博碩士論文 109326006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:109 、訪客IP:3.21.100.117
姓名 張久大(Chiu-Ta Chang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 化學回收廢棄聚乳酸(PLA) 及製備聚氨酯材料
(Chemical Recycling of waste Polylactic Acid (PLA) and Preparation of Polyurethanes)
相關論文
★ Advanced Wastewater Analysis: AI-Integrated Flow Injection Analysis (FIA) System for COD Online Monitoring★ 電混凝法應用於金屬表面處理廢水對於處理效率的影響
★ 聚乳酸塑膠在環境水體中的老化及重金屬吸附之探討★ 錳改質牡蠣殼固定土壤中鎘和銅之研究
★ 職業噪音暴露對人體健康影響研究-以玻璃纖維工廠為例★ 反向電透析(RED)產電效能評估 -以濃度、流速、膜對數及流道厚度為操作參數
★ 以反向電透析(RED)系統產電並去除氨氮★ 煅燒條件對牡蠣殼抗菌能力之影響及抗菌物種- 單線態氧的檢測
★ 臺灣石門水庫及入庫河川表層水中微型塑膠時空分佈、組成與相關性調查★ Feasibility Study of Lanthanum-Modified Calcined Oyster Shells for Phosphorus Removal from Aquatic Environments
★ 氮改質煅燒牡蠣殼提升水中亞甲基藍染料 吸附和光催化降解之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-1以後開放)
摘要(中) 石化燃料常被用作能源資源和生產各種塑膠材料,像是塑膠、聚氨酯泡棉等,其生產過程會排放大量的二氧化碳。為了解決全球氣候變遷、石化燃料逐漸枯竭等嚴重的環境議題,國際上轉而研究生物基材料,其中聚乳酸(polylactic acid, PLA),由於具有良好的物理性能以及可被生物分解等特點,逐漸被廣為使用以取代部分的傳統石化塑膠。但根據現有文獻顯示,目前聚乳酸塑膠的回收方法並無ㄧ特定的方式與標準,由於當PLA受到高溫的加工環境下容易裂解,因此在回收、清洗、再造粒等傳統回收方式上相當不利。再者,目前生產聚氨酯硬質泡沫體(rigid polyurethane foam, RPUF),需要倚賴大量石化燃料,對環境較不友善。為符合國際潮流、循環經濟以及資源最大化的趨勢,本研究將聚乳酸塑膠進行化學回收,利用醇解反應使聚乳酸降解成的產物,作為聚氨酯硬質泡沫體的前驅原料,製成聚氨酯硬質泡沫材料,既能達到回收聚乳酸的目的,還可以生產聚氨酯硬質泡沫體,以減少石化燃料耗竭的問題。
本研究有二個重點,一為探討以醇解法進行化學回收生物可分解塑膠聚乳酸,形成聚酯多元醇,並進行聚氨酯硬質發泡的可行性評估;二為探討其聚氨酯硬質泡沫產品的物理及化學性質與市面上販售之聚氨酯硬質泡沫的差異。在進行PLA醇解選用2-甲基-1,3-丙二醇(2-Methyl-1,3-propanediol, MPO)及甘油二種醇類,利用甘油以增加聚酯多元醇的官能度,以提升聚氨酯硬質泡沫體的物理、化學性能,採用聚乳酸/醇類在100/70以及100/60的比例下進行實驗,其中醇類比例再細分為MPO/甘油(%/%)為100/0、97/3、95/5、90/10、85/15、80/20共12組的比例,實驗結果得到聚乳酸/醇類比例在100/70的情況下,且MPO/甘油在90/10的條件下,有最佳的物理、化學性能。
摘要(英) Fossil fuels are widely used as energy resources and sources of plastic materials production, such as plastics, polyurethane foam, and so on. Fossil fuels is the main sources of carbon dioxide emissions in greenhouse gases. To solve this problem, bio-based materials have been developed worldwide. Among them, polylactic acid (PLA), due to its good physical properties and biodegradability, has gradually been widely used to replace traditional petrochemical plastics. However, there is no specific method and standard to recycle waste polylactic acid plastic at present. PLA is easy to degrade under high temperature environment, so it is quite vulnerable in traditional recycling methods such as cleaning and re-granulation. In addition, the current production of rigid polyurethane foam (RPUF), relying on considerable usage of fossil fuels, is unfriendly to the environment. In order to reach circular economy and decrease the use of fossil fuels, this research aims to chemically recycle waste polylactic acid plastics, and conduct alcoholysis to degrade polylactic acid into precursors for the following polyurethane rigid foams process. It can not only achieve the purpose of recycling polylactic acid, but also produce rigid polyurethane foam to reduce the depletion of fossil fuels.
