler, R., Rolph, G. (2013). HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website. Silver Spring, MD: NOAA Air Resources Laboratory. Ready. Arl. noaa. gov/HYSPLIT. php.
Duarte, A.C., Duarte, R.M.B.O., Pio, C.A. (2005). Spectroscopic study of the water-soluble organic matter isolated from atmospheric aerosols collected under different atmospheric conditions. Anal. Chim. Acta 530, 7–14.
Duarte, R. M., Santos, E. B., Pio, C. A., Duarte, A. C. (2007). Comparison of structural features of water-soluble organic matter from atmospheric aerosols with those of aquatic humic substances. Atmospheric Environment, 41(37), 8100-8113.
Dutton, M. V., Evans, C. S. (1996). Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Canadian journal of microbiology, 42(9), 881-895.
Elias, V. O., Simoneit, B. R., Cordeiro, R. C., Turcq, B. (2001). Evaluating levoglucosan as an indicator of biomass burning in Carajas, Amazonia: A comparison to the charcoal record. Geochimica et Cosmochimica Acta, 65(2), 267-272.
Engling, G., Lee, J. J., Tsai, Y. W., Lung, S. C. C., Chou, C. C. K., Chan, C. Y. (2009). Size-resolved anhydrosugar composition in smoke aerosol from controlled field burning of rice straw. Aerosol Science and Technology, 43(7), 662-672.
Ervens, B., Feingold, G., Frost, G. J., Kreidenweis, S. M. (2004). A modeling study of aqueous production of dicarboxylic acids: 1. Chemical pathways and speciated organic mass production. Journal of Geophysical Research: Atmospheres, 109 (D15).
El Haddad, I., Marchand, N., Dron, J., Temime-Roussel, B., Quivet, E., Wortham, H., Jean Jaffrezo, L ., Baduel, C., Voisin, D., Jean Besombes, L., Gille, G. (2009). Comprehensive primary particulate organic characterization of vehicular exhaust emissions in France. Atmospheric environment, 43(39), 6190-6198.
Fan, X., Song, J. (2016). Temporal variations of the abundance and optical properties of water soluble Humic-Like Substances (HULIS) in PM2. 5 at Guangzhou, China. Atmospheric Research, 172, 8-15.
Fang, G. C., Chang, C. N., Chu, C. C., Wu, Y. S., Fu, P. P. C., Yang, I. L., Chen, M. H. (2003). Characterization of particulate, metallic elements of TSP, PM2.5 and PM2.5-10 aerosols at a farm sampling site in Taiwan, Taichung. Science of the Total Environment, 308 (1-3), 157-166.
Fang, G. C., Kuo, Y. C., Zhuang, Y. J. (2015). Source analysis of trace metal pollution received at harbor, airport and farmland locations in central Taiwan. Aerosol and Air Quality Research, 15 (5), 1774-1786.
Favez, O., Cachier, H., Sciare, J., Sarda-Estève, R., Martinon, L. (2009). Evidence for a significant contribution of wood burning aerosols to PM2. 5 during the winter season in Paris, France. Atmospheric Environment, 43(22-23), 3640-3644.
Feofilova, E. P., Ivashechkin, A. A., Alekhin, A. I., Sergeeva, Y. E. (2012). Fungal spores: dormancy, germination, chemical composition, and role in biotechnology. Applied Biochemistry and Microbiology, 48(1), 1-11.
Frasca, D., Marcoccia, M., Tofful, L., Simonetti, G., Perrino, C., Canepari, S. (2018).
Influence of advanced wood-fired appliances for residential heating on indoor air
quality. Chemosphere 211, 62–71.
Frka, S., Grgić, I., Turšič, J., Gini, M. I., Eleftheriadis, K. (2018). Seasonal variability of carbon in humic-like matter of ambient size-segregated water soluble organic aerosols from urban background environment. Atmospheric Environment, 173, 239-247.
Fröhlich-Nowoisky, J., Kampf, C. J., Weber, B., Huffman, J. A., Pöhlker, C., Andreae, M. O., Yona, N. L., Burrows, S. M., Gunthe, S. S., Elbert , Wolfgang., Su, H., Hoorf, P., Thinesg, E., Hoffmann, T., Després, V. R., Pöschl, U. (2016). Bioaerosols in the Earth system: Climate, health, and ecosystem interactions. Atmospheric Research, 182, 346-376.
Fu, P., Kawamura, K., Kobayashi, M., Simoneit, B. R. (2012). Seasonal variations of sugars in atmospheric particulate matter from Gosan, Jeju Island: Significant contributions of airborne pollen and Asian dust in spring. Atmospheric Environment, 55, 234-239.
Fujii, Y., Tohno, S., Ikeda, K., Mahmud, M., Takenaka, N. (2021). A preliminary study on humic-like substances in particulate matter in Malaysia influenced by Indonesian peatland fires. Science of The Total Environment, 753, 142009.
Galindo, N., Clemente, Á., Yubero, E., Nicolás, J. F., Crespo, J. (2021). PM10 chemical composition at a residential site in the western mediterranean: Estimation of the contribution of biomass burning from levoglucosan and its isomers. Environmental Research, 196, 110394.
Gao, S., Hegg, D. A., Hobbs, P. V., Kirchstetter, T. W., Magi, B. I., Sadilek, M. (2003). Water‐soluble organic components in aerosols associated with savanna fires in southern Africa: Identification, evolution, and distribution. Journal of Geophysical Research: Atmospheres, 108(D13).
Geng, X., Zhong, G., Li, J., Cheng, Z., Mo, Y., Mao, S., Mao, S., Su, T., Jiang, H., Ni, K., Zhang, G. (2019). Molecular marker study of aerosols in the northern South China Sea: Impact of atmospheric outflow from the Indo-China Peninsula and South China. Atmospheric Environment, 206, 225-236.
Giannoni, M., Martellini, T., Del Bubba, M., Gambaro, A., Zangrando, R., Chiari, M., Lepria, L., Cincinelli, A. (2012). The use of levoglucosan for tracing biomass burning in PM2.5 samples in Tuscany (Italy). Environmental pollution, 167, 7-15.
Gomez, A. L., Park, J., Walser, M. L., Lin, A., Nizkorodov, S. A. (2006). UV photodissociation spectroscopy of oxidized undecylenic acid films. The Journal of Physical Chemistry A, 110(10), 3584-3592.
Golly, B., Waked, A., Weber, S., Samake, A., Jacob, V., Conil, S., Rangognioc, J., Chrétiend, E., Vagnote, M. P., Robicf, P. Y., Besombesg, J. L., Jaffrezo, J. L. (2019). Organic markers and OC source apportionment for seasonal variations of PM2. 5 at 5 rural sites in France. Atmospheric Environment, 198, 142-157.
Graber, E. R., Rudich, Y. (2006). Atmospheric HULIS: How humic-like are they? A comprehensive and critical review. Atmospheric Chemistry and Physics, 6(3), 729-753.
Grinn-Gofroń, A., Nowosad, J., Bosiacka, B., Camacho, I., Pashley, C., Belmonte, J., Linares, C. D., Ianovici, N., Manzano, J. M. M., Sadyś, M., Skjøth, C., Rodinkova, V., Tormo-Molina, R., Vokou, Despoina., Fernández-Rodríguez, S., Damialis, A. (2019). Airborne Alternaria and Cladosporium fungal spores in Europe: Forecasting possibilities and relationships with meteorological parameters. Science of the Total Environment, 653, 938-946.
