博碩士論文 109326029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:56 、訪客IP:3.15.221.67
姓名 顏振升(Jhen-Sheng Yan)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 利用枯草芽孢桿菌轉化魚內臟之亮胺酸為酮異己酸
(Biosynthesis of α-ketoisocaproate from fish waste by Bacillus subtilis whole-cell biocatalyst)
相關論文
★ 利用巨大芽孢桿菌轉化魚廢和蔗渣為Alcalase之綠色循環模組★ 以酵素法萃煉微藻污泥之長鏈均質聚磷酸鹽
★ 利用一鍋式高溫蛋白酶串聯反應將豆渣升級再造為生物永續製造之蛋白質原料
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-9-30以後開放)
摘要(中) 伴隨著工業化與科技技術的進步下,促使農業糧食生產效率更勝以往,有效滿足人類對於環境資源的需求,卻也導致大量的固體有機廢棄物產生。以台灣農業為例每年約有二十萬公噸的魚類廢棄物和十三萬公噸的蔗渣等副產物產生,過往其回收再利用,如: 青貯、堆肥和做為動物飼料中的高蛋白粉等方式,所增加的經濟價值十分有限,無法賦予更高的價值,此外,這些農業廢棄物置於環境中易因細菌發酵而產生有毒硫化氫氣體或脂肪酸經氧化反應而所散發出的油耗味。為了解決此農業廢棄物後續處理問題並達到升值再利用化,因此本篇以魚廢和蔗渣作為模式固體廢棄物,以微生物催化的方式,用以製造高價值的酮異己酸 (α-Ketoisocaproic acid, KIC)。在實驗設計中,藉由優化Bacillus subtilis分泌胞外酵素subtilisin將魚廢蛋白水解為胺基酸,可為B. subtilis提供氮源外,其中所含亮胺酸 (Leucine)佔魚廢總胺基酸的10.1%,為KIC的前驅物,本研究藉由剔除KIC後續代謝基因bkdAB累積 KIC,並透過異源表達方式誘導 L-氨基酸脫氨酶(LAAD)表達以增加KIC之產量。此外,本研究所使用的木糖來源為酸解蔗渣,相較於過往文獻,此方法能從蔗渣中獲取高濃度的木糖 (26 g/L),並運用於誘導蛋白表達。實驗結果顯示 B. subtilis在pH 8.0、40℃下具有最佳蛋白降解速率及轉化KIC速率,且B. subtilis突變株∆bkdAB+LAAD具有最高KIC的產量,相較於B. subtilis突變株∆bkdAB多約1.75倍(3.37 mM KIC)。此外,在代謝過程中,B. subtilis突變株∆bkdAB+LAAD不僅具較高的氨基酸利用率,相較於野生株B. subtilis亦減少近半的CO2產量 (43.3%)。因此,本文成功利用微生物轉化固體有機廢棄物為無毒增值產物,不僅符合聯合國提出的Sustainable Development Goals (SDGs)中的第12項¬(有責任之消費與生產),更與政府提出的5+2產業創新計劃中的循環經濟、低排碳相互呼應。
摘要(英) With the advances of industrial technology, the efficiency of agricultural production has been greatly improved. While satisfying human’s needs, the agriculture also comes along with large amounts of solid organic waste. For example, Taiwan′s agriculture produces 200,000 tons of fish waste and 130,000 tons of bagasse annually, respectively. In the past, the economic value added by organic waste recycling is low (such as compost), reducing the public’s will for organic waste recycling. Therefore, this study aims to valorize fish waste and bagasse to produce highly value-added products, and thereby enhancing the public’s will for organic waste recycling. α-Ketoisocaproic acid (KIC) is a naturally occurring metabolite of leucine that is capable of boosting animal muscle growth. In this study, we managed to develop a Bacillus-based fermentation system to produce KIC using fish waste and bagasse as the substrates. We selected Bacillus subtilis as the model organism for the KIC bioproduction because B. subtilis readily secrets extracellular protease subtilisin to the environments, which can hydrolyze fish waste protein into free amino acids. The leucine released would be subsequently converted into KIC by B. subtilis. We observed the optimal protein degradation rate in the wild-type B. subtilis cultures at pH 8.0 and at 40℃, and thus performing all the KIC