In this study, two alcohols, 2-Methyl-1,3-propanediol (MPO) and glycerol, were selected, and glycerol was used to increase the functionality of polyester polyol to improve the physical and chemical properties of polyurethane rigid foam produced. The experiments were carried out in which the ratios of PLA to alcohols were 100/70 and 100/60, respectively. Furthermore, the alcohols were subdivided into MPO and glycerol, and the ration of MPO/glycerol (%/%) were 100/0, 97/3, 95/5, 90/10, 85/15, and 80/20, respectively. It is obtained that under the condition of polylactic acid 100/70, MPO/glycerol has the best physical and chemical properties under the condition of 90/10.
關鍵字(中) ★ 多元醇
★ 醇解
★ 聚乳酸
★ 聚氨酯
關鍵字(英) ★ Polyol
★ Glycolysis
★ Polylactide Acid
★ Polyurethane
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 vi
圖目錄 ix
表目錄 xi
第一章 緒論 1
1.1 研究背景 1
1.2 研究目標 2
1.3 創新及重要性 3
第二章 文獻回顧 4
2.1 高分子塑膠 4
2.2 生物可降解性塑膠(Biodegradable Plastics) 8
2.3 聚乳酸(Polylactic acid, PLA) 10
2.3.1 直接縮聚法(condensation polymerization) 12
2.3.2 丙交酯開環聚合法(ring-opening polymerization) 14
2.3.3 聚乳酸降解 15
2.3.4 聚乳酸回收 17
2.3.5 化學回收法 19
2.3.6 聚乳酸生命週期評估 22
2.4 聚氨酯(Polyurethane) 25
2.4.1 多元醇(polyol) 28
2.4.2 異氰酸酯(Isocyanate) 29
2.4.3 發泡劑(Blowing Agent) 30
2.4.4 催化劑(Catalyst) 31
2.4.5 界面活性劑(Surfactant) 32
第三章 實驗方法 33
3.1 PLA醇解製備多元醇(Polyol) 33
3.2 聚氨酯硬質泡沫(Polyurethane Rigid foam) 36
3.3 PLA醇解之多元醇(rPolyol) 39
3.3.1 羥值(Hydroxyl value) 40
3.3.2 酸價(COOH-value) 42
3.4 實驗儀器 43
3.4.1 流變儀 43
3.4.2 衰減全反射式傅立葉紅外光譜儀(ATR-FTIR) 43
3.5 聚氨酯發泡後之產品鑑定分析 45
3.5.1 熱重分析儀(Thermogravimetric analysis) 45
3.5.2 掃描式電子顯微鏡(SEM) 46
3.5.3 聚氨酯反應參數 46
3.5.4 蕭氏硬度(Shore Durometer) 47
第四章 結果與討論 48
4.1 PLA醇解反應 48
4.1.1 黏度分析 49
4.1.2 羥值(OH-value) 50
4.1.3 酸價 55
4.1.4 rPolyol衰減全反射式傅立葉紅外光譜(ATR-FTIR)分析 56
4.2 聚氨酯硬質泡沫 59
4.2.1 熱重量分析 61
4.2.2 聚氨酯-衰減全反射式傅立葉紅外光譜分析 63
4.2.3 物理性質探討 65
4.2.4 掃描式電子顯微鏡分析 68
第五章 結論與建議 70
5.1 結論 70
5.2 建議 72
參考文獻 73
附錄A -熱重量分析 I
參考文獻 Geyer, R., J.R. Jambeck, and K.L. Law, Production, use, and fate of all plastics ever made. Science Advances, 2017. 3(7): p. e1700782.
Ritch, E., C. Brennan, and C. MacLeod, Plastic bag politics: modifying consumer behaviour for sustainable development. International Journal of Consumer Studies, 2009. 33(2): p. 168-174.
Verma, R., et al., Toxic Pollutants from Plastic Waste- A Review. Procedia Environmental Sciences, 2016. 35: p. 701-708.