He, N., Kawamura, K. (2010). Distributions and diurnal changes of low molecular weight organic acids and α-dicarbonyls in suburban aerosols collected at Mangshan, North China. Geochemical Journal, 44(4), e17-e22.
Hegde, P., Kawamura, K. (2012). Seasonal variations of water-soluble organic carbon, dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls in Central Himalayan aerosols. Atmospheric Chemistry and Physics, 12(14), 6645-6665.
Hennigan, C. J., Bergin, M. H., Dibb, J. E., Weber, R. J. (2008). Enhanced secondary organic aerosol formation due to water uptake by fine particles. Geophysical Research Letters, 35(18).
Hsieh, L. Y., Kuo, S. C., Chen, C. L., Tsai, Y. I. (2007). Origin of low-molecular-weight dicarboxylic acids and their concentration and size distribution variation in suburban aerosol. Atmospheric Environment, 41(31), 6648-6661.
Hsieh, L. Y., Kuo, S. C., Chen, C. L and Tsai, Y. I. (2009). Size distributions of nano/micron dicarboxylic acids and inorganic ions in suburban PM episode and non-episodic aerosol. Atmospheric Environment, 43(29), 4396-4406.
Huang, X., Betha, R., Tan, L. Y., Balasubramanian, R. (2016). Risk assessment of bioaccessible trace elements in smoke haze aerosols versus urban aerosols using simulated lung fluids. Atmospheric Environment, 125, 505-511.
Huang, X. F., Yu, J. Z., He, L. Y., Yuan, Z. (2006). Water‐soluble organic carbon and oxalate in aerosols at a coastal urban site in China: Size distribution characteristics, sources, and formation mechanisms. Journal of Geophysical Research: Atmospheres, 111 (D22).
Huo, M. Q., Sato, K., Ohizumi, T., Akimoto, H. and Takahashi, K. (2016). Characteristics of carbonaceous components in precipitation and atmospheric particle at Japanese sites. Atmospheric Environment, 146, 164-173.
Ho, K. F., Huang, R. J., Kawamura, K., Tachibana, E., Lee, S. C., Ho, S. S. H., Zhu, T., Tian, L. (2015). Dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls, fatty acids and benzoic acid in PM 2.5 aerosol collected during CAREBeijing-2007: an effect of traffic restriction on air quality. Atmospheric Chemistry and Physics, 15(6), 3111-3123.
Hoffer, A., Kiss, G., Blazso, M., Gelencsér, A. (2004). Chemical characterization of humic‐like substances (HULIS) formed from a lignin‐type precursor in model cloud water. Geophysical Research Letters, 31(6).
Hwang, G. B., Jung, J. H., Jeong, T. G., Lee, B. U. (2010). Effect of hybrid UV-thermal energy stimuli on inactivation of S. epidermidis and B. subtilis bacterial bioaerosols. Science of the total environment, 408(23), 5903-5909.
Irei, S., Takami, A., Hayashi, M., Sadanaga, Y., Hara, K., Kaneyasu, N., Sato, K., Arakaki, T., Hatakeyama, S., Bandow, H., Hikida, T., Shimono, A. (2014). Transboundary secondary organic aerosol in western Japan indicated by the δ13C of water-soluble organic carbon and the m/z 44 signal in organic aerosol mass spectra. Environmental science & technology, 48(11), 6273-6281.
Jin, Y., Yan, C., Sullivan, A. P., Liu, Y., Wang, X., Dong, H., Chen, S., Zeng, L.,Jeffrey L., Collett, Jr., Zheng 1, Zheng, M. (2020). Significant contribution of primary sources to water-soluble organic carbon during spring in Beijing, China. Atmosphere, 11(4), 395.
Junker, C., Wang, J.-L., Lee, C.-T. (2009). Evaluation of the effect of long-range transport of air pollutants on coastal atmospheric monitoring sites in and around Taiwan. Atmospheric Environment 43, 3374-3384.
Kalogridis, A. C., Popovicheva, O. B., Engling, G., Diapouli, E., Kawamura, K., Tachibana, E., Eleftheriadis, K. (2018). Smoke aerosol chemistry and aging of Siberian biomass burning emissions in a large aerosol chamber. Atmospheric Environment, 185, 15-28.
Kawamura, K., Kaplan, I. R. (1987). Motor exhaust emissions as a primary source for dicarboxylic acids in Los Angeles ambient air. Environmental science & technology, 21(1), 105-110.
Kawamura, K., Ikushima, K. (1993). Seasonal changes in the distribution of dicarboxylic acids in the urban atmosphere. Environmental Science & Technology, 27(10), 2227-2235.
Kawamura, K., Kobayashi, M., Tsubonuma, N., Mochida, M., Watanabe, T., Lee, M. (2004). Organic and inorganic compositions of marine aerosols from East Asia: Seasonal variations of water-soluble dicarboxylic acids, major ions, total carbon and nitrogen, and stable C and N isotopic composition. In The Geochemical Society Special Publications (Vol. 9, pp. 243-265). Elsevier.
Kawamura, K., Sakaguchi, F. (1999). Molecular distributions of water soluble dicarboxylic acids in marine aerosols over the Pacific Ocean including tropics. Journal of Geophysical Research: Atmospheres, 104(D3), 3501-3509.
Kawamura, K., Tachibana, E., Okuzawa, K., Aggarwal, S. G., Kanaya, Y., Wang, Z. F. (2013). High abundances of water-soluble dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in the mountaintop aerosols over the North China Plain during wheat burning season. Atmospheric chemistry and physics, 13(16), 8285-8302.
Kawamura, K., Bikkina, S. (2016). A review of dicarboxylic acids and related compounds in atmospheric aerosols: Molecular distributions, sources and transformation. Atmospheric Research, 170, 140-160.
Kerminen, V. M., Ojanen, C., Pakkanen, T., Hillamo, R., Aurela, M., Meriläinen, J. (2000). Low-molecular-weight dicarboxylic acids in an urban and rural atmosphere. Journal of Aerosol Science, 31(3), 349-362.
Kerminen, V. M., Teinilä, K., Hillamo, R., Mäkelä, T. (1999). Size-segregated chemistry of particulate dicarboxylic acids in the Arctic atmosphere. Atmospheric Environment, 33(13), 2089-2100.
Khamkaew, C., Chantara, S., Janta, R., Pani, S.K., Prapamontol, T., Kawichai, S., Wiriya, W., Lin, N.H. (2016). Investigation of Biomass Burning Chemical Components over Northern Southeast Asia during 7-SEAS/BASELInE 2014 Campaign. Aerosol Air Qual. Res. 16: 2655-2670.
Kirillova, E. N., Andersson, A., Sheesley, R. J., Kruså, M., Praveen, P. S., Budhavant, K., Safai, P. D., Rao, P. S. P., Gustafsson, Ö. (2013). 13C‐and 14C‐based study of sources and atmospheric processing of water‐soluble organic carbon (WSOC) in South Asian aerosols. Journal of Geophysical Research: Atmospheres, 118(2), 614-626.