bioproduction trials under such conditions. Later, we found that deletion of the bkdAB, which is responsible for KIC degradation, led to the KIC accumulation. In addition, heterologous expression of L-amino acid deaminase (LAAD) in B. subtilis increased the KIC yield up to 26 g/kg of fish waste. The results showed that the B. subtilis ∆bkdAB + LAAD cultures produced a 1.75 times higher yield of KIC (3.37 mmol per L of culture) than the yield of the B. subtilis ∆bkdAB culture. Moreover, we observed a higher amino acid utilization rate and a lower CO2 emission in B. subtilis ∆bkdAB + LAAD cultures compared to that in wild-type B. subtilis cultures. Altogether, this thesis demonstrated a successful microbial fermentation system capable of converting solid organic waste into the non-toxic, value-added products. This system represents an addition to circular bioeconomy, buttressing the 12th goal (responsible consumption and production) of the Sustainable Development Goals (SDGs) and facilitating the net-zero CO2 emission.
關鍵字(中) ★ 循環經濟
★ 轉化有機廢棄物
★ 增值產物
★ 減少碳排
關鍵字(英) ★ Circular economy
★ Transforming organic wastes
★ Value-added products
★ Reduce carbon emissions
論文目次 摘要 ii
謝誌 iv
目錄 v
一、 研究緣起與目的 1
1.1 研究緣起 1
1.2 研究目的 2
1.3 實驗架構 2
二、 文獻回顧 3
2.1 5+2產業創新計畫之「循環經濟」 3
2.2 現況與市場分析 3
2.3 環境污染 7
2.3.1 魚類廢棄物 7
2.3.2 處理蔗渣衍生汙染 7
2.4 枯草芽孢桿菌B. subtilis 8
2.4.1 枯草芽孢桿菌應用之特點 9
2.5 微生物生長營養需求 (培養基) 9
2.5.1 氮源 9
2.5.2 碳源 10
2.6 魚蛋白水解物 (Fish Protein Hydrolysate, FPH) 10
2.6.1 化學水解 11
2.6.2 酵素水解 12
1.內源性蛋白酶 12
2.外源性蛋白酶 12
2.7 蔗渣組成 13
2.7.1 半纖維素水解 14
2.8 胺基酸之亮胺酸代謝途徑 15
2.10.1 亮胺酸 15
2.8.2 α-酮異己酸 (α-Ketoisocaproic acid, KIC) 16
2.9 微生物合成酮異己酸 17
2.9.1 L-胺基酸脫胺酶(LAAD) 20
2.10 木糖誘導LAAD在B. subtilis 168中異源表達 21
2.11 質體剔除 (Plasmid curing) 22
2.12 優化B. subtilis分泌蛋白參數變因 22
2.13 胺基酸衍生化 23
三、 材料與方法 24
3.1 實驗材料 24
3.1.1 培養基 25
3.1.2 菌株來源與保存 26
3.2 預處理 26
3.2.1 移除魚廢之脂質及內源性蛋白酶 26
3.2.2 魚廢培養基製作 27
3.2.3 水解蔗渣 27
3.2.4 異源蛋白表達 29
3.3 特性分析 29
3.3.1 定量蛋白質 29
3.3.2定量胺基酸 30
3.3.3 定量亮胺酸 30
3.3.4 定量酮異己酸 31
3.3.5 定量木醣 31
3.4 優化B. subtilis 分泌subtilisin 水解蛋白質 32
3.5 聚丙烯醯胺凝膠電泳 (Sodium dodecyl sulfate–polyacrylamide gel electrophoresis, SDS-PAGE electrophoresis) 32
3.6 定量二氧化碳 33
四、 結果與討論 35
4.1 標準方法之建立 35
4.1.1 蛋白質檢量線 35
4.1.2 胺基酸檢量線 36
4.1.3 Leucine檢量線 36
4.1.4 KIC檢量線 38
4.1.5 Xylose檢量線 39
4.1.6 CO2檢量線 39
4.2 魚廢培養基製作基本特性分析 40
4.2.1 魚廢中蛋白質、胺基酸和KIC濃度 41
4.3 蔗渣基本特性分析 43
4.4 B. subtilis 168菌株異源蛋白表達的優化 43
4.4.1 不同pH值、溫度下分泌subtilisin與KIC速率 43
4.5 環境與經濟效益 50
五、 結論與建議 51
5.1 結論 51
5.2 建議 51
參考文獻 53
附錄 60
參考文獻 Aakre, I., Bøkevoll, A., Chaira, J., Bouthir, F. Z., Frantzen, S., Kausland, A., & Kjellevold, M. (2020). Variation in nutrient composition of seafood from North West Africa: Implications for food and nutrition security. Foods, 9(10), 1516.