Nielsen, T.D., K. Holmberg, and J. Stripple, Need a bag? A review of public policies on plastic carrier bags – Where, how and to what effect? Waste Management, 2019. 87: p. 428-440.
Jambeck, J.R., et al., Plastic waste inputs from land into the ocean. Science, 2015. 347(6223): p. 768.
Karamanlioglu, M. and G.D. Robson, The influence of biotic and abiotic factors on the rate of degradation of poly(lactic) acid (PLA) coupons buried in compost and soil. Polymer Degradation and Stability, 2013. 98(10): p. 2063-2071.
Muniyasamy, S. and O.E. Dada, 17 - Recycling of plastics and composites materials and degradation technologies for bioplastics and biocomposites, in Waste Management in the Fashion and Textile Industries, R. Nayak and A. Patnaik, Editors. 2021, Woodhead Publishing. p. 311-333.
The Facts 2020. An analysis of European plastics production, demand and waste data. 2020; Available from: https://www.plasticseurope.org/en/resources/publications/4312-plastics-facts-2020.
Bioplastics market data. 2022.
Crippa, M., et al., A circular economy for plastics: Insights from research and innovation to inform policy and funding decisions. 2019.
環保署關心生物可分解塑膠回收處理並採積極解決方案. 2021.
Serrano-Ruiz, H., L. Martin-Closas, and A.M. Pelacho, Biodegradable plastic mulches: Impact on the agricultural biotic environment. Science of The Total Environment, 2021. 750: p. 141228.
Shen, M., et al., Are biodegradable plastics a promising solution to solve the global plastic pollution? Environmental Pollution, 2020. 263: p. 114469.
Ciriminna, R. and M. Pagliaro, Biodegradable and Compostable Plastics: A Critical Perspective on the Dawn of their Global Adoption. ChemistryOpen, 2019. 9(1): p. 8-13.
Monshupanee, T., P. Nimdach, and A. Incharoensakdi, Two-stage (photoautotrophy and heterotrophy) cultivation enables efficient production of bioplastic poly-3-hydroxybutyrate in auto-sedimenting cyanobacterium. Scientific Reports, 2016. 6(1): p. 37121.
Samantaray, S. and N. Mallick, Production and characterization of poly-β-hydroxybutyrate (PHB) polymer from Aulosira fertilissima. Journal of Applied Phycology, 2012. 24(4): p. 803-814.
Nishioka, M., et al., Production of poly-β-hydroxybutyrate by thermophilic cyanobacterium, Synechococcus sp. MA19, under phosphate-limited conditions. Biotechnology Letters, 2001. 23(14): p. 1095-1099.
Kaewbai-ngam, A., A. Incharoensakdi, and T. Monshupanee, Increased accumulation of polyhydroxybutyrate in divergent cyanobacteria under nutrient-deprived photoautotrophy: An efficient conversion of solar energy and carbon dioxide to polyhydroxybutyrate by Calothrix scytonemicola TISTR 8095. Bioresource Technology, 2016. 212: p. 342-347.
Panda, B., et al., Optimization of cultural and nutritional conditions for accumulation of poly-β-hydroxybutyrate in Synechocystis sp. PCC 6803. Bioresource Technology, 2006. 97(11): p. 1296-1301.
Bhati, R. and N. Mallick, Carbon dioxide and poultry waste utilization for production of polyhydroxyalkanoate biopolymers by Nostoc muscorum Agardh: a sustainable approach. Journal of Applied Phycology, 2016. 28(1): p. 161-168.
Nalawade, K., et al., Evaluation of alternative strategies for generating fermentable sugars from high-solids alkali pretreated sugarcane bagasse and successive valorization to L (+) lactic acid. Renewable Energy, 2020. 157: p. 708-717.
Munagala, M., et al., Life cycle and economic assessment of sugarcane bagasse valorization to lactic acid. Waste Management, 2021. 126: p. 52-64.
Fukuzaki, H., et al., Low-molecular-weight copolymers composed of L-lactic acid and various DL-hydroxy acids as biodegradable carriers. Die Makromolekulare Chemie, 1989. 190(10): p. 2571-2577.
Hiltunen, K., J.V. Seppälä, and M. Härkönen, Effect of Catalyst and Polymerization Conditions on the Preparation of Low Molecular Weight Lactic Acid Polymers. Macromolecules, 1997. 30(3): p. 373-379.