Kiss, G., Varga, B., Galambos, I., Ganszky, I. (2002). Characterization of water‐soluble organic matter isolated from atmospheric fine aerosol. Journal of Geophysical Research: Atmospheres, 107(D21), ICC-1.
Krivácsy, Z., Gelencsér, A., Kiss, G., Mészáros, E., Molnár, Á., Hoffer, A., Mészáros, T., Sárvári, Z., Temesi, D., Varga, B., Baltensperger, U., Nyeki., Weingartner, E. (2001). Study on the chemical character of water soluble organic compounds in fine atmospheric aerosol at the Jungfraujoch. Journal of atmospheric chemistry, 39(3), 235-259.
Kumar, V., Rajput, P., Goel, A. (2018). Atmospheric abundance of HULIS during wintertime in Indo-Gangetic Plain: impact of biomass burning emissions. Journal of Atmospheric Chemistry, 75(4), 385-398.
Kumagai, K., Iijima, A., Shimoda, M., Saitoh, Y., Kozawa, K., Hagino, H., Sakamoto, K. (2010). Determination of dicarboxylic acids and levoglucosan in fine particles in the Kanto Plain, Japan, for source apportionment of organic aerosols. Aerosol and Air Quality Research, 10(3), 282-291.
Kundu, S., Kawamura, K., Lee, M. (2010). Seasonal variations of diacids, ketoacids, and α‐dicarbonyls in aerosols at Gosan, Jeju Island, South Korea: Implications for sources, formation, and degradation during long‐range transport. Journal of Geophysical Research: Atmospheres, 115(D19).
Kunwar, B., Kawamura, K., Fujiwara, S., Fu, P., Miyazaki, Y., Pokhrel, A. (2019). Dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls in atmospheric aerosols from Mt. Fuji, Japan: Implication for primary emission versus secondary formation. Atmospheric research, 221, 58-71.
Lee, S., Kim, H.K., Yan, B., Cobb, C.E., Hennigan, C., Nichols, S., Chamber, M., Edgerton, E.S., Jansen, J.J., Hu, Y., Weber, R.J., Russell, A.G., Zheng, M. (2008). Diagnosis of aged prescribed burning plumes impacting an urban area. Environ. Sci. Technol. 42 (5), 1438–1444.
Lee, C. T., Chuang, M. T., Lin, N. H., Wang, J. L., Sheu, G.-R., Chang, S. C., Wang, S. H., Huang, H., Chen, H.-W., Liu, Y. L., Weng, G. H., Lai, H. Y., Hsu, S.-P. (2011). The enhancement of PM2.5 mass and water-soluble ions of biosmoke transported from Southeast Asia over the Mountain Lulin site in Taiwan. Atmospheric Environment 45, 5784-5794.
Lee, H. H., Bar Or, R. Z., Wang, C. (2017). Biomass burning aerosols and the low-visibility events in Southeast Asia.
Lee, J. Y., Jung, C. H., Kim, Y. P. (2017). Estimation of optical properties for HULIS aerosols at Anmyeon Island, Korea. Atmosphere, 8(7), 120.
Lee, Y. Y., Hsieh, Y. K., Chang-Chien, G. P., Wang, W. (2019). Characterization of the air quality index in southwestern Taiwan. Aerosol and Air Quality Research, 19(4), 749-785.
Legrand, M., Preunkert, S., Oliveira, T., Pio, C. A., Hammer, S., Gelencsér, A., Kasper-Giebl, A., Laj, P. (2007). Origin of C2–C5 dicarboxylic acids in the European atmosphere inferred from year‐round aerosol study conducted at a west‐east transect. Journal of Geophysical Research: Atmospheres, 112(D23).
Li, H. C., Chen, K. S., Lai, C. H., Wang, H. K. (2011). Measurements of gaseous pollutant concentrations in the Hsuehshan Traffic Tunnel of Northern Taiwan. Aerosol and Air Quality Research, 11(6), 776-782.
Li, J., Wang, G., Zhou, B., Cheng, C., Cao, J., Shen, Z., An, Z. (2011). Chemical composition and size distribution of wintertime aerosols in the atmosphere of Mt. Hua in central China. Atmospheric Environment, 45(6), 1251-1258.
Li, X., Chen, M., Le, H. P., Wang, F., Guo, Z., Iinuma, Y., Chen, J., Herrmann, H. (2016). Atmospheric outflow of PM2.5 saccharides from megacity Shanghai to East China Sea: Impact of biological and biomass burning sources. Atmospheric Environment, 143, 1-14.
Li, X., Han, J., Hopke, P. K., Hu, J., Shu, Q., Chang, Q., Ying, Q. (2019). Quantifying primary and secondary humic-like substances in urban aerosol based on emission source characterization and a source-oriented air quality model. Atmospheric Chemistry and Physics, 19(4), 2327-2341.
Li, Y., Fu, H., Wang, W., Liu, J., Meng, Q., Wang, W. (2015). Characteristics of bacterial and fungal aerosols during the autumn haze days in Xi′an, China. Atmospheric Environment, 122, 439-447.
Li, Y., Yan, F., Kang, S., Zhang, C., Chen, P., Hu, Z., Li, C. (2021). Sources and light absorption characteristics of water-soluble organic carbon (WSOC) of atmospheric particles at a remote area in inner Himalayas and Tibetan Plateau. Atmospheric Research, 253, 105472.
Liang, L., Engling, G., Liu, C., Xu, W., Liu, X., Cheng, Y., Du, Z., Zhang, Gen., Sun, J., Zhang, X. (2021). Measurement report: Chemical characteristics of PM2.5 during typical biomass burning season at an agricultural site of the North China Plain. Atmospheric Chemistry and Physics, 21(4), 3181-3192.
Limbeck, A., Puxbaum, H., 1999. Organic acids in continental background aerosols. Atmospheric Environment 33, 1847-1852.
Lin, C. Y., Hsu, H. M., Lee, Y. H., Kuo, C. H., Sheng, Y. F., Chu, D. A. (2009). A new transport mechanism of biomass burning from Indochina as identified by modeling studies. Atmospheric Chemistry and Physics, 9(20), 7901-7911.
Lin, N. H., Tsay, S. C., Maring, H. B., Yen, M. C., Sheu, G. R., Wang, S. H., Chi, K. H., Chuang, M. T., Ou-Yang, C. F., Fu, J. S., Reid, J. S., Lee, C. T., Wang, L. K., Wang, J. L., Hsu, C. N., Sayer, A. M., Holben, B. N., Chu, Y. C., Nguyen, X. A., Sopajaree K., Chen, S. J., Cheng, M. T., Tsuang, B. J., Tsai, C. J., Peng, C. M., Schnell, R. C., Conway, T., Chang, C. T., Lin, K. S., Tsai, Y. I., Lee, W. J., Chang, S. C., Liu, J. J., Chiang, W. L., Huang, S. J., Lin, T. H., Reid, J. S. (2013). An overview of regional experiments on biomass burning aerosols and related pollutants in Southeast Asia: From BASE-ASIA and the Dongsha Experiment to 7-SEAS. Atmospheric Environment, 78, 1-19.
Lin, P., Engling, G., Yu, J. Z. (2010a). Humic-like substances in fresh emissions of rice straw burning and in ambient aerosols in the Pearl River Delta Region, China. Atmospheric Chemistry and Physics, 10(14), 6487-6500.