Alonso-Pippo, W., Luengo, C. A., Felfli, F. F., Garzone, P., & Cornacchia, G. (2009). Energy recovery from sugarcane biomass residues: Challenges and opportunities of bio-oil production in the light of second generation biofuels. Journal of renewable and sustainable energy, 1(6), 063102.
Amin, S. (2008). Characterization of heat cured and transglutaminase cross-linked whey protein-based edible films. Michigan State University.
Aubourg, S. P., Lehmann, I., & Gallardo, J. M. (2002). Effect of previous chilled storage on rancidity development in frozen horse mackerel (Trachurus trachurus). Journal of the Science of Food and Agriculture, 82(15), 1764-1771.
Bückle-Vallant, V., Krause, F. S., Messerschmidt, S., & Eikmanns, B. J. (2014). Metabolic engineering of Corynebacterium glutamicum for 2-ketoisocaproate production. Applied microbiology and biotechnology, 98(1), 297-311.
Ben Rebah, F., & Miled, N. (2013). Fish processing wastes for microbial enzyme production: a review. 3 Biotech, 3(4), 255-265.
Bhardwaj, N., Kumar, B., & Verma, P. (2019). A detailed overview of xylanases: an emerging biomolecule for current and future prospective. Bioresources and Bioprocessing, 6(1), 1-36.
Bizzo, W. A., Lenço, P. C., Carvalho, D. J., & Veiga, J. P. S. (2014). The generation of residual biomass during the production of bio-ethanol from sugarcane, its characterization and its use in energy production. Renewable and Sustainable Energy Reviews, 29, 589-603.
Bottcher, A., Cesarino, I., Brombini dos Santos, A., Vicentini, R., Mayer, J. L. S., Vanholme, R., Morreel, K., Goeminne, G., Moura, J. C. M. S., & Nobile, P. M. (2013). Lignification in sugarcane: biochemical characterization, gene discovery, and expression analysis in two genotypes contrasting for lignin content. Plant physiology, 163(4), 1539-1557.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248-254.
Bryan, P. N. (2000). Protein engineering of subtilisin. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1543(2), 203-222.
Charline, L., Jeremy, V., Patrick, R., Armando, C.-P., & Kévin, C. (2021). Emulation of field storage conditions for assessment of energy properties of torrefied sugarcane bagasses. Biomass and Bioenergy, 145, 105938.
Chen, W. H., Tu, Y. J., & Sheen, H. K. (2010). Impact of dilute acid pretreatment on the structure of bagasse for bioethanol production. International Journal of Energy Research, 34(3), 265-274.
Chi, C., Chang, H.-m., Li, Z., Jameel, H., & Zhang, Z. (2013). A method for rapid determination of sugars in lignocellulose prehydrolyzate. BioResources, 8(1), 172-181.
Church, F. C., Porter, D. H., Catignani, G. L., & Swaisgood, H. E. (1985). An o-phthalaldehyde spectrophotometric assay for proteinases. Analytical biochemistry, 146(2), 343-348.