Hiltunen, K., J.V. Seppälä, and M. Härkönen, Lactic acid based poly(ester-urethane)s: The effects of different polymerization conditions on the polymer structure and properties. Journal of Applied Polymer Science, 1997. 64(5): p. 865-873.
Babu, R.P., K. O′Connor, and R. Seeram, Current progress on bio-based polymers and their future trends. Progress in Biomaterials, 2013. 2(1): p. 8.
Sudamrao Getme, A. and B. Patel, A Review: Bio-fiber’s as reinforcement in composites of polylactic acid (PLA). Materials Today: Proceedings, 2020. 26: p. 2116-2122.
Tsuji, H., et al., Poly(l-lactide) XI. Lactide formation by thermal depolymerisation of poly(l-lactide) in a closed system. Polymer Degradation and Stability, 2003. 81(3): p. 501-509.
Musioł, M., et al., Forensic engineering of advanced polymeric materials. Part III - Biodegradation of thermoformed rigid PLA packaging under industrial composting conditions. Waste Management, 2016. 52: p. 69-76.
Grewell, D., G. Srinivasan, and E. Cochran, Depolymerization of post-consumer polylactic acid products. Journal of Renewable Materials, 2014. 2(3): p. 157-165.
Simmons, H., et al., Improvements in the crystallinity and mechanical properties of PLA by nucleation and annealing. Polymer Degradation and Stability, 2019. 166: p. 248-257.
Markarian, J., Biopolymers present new market opportunities for additives in packaging. Plastics, Additives and Compounding, 2008. 10(3): p. 22-25.
Kale, G., et al., Compostability of bioplastic packaging materials: an overview. Macromol Biosci, 2007. 7(3): p. 255-77.
Siracusa, V., et al., Biodegradable polymers for food packaging: a review. Trends in Food Science & Technology, 2008. 19(12): p. 634-643.
Beigbeder, J., et al., How to manage biocomposites wastes end of life? A life cycle assessment approach (LCA) focused on polypropylene (PP)/wood flour and polylactic acid (PLA)/flax fibres biocomposites. Waste Management, 2019. 83: p. 184-193.
Kolstad, J.J., et al., Assessment of anaerobic degradation of Ingeo™ polylactides under accelerated landfill conditions. Polymer Degradation and Stability, 2012. 97(7): p. 1131-1141.
Gironi, F. and V. Piemonte, Life cycle assessment of polylactic acid and polyethylene terephthalate bottles for drinking water. Environmental Progress & Sustainable Energy, 2011. 30(3): p. 459-468.
Piemonte, V. and F. Gironi, Kinetics of Hydrolytic Degradation of PLA. Journal of Polymers and the Environment, 2013. 21(2): p. 313-318.
Piemonte, V., S. Sabatini, and F. Gironi, Chemical Recycling of PLA: A Great Opportunity Towards the Sustainable Development? Journal of Polymers and the Environment, 2013. 21(3): p. 640-647.
Dusselier, M., et al., Lactic acid as a platform chemical in the biobased economy: the role of chemocatalysis. Energy & Environmental Science, 2013. 6(5): p. 1415-1442.
Alberti, C., et al., Selective Degradation of End‐of‐Life Poly (lactide) via Alkali‐Metal‐Halide Catalysis. Advanced Sustainable Systems, 2020. 4(1): p. 1900081.
Yuan, Z., et al., Production of acetonitrile via catalytic fast pyrolysis of biomass derived polylactic acid under ammonia atmosphere. Journal of Analytical and Applied Pyrolysis, 2019. 140: p. 376-384.
Tian, S., et al., Catalytic Amination of Polylactic Acid to Alanine. Journal of the American Chemical Society, 2021. 143(40): p. 16358-16363.
Nim, B. and P. Opaprakasit, Quantitative analyses of products from chemical recycling of polylactide (PLA) by alcoholysis with various alcohols and their applications as healable lactide-based polyurethanes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021. 255: p. 119684.
Vink, E.T.H., et al., Applications of life cycle assessment to NatureWorks™ polylactide (PLA) production. Polymer Degradation and Stability, 2003. 80(3): p. 403-419.
Cosate de Andrade, M.F., et al., Life Cycle Assessment of Poly(Lactic Acid) (PLA): Comparison Between Chemical Recycling, Mechanical Recycling and Composting. Journal of Polymers and the Environment, 2016. 24(4): p. 372-384.