Lin, P., Huang, X. F., He, L. Y., Yu, J. Z. (2010b). Abundance and size distribution of HULIS in ambient aerosols at a rural site in South China. Journal of Aerosol Science, 41(1), 74-87.
Lin, W. H. and Li, C. S. (2000). Associations of fungal aerosols, air pollutants, and meteorological factors. Aerosol Science & Technology, 32(4), 359-368.
Liu, W., Wang, Y., Russell, A., Edgerton, E.S. (2006). Enhanced source identification of southeast aerosols using temperature-resolved carbon fractions and gas phase components. Atmos. Environ. 40, 445-466.
Liu, D., Tang, W., Yin, J. Y., Nie, S. P., Xie, M. Y. (2021). Monosaccharide composition analysis of polysaccharides from natural sources: Hydrolysis condition and detection method development. Food Hydrocolloids, 116, 106641.
Lu, S., Win, M. S., Zeng, J., Yao, C., Zhao, M., Xiu, G., Lin, Y., Xie, T., Dai, Y., Rao, L., Zhang, L., Yonemochi, S., Wang, Q. (2019). A characterization of HULIS-C and the oxidative potential of HULIS and HULIS-Fe (II) mixture in PM2. 5 during hazy and non-hazy days in Shanghai. Atmospheric Environment, 219, 117058.
Luo, Y., Zhou, X., Zhang, J., Xue, L., Chen, T., Zheng, P., Sun, J., Yan, X., Han, Gu., Wang, W. (2020). Characteristics of airborne water-soluble organic carbon (WSOC) at a background site of the North China Plain. Atmospheric Research, 231, 104668.
Ma, Y., Cheng, Y., Qiu, X., Cao, G., Kuang, B., Yu, J. Z., Hu, D. (2019). Optical properties, source apportionment and redox activity of humic-like substances (HULIS) in airborne fine particulates in Hong Kong. Environmental Pollution, 255, 113087.
Ma, Y., Cheng, Y., Qiu, X., Cao, G., Fang, Y., Wang, J., Zhu, T., Yu, J., Hu, D. (2018). Sources and oxidative potential of water-soluble humic-like substances (HULIS WS) in fine particulate matter (PM2.5) in Beijing. Atmospheric Chemistry and Physics, 18(8), 5607-5617.
Mang, S. A., Henricksen, D. K., Bateman, A. P., Andersen, M. P. S., Blake, D. R., Nizkorodov, S. A. (2008). Contribution of carbonyl photochemistry to aging of atmospheric secondary organic aerosol. The Journal of Physical Chemistry A, 112(36), 8337-8344.
McDow, S. R., Jang, M., Hong, Y., Kamens, R. M. (1996). An approach to studying the effect of organic composition on atmospheric aerosol photochemistry. Journal of Geophysical Research: Atmospheres, 101(D14), 19593-19600.
Nepotchatykh., Chakraborty, P., Henz, B. J., Zachariah, M. R. (2011). Molecular dynamic simulation of dicarboxylic acid coated aqueous aerosol: structure and processing of water vapor. Physical Chemistry Chemical Physics, 13(20), 9374-9384.
Marley, N. A., Gaffney, J. S. (2005). Introduction to urban aerosols and their impacts.
Marynowski, L., Łupikasza, E., Dąbrowska-Zapart, K., Małarzewski, Ł., Niedźwiedź, T., Simoneit, B. R. (2020). Seasonal and vertical variability of saccharides and other organic tracers of PM10 in relation to weather conditions in an urban environment of Upper Silesia, Poland. Atmospheric Environment, 242, 117849.
Miyazaki, Y., Kondo, Y., Shiraiwa, M., Takegawa, N., Miyakawa, T., Han, S., Kita, K., Hu, M., Deng, Z. Q., Zhao, Y., Sugimoto, N., Blake, D. R., Weber, R. J. (2009). Chemical characterization of water‐soluble organic carbon aerosols at a rural site in the Pearl River Delta, China, in the summer of 2006. Journal of Geophysical Research: Atmospheres, 114(D14).
Mkoma, S. L., Kawamura, K. (2013). Molecular composition of dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls and fatty acids in atmospheric aerosols from Tanzania, East Africa during wet and dry seasons. Atmospheric Chemistry and Physics, 13(4), 2235-2251.
Mkoma, S. L., Kawamura, K., Fu, P. Q. (2013). Contributions of biomass/biofuel burning to organic aerosols and particulate matter in Tanzania, East Africa, based on analyses of ionic species, organic and elemental carbon, levoglucosan and mannosan. Atmospheric chemistry and physics, 13(20), 10325-10338.
Mochida, M., Kawabata, A., Kawamura, K., Hatsushika, H., Yamazaki, K. (2003). Seasonal variation and origins of dicarboxylic acids in the marine atmosphere over the western North Pacific. Journal of Geophysical Research: Atmospheres, 108(D6).
Mochida, M., Kawamura, K., Fu, P., Takemura, T. (2010). Seasonal variation of levoglucosan in aerosols over the western North Pacific and its assessment as a biomass-burning tracer. Atmospheric Environment, 44(29), 3511-3518.
Mochida, M., Umemoto, N., Kawamura, K., Uematsu, M. (2003). Bimodal size distribution of C2–C4 dicarboxylic acids in the marine aerosols. Geophysical research letters, 30(13).
Mochida, M., Umemoto, N., Kawamura, K., Lim, H. J., Turpin, B. J. (2007). Bimodal size distributions of various organic acids and fatty acids in the marine atmosphere: Influence of anthropogenic aerosols, Asian dusts, and sea spray off the coast of East Asia. Journal of Geophysical Research: Atmospheres, 112(D15).
Nepotchatykh, O. V., Ariya, P. A. (2002). Degradation of dicarboxylic acids (C2− C9) upon liquid-phase reactions with O3 and its atmospheric implications. Environmental science & technology, 36(15), 3265-3269.
Nie, W., Hong, J., Häme, S. A., Ding, A., Li, Y., Yan, C., Hao, L., Mikkilä, J., Zheng, L., Xie, Y., Zhu, C., Xu, Z., Chi, X., Huang, X., Zhou, Y., Lin, P., Virtanen, A., Worsnop, D. R., Kulmala, M., Ehn, M., Yu, J., Kerminen, V., Petäjä, T. (2017). Volatility of mixed atmospheric humic-like substances and ammonium sulfate particles. Atmospheric Chemistry and Physics, 17(5), 3659-3672.
O′Dowd, C. D., Facchini, M. C., Cavalli, F., Ceburnis, D., Mircea, M., Decesari, S., Fuzzi, S., Yoon, Y. J., Putaud, J. P. (2004). Biogenically driven organic contribution to marine aerosol. Nature, 431(7009), 676-680.
Oduber, F., Calvo, A. I., Castro, A., Alves, C., Blanco-Alegre, C., Fernández., González, D., Baratab, J., Calzolai, G., Nava, S., F, Lucarelli., Nunes, T., Rodríguez , A., Vega-Maray, A. M., Valencia-Barrera, R. M., Fraile, R. (2021). One-year study of airborne sugar compounds: Cross-interpretation with other chemical species and meteorological conditions. Atmospheric Research, 251, 105417.
Pani, S. K., Lee, C. T., Griffith, S. M., Lin, N. H. (2022). Humic-like substances (HULIS) in springtime aerosols at a high-altitude background station in the western North Pacific: Source attribution, abundance, and light-absorption. Science of The Total Environment, 809, 151180.