Dashdorj, D., & Hwang, I.-H. (2012). Effect of extraction methods on the types and levels of free amino acid of beef longissimus muscle. Food Science of Animal Resources, 32(3), 369-375.
Ellouz, Y., Bayoudh, A., Kammoun, S., Gharsallah, N., & Nasri, M. (2001). Production of protease by Bacillus subtilis grown on sardinelle heads and viscera flour. Bioresource Technology, 80(1), 49-51.
Ernst, O., & Zor, T. (2010). Linearization of the Bradford protein assay. JoVE (Journal of Visualized Experiments)(38), e1918.
Escobar, J., Frank, J. W., Suryawan, A., Nguyen, H. V., Van Horn, C. G., Hutson, S. M., & Davis, T. A. (2010). Leucine and α-ketoisocaproic acid, but not norleucine, stimulate skeletal muscle protein synthesis in neonatal pigs. The Journal of nutrition, 140(8), 1418-1424.
Flores, A. A., Falokun, O. S., Ilesanmi, A. B., Arredondo, A. V., Truong, L., Fuentes, N., Spezia, R., & Angel, L. A. (2021). Formation of Co (II), Ni (II), Zn (II) complexes of alternative metal binding heptapeptides and nitrilotriacetic acid: Discovering new potential affinity tags. International Journal of Mass Spectrometry, 463, 116554.
Gao, R., Yu, Q., Shen, Y., Chu, Q., Chen, G., Fen, S., Yang, M., Yuan, L., McClements, D. J., & Sun, Q. (2021). Production, bioactive properties, and potential applications of fish protein hydrolysates: Developments and challenges. Trends in Food Science & Technology, 110, 687-699.
Gatnau, R., Zimmerman, D., Nissen, S., Wannemuehler, M., & Ewan, R. (1995). Effects of excess dietary leucine and leucine catabolites on growth and immune responses in weanling pigs. Journal of Animal Science, 73(1), 159-165.
Hayes, M., & Gallagher, M. (2019). Processing and recovery of valuable components from pelagic blood-water waste streams: A review and recommendations. Journal of Cleaner Production, 215, 410-422.
He, S., Franco, C., & Zhang, W. (2013). Functions, applications and production of protein hydrolysates from fish processing co-products (FPCP). Food Research International, 50(1), 289-297.
Herpandi, N. H., Rosma, A., & Wan Nadiah, W. (2011). The tuna fishing industry: A new outlook on fish protein hydrolysates. Comprehensive Reviews in Food Science and Food Safety, 10(4), 195-207.
Hochuli, E., Bannwarth, W., Döbeli, H., Gentz, R., & Stüber, D. (1988). Genetic approach to facilitate purification of recombinant proteins with a novel metal chelate adsorbent. Bio/technology, 6(11), 1321-1325.
Hou, Y., Hossain, G. S., Li, J., Shin, H. D., Du, G., Chen, J., & Liu, L. (2017). Metabolic engineering of cofactor flavin adenine dinucleotide (FAD) synthesis and regeneration in Escherichia coli for production of α‐keto acids. Biotechnology and Bioengineering, 114(9), 1928-1936.
Islam, M. S., Khan, S., & Tanaka, M. (2004). Waste loading in shrimp and fish processing effluents: potential source of hazards to the coastal and nearshore environments. Marine pollution bulletin, 49(1-2), 103-110.
Kechaou, E. S., Dumay, J., Donnay-Moreno, C., Jaouen, P., Gouygou, J.-P., Bergé, J.-P., & Amar, R. B. (2009). Enzymatic hydrolysis of cuttlefish (Sepia officinalis) and sardine (Sardina pilchardus) viscera using commercial proteases: Effects on lipid distribution and amino acid composition. Journal of bioscience and bioengineering, 107(2), 158-164.
Kim, Y., Kreke, T., & Ladisch, M. R. (2013). Reaction mechanisms and kinetics of xylo‐oligosaccharide hydrolysis by dicarboxylic acids. AIChE Journal, 59(1), 188-199.