Pankow, J. F. (2007). An absorption model of the gas/aerosol partitioning involved in the formation of secondary organic aerosol. Atmospheric Environment, 41, 75- 79.
Pant, P., Shukla, A., Kohl, S. D., Chow, J. C., Watson, J. G., Harrison, R. M. (2015). Characterization of ambient PM2.5 at a pollution hotspot in New Delhi, India and inference of sources. Atmospheric environment, 109, 178-189.
Park, S. S., Schauer, J. J., Cho, S. Y. (2013). Sources and their contribution to two water-soluble organic carbon fractions at a roadway site. Atmospheric Environment, 77, 348-357.
Park, S., Son, S. C. (2016). Size distribution and sources of humic-like substances in particulate matter at an urban site during winter. Environmental Science: Processes & Impacts, 18(1), 32-41.
Park, S. S., Yu, J. (2016). Chemical and light absorption properties of humic-like substances from biomass burning emissions under controlled combustion experiments. Atmospheric Environment, 136, 114-122.
Phairuang, W., Suwattiga, P., Chetiyanukornkul, T., Hongtieab, S., Limpaseni, W., Ikemori, F., Hata, M., Furuuchi, M. (2019). The influence of the open burning of agricultural biomass and forest fires in Thailand on the carbonaceous components in size-fractionated particles. Environmental Pollution, 247, 238-247.
Phuleria, H.C., Fine, P.M., Zhu, Y., Sioutas, C. (2005).Air quality impacts of the October 2003 Southern California wildfires. J. Geophys. Res. Atmos. 110 (D7)
Pinxteren, D., Neusüß, C., Herrmann, H. (2014). On the abundance and source contributions of dicarboxylic acids in size-resolved aerosol particles at continental sites in central Europe. Atmospheric Chemistry and Physics, 14(8), 3913-3928.
Pio, C. A., Legrand, M., Alves, C. A., Oliveira, T., Afonso, J., Caseiro, A., Puxbaum, H., Sanchez-Ochoa, A., Gelencsér, A. (2008). Chemical composition of atmospheric aerosols during the 2003 summer intense forest fire period. Atmospheric Environment, 42(32), 7530-7543.
Ponczek, M., Hayeck, N., Emmelin, C., George, C. (2019). Heterogeneous photochemistry of dicarboxylic acids on mineral dust. Atmospheric Environment, 212, 262-271.
Popovicheva, O.B., Engling, G., Diapouli, E., Saraga, D., Persiantseva, N.M., Timofeev, M.A., Kireeva, E.D., Shonija, N.K., Chen, S.H., Nguyen, D.L., Eleftheriadis, K., Lee, C.T. (2016). Impact of Smoke Intensity on Size- Resolved Aerosol Composition and Microstructure during the Biomass Burning Season in Northwest Vietnam. Aerosol Air Qual. Res. 16: 2635-2654.
Pratap, V., Bian, Q., Kiran, S. A., Hopke, P. K., Pierce, J. R., Nakao, S. (2019). Investigation of levoglucosan decay in wood smoke smog-chamber experiments: The importance of aerosol loading, temperature, and vapor wall losses in interpreting results. Atmospheric Environment, 199, 224-232.
Puxbaum, H., Caseiro, A., Sánchez-Ochoa, A., Kasper-Giebl, A., Claeys, M., Gelencsér, A., Legrand, M., Preunkert, S., Pio, C. (2007). Levoglucosan levels at background sites in Europe for assessing the impact of biomass combustion on the European aerosol background. J. Geophys. Res. Atmos. 112 (D23).
Qiao, T., Zhao, M., Xiu, G and Yu, J. (2015). Seasonal variations of water soluble composition (WSOC, Hulis and WSIIs) in PM1 and its implications on haze pollution in urban Shanghai, China. Atmospheric Environment, 123, 306-314.
Ram, K., Sarin, M. M. (2011). Day–night variability of EC, OC, WSOC and inorganic ions in urban environment of Indo-Gangetic Plain: implications to secondary aerosol formation. Atmospheric Environment, 45(2), 460-468.
Rajput, P., Sarin, M., Kundu, S. S. (2013). Atmospheric particulate matter (PM2.5), EC, OC, WSOC and PAHs from NE–Himalaya: abundances and chemical characteristics. Atmospheric Pollution Research, 4(2), 214-221.
Ray, J., McDow, S. R. (2005). Dicarboxylic acid concentration trends and sampling artifacts. Atmospheric Environment, 39(40), 7906-7919.
Rejano, F., Titos, G., Casquero-Vera, J. A., Lyamani, H., Andrews, E., Sheridan, P., Cazorla, A., Castillo, S., Alados-Arboledas, L and Olmo, F. J. (2021). Activation properties of aerosol particles as cloud condensation nuclei at urban and high-altitude remote sites in southern Europe. Science of The Total Environment, 762, 143100.
Rinaldi, M., Decesari, S., Carbone, C., Finessi, E., Fuzzi, S., Ceburnis, D., Ervens, B., (2011). Evidence of a natural marine source of oxalic acid and a possible link to glyoxal. Journal of Geophysical Research: Atmospheres, 116(D16).
Rubino, M., D’Onofrio, A., Seki, O., Bendle, J. A. (2016). Ice-core records of biomass burning. The Anthropocene Review, 3(2), 140-162.
Saarikoski, S., Timonen, H., Saarnio, K., Aurela, M., Järvi, L., Keronen, P., Kerminen, V. M., Hillamo, R. (2008). Sources of organic carbon in fine particulate matter in northern European urban air. Atmospheric Chemistry and Physics, 8(20), 6281-6295.
Sang, X., Zhang, Z., Chan, C., Engling, G. (2013). Source categories and contribution of biomass smoke to organic aerosol over the southeastern Tibetan Plateau. Atmospheric environment, 78, 113-123.
Salma, I., Mészáros, T., Maenhaut, W., Vass, E., Majer, Z. (2010). Chirality and the origin of atmospheric humic-like substances. Atmospheric Chemistry and Physics, 10(3), 1315-1327.
Salma, I., Füri, P., Németh, Z., Balásházy, I., Hofmann, W., Farkas, Á. (2015). Lung burden and deposition distribution of inhaled atmospheric urban ultrafine particles as the first step in their health risk assessment. Atmospheric Environment, 104, 39-49.
Saxena, P., Hildemann, L. M., McMurry, P. H and Seinfeld, J. H. (1995). Organics alter hygroscopic behavior of atmospheric particles. Journal of Geophysical Research: Atmospheres, 100(D9), 18755-18770.
Schmid, P. E., Niyogi, D. (2017). Modeling urban precipitation modification by spatially heterogeneous aerosols. Journal of Applied Meteorology and Climatology, 56(8), 2141-2153.
Schkolnik, G., Rudich, Y. (2006). Detection and quantification of levoglucosan in atmospheric aerosols: A review. Analytical and Bioanalytical Chemistry, 385(1), 26-33.
Schkolnik, G., Falkovich, A. H., Rudich, Y., Maenhaut, W., Artaxo, P. (2005). New analytical method for the determination of levoglucosan, polyhydroxy compounds, and 2-methylerythritol and its application to smoke and rainwater samples. Environmental Science & Technology, 39(8), 2744-2752.
Shen, M., Ho, K. F., Dai, W., Liu, S., Zhang, T., Wang, Q., Meng, J., Chow, J. C., Watson, J. G., Cao, J., Li, J. (2022). Distribution and stable carbon isotopic composition of dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in fresh and aged biomass burning aerosols. Atmospheric Chemistry and Physics Discussions, 1-31.
Shi, Y., Sasai, T., Yamaguchi, Y. (2014). Spatio-temporal evaluation of carbon emissions from biomass burning in Southeast Asia during the period 2001–2010. Ecological modelling, 272, 98-115.
Sidel, F. F. B., Bouziane, H., del Mar Trigo, M., El Haskouri, F., Bardei, F., Redouane, A., Kadiri, M., Riadi, H., Kazzaz, M. (2015). Airborne fungal spores of Alternaria, meteorological parameters and predicting variables. International journal of biometeorology, 59(3), 339-346.
Singh, A., Chou, C. C. K., Chang, S. Y., Chang, S. C., Lin, N. H., Chuang, M. T., Lee, C. T. (2020). Long-term (2003–2018) trends in aerosol chemical components at a high-altitude background station in the western North Pacific: Impact of long-range transport from continental Asia. Environmental Pollution, 265, 114813.
Sioutas, C., Wang, P., Ferguson, S., Koutrakis, P., Mulik, J.D. (1996). Laboratory and field evaluation of an improved glass honeycomb denuder/filter pack sampler. Atmospheric Environment 30, 885-895.
Song, J., He, L., Peng, P. A., Zhao, J., Ma, S. (2012). Chemical and isotopic composition of humic-like substances (HULIS) in ambient aerosols in Guangzhou, South China. Aerosol Science and Technology, 46(5), 533-546.
Stein, A., Draxler, R. R., Rolph, G. D., Stunder, B .J., Cohen, M., Ngan, F. (2015). NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society, 96(12), 2059-2077.
Stohl, A., Forster, C., Huntrieser, H., Mannstein, H., McMillan, W. W., Petzold, A., . Weinzierl, B. (2007). Aircraft measurements over Europe of an air pollution plume from Southeast Asia aerosol and chemical characterization. Atmospheric Chemistry and Physics,7(3), 913-937.
Sorathia, F., Rajput, P., Gupta, T. (2018). Dicarboxylic acids and levoglucosan in aerosols from Indo-Gangetic Plain: Inferences from day night variability during wintertime. Science of the Total Environment, 624, 451-460.
Sugo, T., Okochi, H., Uchiyama, R., Yamanokoshi, E., Ogata, H., Katsumi, N and Nakano, T. (2019). The role of humic-like substances as atmospheric surfactants in the formation of summer-heavy rainfall in downtown Tokyo. City and Environment Interactions, 3, 100022.
Sullivan, A. P., Peltier, R. E., Brock, C. A., De Gouw, J. A., Holloway, J. S., Warneke, C.,Wollny, A. G., Weber, R. J. (2006). Airborne measurements of carbonaceous aerosol soluble in water over northeastern United States: Method development and an investigation into water‐soluble organic carbon sources. Journal of Geophysical Research: Atmospheres, 111(D23).
Sullivan, A. P., Weber, R. J. (2006). Chemical characterization of the ambient organic aerosol soluble in water: 1. Isolation of hydrophobic and hydrophilic fractions with a XAD‐8 resin. Journal of Geophysical Research: Atmospheres, 111(D5).
Swap, R., Garstang, M., Macko, S. A., Tyson, P. D., Maenhaut, W., Artaxo, P., Kållberg, P., Talbot, R. (1996). The long‐range transport of southern African aerosols to the tropical South Atlantic. Journal of Geophysical Research: Atmospheres, 101(D19), 23777-23791.
Szidat, S., Prévôt, A.S., Sandradewi, J., Alfarra, M.R., Synal, H.A., Wacker, L.,
Baltensperger, U. (2007). Dominant impact of residential wood burning on particulate matter in Alpine valleys during winter. Geophys. Res. Lett. 34 (5).
Tan, J., Xiang, P., Zhou, X., Duan, J., Ma, Y., He, K., Cheng, Y., Yu, J., Querol, X. (2016). Chemical characterization of humic-like substances (HULIS) in PM2.5 in Lanzhou, China. Science of the Total Environment, 573, 1481-1490.
Tang, S., Li, F., Tsona, N. T., Lu, C., Wang, X., Du, L. (2020). Aqueous-phase photooxidation of vanillic acid: A potential source of humic-like substances (HULIS). ACS Earth and Space Chemistry, 4(6), 862-872.
Tang, X., Zhang, X., Wang, Z., Ci, Z. (2016). Water-soluble organic carbon (WSOC) and its temperature-resolved carbon fractions in atmospheric aerosols in Beijing. Atmospheric Research, 181, 200-210.
Tao, Y., Sun, N., Li, X., Zhao, Z., Ma, S., Huang, H., Ye, Z., Ge, X. (2021). Chemical and Optical Characteristics and Sources of PM2. 5 Humic-Like Substances at Industrial and Suburban Sites in Changzhou, China. Atmosphere, 12(2), 276
Teich, M., van Pinxteren, D., Wang, M., Kecorius, S., Wang, Z., Müller, T., Mocnik, G., Herrmann, H. (2016). Contributions of nitrated aromatic compounds to the light absorption of water-soluble and particulate brown carbon in different atmospheric environments in Germany and China. Atmos. Chem. Phys. Discuss. 1–24.
Tsai, I. C., Lee, C. Y., Lung, S. C. C., Su, C. W. (2021). Characterization of the vehicle emissions in the Greater Taipei Area through vision-based traffic analysis system and its impacts on urban air quality. Science of the Total Environment, 782, 146571.
Tsai, Y. I., Cheng, M. T. (2004). Characterization of chemical species in atmospheric aerosols in a metropolitan basin. Chemosphere, 54(8), 1171-1181.
Tsai, Y. I., Sopajaree, K., Chotruksa, A., Wu, H. C., Kuo, S. C. (2013). Source indicators of biomass burning associated with inorganic salts and carboxylates in dry season ambient aerosol in Chiang Mai Basin, Thailand. Atmospheric environment, 78, 93-104.
Tsai, Y. I., Kuo, S. C. (2013). Contributions of low molecular weight carboxylic acids to aerosols and wet deposition in a natural subtropical broad-leaved forest environment. Atmospheric Environment, 81, 270-279.
Van Drooge, B.L., Crusack, M., Reche, C., Mohr, C., Alastuey, A., Querol, X., Prevot, A., Day, A.D., Jimenez, J.L., Grimalt, J.O. (2012). Molecular marker characterization of the organic composition of submicron aerosols from Mediterranean urban and rural environments under contrasting meteorological conditions. Atmos. Environ. 61, 482–489.
Vardoulakis, S., Kassomenos, P. (2008). Sources and factors affecting PM10 levels in two European cities: Implications for local air quality management. Atmospheric Environment, 42(17), 3949-3963.
Vicente, E. D., Alves, C. A. (2018). An overview of particulate emissions from residential biomass combustion. Atmospheric Research, 199, 159-185.
Vongruang, P., Pimonsree, S. (2020). Biomass burning sources and their contributions to PM10 concentrations over countries in mainland Southeast Asia during a smog episode. Atmospheric Environment, 117414.