Kohlmeier, M. (2015). Nutrient metabolism: structures, functions, and genes. Academic Press.
Kristinsson, H. G., & Rasco, B. A. (2000). Fish protein hydrolysates: production, biochemical, and functional properties. Critical reviews in food science and nutrition, 40(1), 43-81.
Letelier-Gordo, C. O., Aalto, S. L., Suurnäkki, S., & Pedersen, P. B. (2020). Increased sulfate availability in saline water promotes hydrogen sulfide production in fish organic waste. Aquacultural Engineering, 89, 102062.
Liao, P., Jones, L., Lau, A., Walkemeyer, S., Egan, B., & Holbek, N. (1997). Composting of fish wastes in a full-scale invessel system. Bioresource Technology, 59(2-3), 163-168.
Liu, M., Lu, X., Khan, A., Ling, Z., Wang, P., Tang, Y., Liu, P., & Li, X. (2019). Reducing methylmercury accumulation in fish using Escherichia coli with surface-displayed methylmercury-binding peptides. J Hazard Mater, 367, 35-42.
Liu, Z. J., & Cordes, J. (2004). DNA marker technologies and their applications in aquaculture genetics. Aquaculture, 238(1-4), 1-37.
Martinez, A., Rodriguez, M. E., York, S. W., Preston, J. F., & Ingram, L. O. (2000). Effects of Ca (OH) 2 treatments (“overliming”) on the composition and toxicity of bagasse hemicellulose hydrolysates. Biotechnology and Bioengineering, 69(5), 526-536.
Martone, C. B., Borla, O. P., & Sánchez, J. J. (2005). Fishery by-product as a nutrient source for bacteria and archaea growth media. Bioresource Technology, 96(3), 383-387.
Motta, P., Molla, G., Pollegioni, L., & Nardini, M. (2016). Structure-function relationships in L-amino acid deaminase, a flavoprotein belonging to a novel class of biotechnologically relevant enzymes. Journal of Biological Chemistry, 291(20), 10457-10475.
Murakami, T., Matsuo, M., Shimizu, A., & Shimomura, Y. (2005). Dissociation of branched-chain α-keto acid dehydrogenase kinase (BDK) from branched-chain α-keto acid dehydrogenase complex (BCKDC) by BDK inhibitors. Journal of nutritional science and vitaminology, 51(1), 48-50.
Najafian, L., & Babji, A. (2012). A review of fish-derived antioxidant and antimicrobial peptides: Their production, assessment, and applications. Peptides, 33(1), 178-185.
Negahdar, L., Delidovich, I., & Palkovits, R. (2016). Aqueous-phase hydrolysis of cellulose and hemicelluloses over molecular acidic catalysts: Insights into the kinetics and reaction mechanism. Applied catalysis B: environmental, 184, 285-298.
Nshimiyimana, P., Liu, L., & Du, G. (2019). Engineering of L-amino acid deaminases for the production of α-keto acids from L-amino acids. Bioengineered, 10(1), 43-51.
Ovissipour, M., Abedian Kenari, A., Motamedzadegan, A., & Nazari, R. M. (2012). Optimization of enzymatic hydrolysis of visceral waste proteins of yellowfin tuna (Thunnus albacares). Food and bioprocess technology, 5(2), 696-705.
Pasupuleti, V. K., & Braun, S. (2008). State of the art manufacturing of protein hydrolysates. Protein hydrolysates in biotechnology, 11-32.
Pei, S., Ruan, X., Liu, J., Song, W., Chen, X., Luo, Q., Liu, L., & Wu, J. (2020). Enhancement of α-ketoisovalerate production by relieving the product inhibition of L-amino acid deaminase from Proteus mirabilis. Chinese Journal of Chemical Engineering, 28(8), 2190-2199.
Pippo, W. A., & Luengo, C. A. (2013). Sugarcane energy use: accounting of feedstock energy considering current agro-industrial trends and their feasibility. International Journal of Energy and Environmental Engineering, 4(1), 1-13.