Voisin, D., Jaffrezo, J. L., Houdier, S., Barret, M., Cozic, J., King, M. D., France, J. L., Reay, H. J., Grannas, A., Kos, G., Ariya, P. A., Beine, H. J., Domine, F. (2012). Carbonaceous species and humic like substances (HULIS) in Arctic snowpack during OASIS field campaign in Barrow. Journal of Geophysical Research: Atmospheres, 117(D14).
Walser, M. L., Park, J., Gomez, A. L., Russell, A. R., Nizkorodov, S. A. (2007). Photochemical aging of secondary organic aerosol particles generated from the oxidation of d-limonene. The Journal of Physical Chemistry A, 111(10), 1907-1913.
Wan, E. C., Yu, J. Z. (2007). Analysis of sugars and sugar polyols in atmospheric aerosols by chloride attachment in liquid chromatography/negative ion electrospray mass spectrometry. Environmental science & technology, 41(7), 2459-2466.
Wang, G., Niu, S., Liu, C., Wang, L. (2002). Identification of dicarboxylic acids and aldehydes of PM10 and PM2.5 aerosols in Nanjing, China. Atmospheric Environment, 36(12), 1941-1950.
Wang, H., Kawamura, K., Shooter, D. (2005). Carbonaceous and ionic components in wintertime atmospheric aerosols from two New Zealand cities: Implications for solid fuel combustion. Atmospheric Environment, 39(32), 5865-5875.
Wang, X., Shen, Z., Liu, F., Lu, D., Tao, J., Lei, Y., Zhang, Q., Zeng, Y., Xu, H., Wu, Y., Zhang, R., Cao, J and Cao, J. (2018). Saccharides in summer and winter PM2.5 over Xi′an, Northwestern China: Sources, and yearly variations of biomass burning contribution to PM2.5. Atmospheric Research, 214, 410-417.
Wang, N., Yu, J. Z. (2017). Size distributions of hydrophilic and hydrophobic fractions of water-soluble organic carbon in an urban atmosphere in Hong Kong. Atmospheric Environment, 166, 110-119.
Wang, Z., Wu, D., Li, Z., Shang, X., Li, Q., Li, X., Chen, R., Kan, H., Ouyang, H., Tang X., Chen, J. (2021). Measurement report: Saccharide composition in atmospheric fine particulate matter during spring at the remote sites of southwest China and estimates of source contributions. Atmospheric Chemistry and Physics, 21(16), 12227-12241.
Watson, J.G., Chow, J.C., Houck, J.E. (2001). PM2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in Northwestern Colorado during 1995. Chemosphere 43, 1141 1151.
Weber, R. J., Sullivan, A. P., Peltier, R. E., Russell, A., Yan, B., Zheng, M., Gouw, J., Warneke, C., Brock, C., Holloway, J. S., Atlas E. L., Edgerton, E. (2007). A study of secondary organic aerosol formation in the anthropogenic‐influenced southeastern United States. Journal of Geophysical Research: Atmospheres, 112(D13).
Witkowska, A. and Lewandowska, A. U. (2016). Water soluble organic carbon in aerosols (PM1, PM2. 5, PM10) and various precipitation forms (rain, snow, mixed) over the southern Baltic Sea station. Science of the Total Environment, 573, 337-346
Wild, R.J., Dubé, W.P., Aikin, K.C., Eilerman, S.J., Neuman, J.A., Peischl, J., Ryerson, T.B., Brown, S.S., 2017. On-road measurements of vehicle NO2/NOx emission ratios in Denver, Colorado, USA. Atmospheric Environment 148, 182-189.
Wozniak, A. S., Bauer, J. E., Dickhut, R. M. (2012). Characteristics of water-soluble organic carbon associated with aerosol particles in the eastern United States. Atmospheric Environment, 46, 181-188.
Xiang, P., Zhou, X., Duan, J., Tan, J., He, K., Yuan, C., Ma, Y., Zhang, Y. (2017). Chemical characteristics of water-soluble organic compounds (WSOC) in PM2.5 in Beijing, China: 2011–2012. Atmospheric Research, 183, 104-112.
Xu, L., Guo, H., Weber, R. J., Ng, N. L. (2017). Chemical characterization of water-soluble organic aerosol in contrasting rural and urban environments in the southeastern United States. Environmental science & technology, 51(1), 78-88.
Xu, X., Lu, X., Li, X., Liu, Y., Wang, X., Chen, H., Chen, J., Yang, X., Fu, M., Zhao, Q., Fu, Q. (2020). ROS-generation potential of Humic-like substances (HULIS) in ambient PM2.5 in urban Shanghai: Association with HULIS concentration and light absorbance. Chemosphere, 256, 127050.
Yadav, I. C., Devi, N. L., Li, J., Syed, J. H., Zhang, G., Watanabe, H. (2017). Biomass burning in Indo-China peninsula and its impacts on regional air quality and global climate change-a review. Environmental pollution, 227, 414-427.
Yamasoe, M.A., Artaxo, P., Miguel, A.H., Allen, A.G. (2000). Chemical composition of aerosol particles from direct emissions of vegetation fires in the Amazon Basin: water soluble species and trace elements. Atmos. Environ. 34 (10), 1641–1653.
Yao, X., Fang, M., Chan, C. K. (2002). Size distributions and formation of dicarboxylic acids in atmospheric particles. Atmospheric Environment, 36(13), 2099-2107.
Yao, X., Fang, M., Chan, C. K., Ho, K. F., Lee, S. C. (2004). Characterization of dicarboxylic acids in PM2.5 in Hong Kong. Atmospheric Environment, 38(7), 963-970.
Ye, C., Chen, H., Hoffmann, E. H., Mettke, P., Tilgner, A., He, L., Mutzel, A., Brüggemann, M., Poulain, L., Schaefer, T., Heinold, B., Ma, Z., Liu, P., Xue, C., Zhao, X., Zhang, C., Zhang, C., Sun, H., Li, Q., Wang, L., Yang, X., Wang, J., Liu, C., Xing, C., Mu, Y., Chen, J and Herrmann, H. (2021). Particle-Phase Photoreactions of HULIS and TMIs Establish a Strong Source of H2O2 and Particulate Sulfate in the Winter North China Plain. Environmental Science & Technology.
Ye, Z., Li, Q., Ma, S., Zhou, Q., Gu, Y., Su, Y., Chen, Y., Chen , H., Wang, J., Ge, X. (2017). Summertime day-night differences of PM2. 5 components (inorganic ions, OC, EC, WSOC, WSON, HULIS, and PAHs) in Changzhou, China. Atmosphere, 8(10), 189.
Yu, G. H., Cho, S. Y., Bae, M. S., Park, S. S. (2014). Difference in production routes of water-soluble organic carbon in PM2.5 observed during non-biomass and biomass burning periods in Gwangju, Korea. Environmental Science: Processes & Impacts, 16(7), 1726-1736.
Yu, Q., Chen, J., Cheng, S., Qin, W., Zhang, Y., Sun, Y., Ahmad, M. (2021). Seasonal variation of dicarboxylic acids in PM2.5 in Beijing: Implications for the formation and aging processes of secondary organic aerosols. Science of The Total Environment, 763, 142964.
Yuan, W., Huang, R. J., Yang, L., Ni, H., Wang, T., Cao, W., Duan, J., Guo, J., Huang, H., Hoffmann, T. (2021). Concentrations, optical properties and sources of humic-like substances (HULIS) in fine particulate matter in Xi′an, Northwest China. Science of The Total Environment, 789, 147902.
Zangrando, R., Barbaro, E., Vecchiato, M., Kehrwald, N. M., Barbante, C., Gambaro, A. (2016). Levoglucosan and phenols in Antarctic marine, coastal and plateau aerosols. Science of the Total Environment, 544, 606-616.
Zhang, Y. G., Xu, J. Z., Shi, J. S., Xie, C. H., Ge, X. L., Wang, J. F., Kang, S. C., Zhang, Q. (2017). Light absorption by water-soluble organic carbon in atmospheric fine particles in the central Tibetan Plateau. Environmental Science and Pollution Research 24, 21386-21397.
Zhang, N., Cao, J., Wang, Q., Huang, R., Zhu, C., Xiao, S., Wang, L. (2018). Biomass burning influences determination based on PM2.5 chemical composition combined with fire counts at southeastern Tibetan Plateau during pre-monsoon period. Atmospheric Research, 206, 108-116.
Zhang, S., Tang, H., Li, Q., Li, L., Ge, C., Li, L., Feng, J. (2021). Secondary Organic Aerosols in PM2.5 in Bengbu, a Typical City in Central China: Concentration, Seasonal Variation and Sources. Atmosphere, 12(7), 854.
Zhang, T., Claeys, M., Cachier, H., Dong, S., Wang, W., Maenhaut, W., Liu, X. (2008). Identification and estimation of the biomass burning contribution to Beijing aerosol using levoglucosan as a molecular marker. Atmospheric Environment, 42(29), 7013-7021.
Zhang, X., Liu, Z., Hecobian, A., Zheng, M., Frank, N. H., Edgerton, E. S., Weber, R. J. (2012). Spatial and seasonal variations of fine particle water-soluble organic carbon (WSOC) over the southeastern United States: implications for secondary organic aerosol formation. Atmospheric Chemistry and Physics, 12(14), 6593-6607.
Zhang, Z., Engling, G., Zhang, L., Kawamura, K., Yang, Y., Tao, J., Zhang, R., Chan, C., Li, Y. (2015). Significant influence of fungi on coarse carbonaceous and potassium aerosols in a tropical rainforest. Environmental Research Letters, 10(3), 034015.
Zhao, M., Qiao, T., Li, Y., Tang, X., Xiu, G., Yu, J. Z. (2016). Temporal variations and source apportionment of Hulis-C in PM2.5 in urban Shanghai. Science of The Total Environment, 571, 18-26.
Zhao, W., Kawamura, K., Yue, S., Wei, L., Ren, H., Yan, Y., Kang, M., Li, L., Ren, L., Lai, S., Li, Ji., Sun, Y., Wang, Z., Fu, P. (2018). Molecular distribution and compound-specific stable carbon isotopic composition of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls in PM 2.5 from Beijing, China. Atmospheric Chemistry and Physics, 18(4), 2749-2767.
Zhao, Z., Cao, J., Zhang, T., Shen, Z., Ni, H., Tian, J., Wang, Q., Liu, S., Zhou, J., Gu, J., Shen, G. (2018). Stable carbon isotopes and levoglucosan for PM2.5 elemental carbon source apportionments in the largest city of Northwest China. Atmospheric Environment, 185, 253-261.
Zhou, X., Zhang, L., Tan, J., Zhang, K., Mao, J., Duan, J., Hu, J. (2018). Characterization of humic-like substances in PM2.5 during biomass burning episodes on Weizhou Island, China. Atmospheric Environment, 191, 258-266.
Zheng, G., He, K., Duan, F., Cheng, Y., Ma, Y. (2013). Measurement of humic-like substances in aerosols: A review. Environmental Pollution, 181, 301-314.
Zhou, X., Zhang, L., Tan, J., Zhang, K., Mao, J., Duan, J., Hu, J. (2018). Characterization of humic-like substances in PM2. 5 during biomass burning episodes on Weizhou Island, China. Atmospheric Environment, 191, 258-266.
Zhu, C. S., Zhang, Z. S., Tao, J., Qu, Y., Cao, J. J. (2020). Indication of primary biogenic contribution to BrC over a high altitude location in the southeastern Tibet. Atmospheric Environment, 231, 117462.
Zhu, W., Cheng, Z., Luo, L., Lou, S., Ma, Y., Yan, N. (2018). Investigation of fungal spore characteristics in PM2.5 through organic tracers in Shanghai, China. Atmospheric Pollution Research, 9(5), 894-900.
Zong, Z., Wang, X., Tian, C., Chen, Y., Han, G., Li, J., Zhang, G. (2016). Source and formation characteristics of water-soluble organic carbon in the anthropogenic-influenced Yellow River Delta, North China. Atmospheric Environment, 144, 124-132.
吳俊彥,2019。2018年鹿林山背景及生質燃燒煙團傳輸氣膠特性解析,環境工程研究所碩士論文。國立中央大學。
陳威任,2018。 2015~2016年背景、生質燃燒及雲霧事件影響下鹿林山氣膠水溶性無機離子短時間動態變化,環境工程研究所碩士論文。 國立中央大學。
陳建安,2018。 2016年鹿林山生質燃燒煙團傳輸氣膠特性解析,環境工程研究所碩士論文。國立中央大學。
陳鴻文,2006。生質燃燒長程傳輸對臺灣中部高山氣膠特性及其指標的影響
,環境工程研究所碩士論文。國立中央大學。
莊仲霆,2016。2015年中南半島近生質燃燒源與煙團傳輸氣膠特性解析。環境工程研究所碩士論文。國立中央大學。
鍾家豪,2017。氣膠光學厚度與懸浮微粒濃度關係的探討 及其在衛星觀測的應用,遙測科技所碩士論文。國立中央大學。
韓道汶,王思晴,安偉,2012。濟南市環境空氣中PM2.5的碳組成與特徵分析。 中國環境管理幹部學院學報,2012,22(4):42-44。
余嘉裕,林能暉,謝和修,林宗嵩,2008。東南亞地區春季前推軌跡群集分析及氣候影響。大氣科學, 36(4), 287-301。
余政哲, 2010。鹿林山大氣氣膠含水量探討及乾氣膠光學特性。國立中央大學環境工程研究所碩士論文。
侯雅馨,2008。大氣氣膠腐植質含量分析及氣膠成分對氣膠含水量影響的研 究。國立中央大學環境工程研究所碩士論文。
蔡伊亭,2021。台灣都會區PM2.5化學成分與大氣光學特性。國立中央大學環 境工程研究所碩士論文。
許博鈞,2021。2019及2020年高山與都市環境氣膠化學及光學特性。國立中 央大學環境工程研究所碩士論文。
梁紹庭,2021。2020 年春季及秋季台中市 PM2.5水溶性無機離子短時間變化特 性。國立中央大學環境工程研究所碩士論文。
行政院環境保護署,2020。107-108鹿林山與偏遠離島背景測站國際合作及操作 維護專案研究計畫。
行政院環境保護署,2020。空氣能見度監測規劃及應用服務。
指導教授 李崇德 審核日期 2022-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明