Raspail, C., Graindorge, M., Moreau, Y., Crouzy, S., Lefèbvre, B., Robin, A. Y., Dumas, R., & Matringe, M. (2011). 4-hydroxyphenylpyruvate dioxygenase catalysis: identification of catalytic residues and production of a hydroxylated intermediate shared with a structurally unrelated enzyme. Journal of Biological Chemistry, 286(29), 26061-26070.
Saha, B. C. (2003). Hemicellulose bioconversion. Journal of industrial microbiology and biotechnology, 30(5), 279-291.
Sengupta, M., & Austin, S. (2011). Prevalence and significance of plasmid maintenance functions in the virulence plasmids of pathogenic bacteria. Infection and immunity, 79(7), 2502-2509.
Sezonov, G., Joseleau-Petit, D., & d′Ari, R. (2007). Escherichia coli physiology in Luria-Bertani broth. Journal of bacteriology, 189(23), 8746-8749.
Sharholy, M., Ahmad, K., Mahmood, G., & Trivedi, R. (2008). Municipal solid waste management in Indian cities–A review. Waste management, 28(2), 459-467.
Siddik, M. A., Howieson, J., Fotedar, R., & Partridge, G. J. (2021). Enzymatic fish protein hydrolysates in finfish aquaculture: a review. Reviews in Aquaculture, 13(1), 406-430.
Souissi, N., Ellouz-Triki, Y., Bougatef, A., Blibech, M., & Nasri, M. (2008). Preparation and use of media for protease-producing bacterial strains based on by-products from Cuttlefish (Sepia officinalis) and wastewaters from marine-products processing factories. Microbiological Research, 163(4), 473-480.
Su, Y., Liu, C., Fang, H., & Zhang, D. (2020). Bacillus subtilis: a universal cell factory for industry, agriculture, biomaterials and medicine. Microbial cell factories, 19(1), 1-12.
Tsai, W., Chou, Y., & Chang, Y. (2004). Progress in energy utilization from agrowastes in Taiwan. Renewable and Sustainable Energy Reviews, 8(5), 461-481.
Tsai, Y.-H., Chang, S.-C., & Kung, H.-F. (2007). Histamine contents and histamine-forming bacteria in natto products in Taiwan. Food Control, 18(9), 1026-1030.
Villamil, O., Váquiro, H., & Solanilla, J. F. (2017). Fish viscera protein hydrolysates: Production, potential applications and functional and bioactive properties. Food Chemistry, 224, 160-171.
Wyman, C. E., Decker, S. R., Himmel, M. E., Brady, J. W., Skopec, C. E., & Viikari, L. (2005). Hydrolysis of cellulose and hemicellulose. Polysaccharides: Structural diversity and functional versatility, 1, 1023-1062.
Zanchi, N. E., Gerlinger-Romero, F., Guimaraes-Ferreira, L., de Siqueira Filho, M. A., Felitti, V., Lira, F. S., Seelaender, M., & Lancha, A. H. (2011). HMB supplementation: clinical and athletic performance-related effects and mechanisms of action. Amino acids, 40(4), 1015-1025.
Zhang, S., Wang, J., & Jiang, H. (2021). Microbial production of value-added bioproducts and enzymes from molasses, a by-product of sugar industry. Food Chemistry, 346, 128860.
Zhou, Z., Liu, D., & Zhao, X. (2021). Conversion of lignocellulose to biofuels and chemicals via sugar platform: an updated review on chemistry and mechanisms of acid hydrolysis of lignocellulose. Renewable and Sustainable Energy Reviews, 146, 111169.
Zhu, Y., Li, J., Liu, L., Du, G., & Chen, J. (2011). Production of α-ketoisocaproate via free-whole-cell biotransformation by Rhodococcus opacus DSM 43250 with L-leucine as the substrate. Enzyme and microbial technology, 49(4), 321-325.
指導教授 王柏翔(Po-Hsiang Wang) 審核日期 2022-9-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明