Papong, S., et al., Comparative assessment of the environmental profile of PLA and PET drinking water bottles from a life cycle perspective. Journal of Cleaner Production, 2014. 65: p. 539-550.
Moretti, C., et al., Cradle-to-grave life cycle assessment of single-use cups made from PLA, PP and PET. Resources, Conservation and Recycling, 2021. 169: p. 105508.
Somarathna, H.M.C.C., et al., The use of polyurethane for structural and infrastructural engineering applications: A state-of-the-art review. Construction and Building Materials, 2018. 190: p. 995-1014.
Tan, S., et al., Rigid polyurethane foams from a soybean oil-based Polyol. Polymer, 2011. 52(13): p. 2840-2846.
Koyama, A., et al., Experimental study on the dynamic properties of rigid polyurethane foam in stress-controlled cyclic uniaxial tests. Construction and Building Materials, 2022. 321: p. 126377.
Liu, P., et al., Dynamic properties of polyurethane foam adhesive-reinforced gravels. Science China Technological Sciences, 2021. 64(3): p. 535-547.
Cao, H., et al., Biobased rigid polyurethane foam using gradient acid precipitated lignin from the black liquor: Revealing the relationship between lignin structural features and polyurethane performances. Industrial Crops and Products, 2022. 177: p. 114480.
Park, H.D., I.S. Chang, and K.J. Lee, Principles of membrane bioreactors for wastewater treatment. 2015, CRC Press. p. 151-154.
Li, P., et al., Efficient Synthesis of Biobased Glycerol Levulinate Ketal and Its Application for Rigid Polyurethane Foam Production. Industrial & Engineering Chemistry Research, 2020. 59(39): p. 17520-17528.
Saffar, T., et al., Production of bio-based polyol from oxypropylated pyrolytic lignin for rigid polyurethane foam application. Waste and Biomass Valorization, 2020. 11(11): p. 6411-6427.
Kurańska, M., et al., Synthesis of thermal insulating polyurethane foams from lignin and rapeseed based polyols: A comparative study. Industrial Crops and Products, 2020. 143: p. 111882.
Gurgel, D., et al., Flexible polyurethane foams produced from industrial residues and castor oil. Industrial Crops and Products, 2021. 164: p. 113377.
Paciorek-Sadowska, J., et al., Oenothera biennis seed oil as an alternative raw material for production of bio-polyol for rigid polyurethane-polyisocyanurate foams. Industrial Crops and Products, 2018. 126: p. 208-217.
Abid, A., et al., Production and characterization of rigid polyurethane foam by oxypropylation of organosolv lignin extracted from exhausted olive pomace. Journal of Polymer Research, 2020. 27(9): p. 266.
Jiang, D., et al., Environmentally friendly alternative to polyester polyol by corn straw on preparation of rigid polyurethane composite. Composites Communications, 2020. 17: p. 109-114.
Chang, C., et al., Preparation of flame retardant polyurethane foam from crude glycerol based liquefaction of wheat straw. Industrial Crops and Products, 2021. 160: p. 113098.
Yazici, B., Z.S. Can, and B. Calli, Prediction of future disposal of end-of-life refrigerators containing CFC-11. Waste Management, 2014. 34(1): p. 162-166.
Król, P., Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers. Progress in Materials Science, 2007. 52(6): p. 915-1015.
Nim, B., et al., Microwave-assisted chemical recycling of polylactide (PLA) by alcoholysis with various diols. Polymer Degradation and Stability, 2020. 181: p. 109363.
李佳宣, 回收PLA化學降解及發泡材料之製備. 2017, 明志科技大學: 新北市.
Lubczak, R., et al., Flame retardant polyurethane foams with starch unit. Polymer Testing, 2021. 104: p. 107395.
Kachhia, P. and R. Patel, Castor-oil based polyurethane/NiCo-OLDH nanocomposites with improved flame retardant properties. Materials Today: Proceedings, 2022.
Tang, G., et al., Phosphorus-containing soybean oil-derived polyols for flame-retardant and smoke-suppressant rigid polyurethane foams. Polymer Degradation and Stability, 2021. 191: p. 109701.
Szpiłyk, M., R. Lubczak, and J. Lubczak, The biodegradable cellulose-derived polyol and polyurethane foam. Polymer Testing, 2021. 100: p. 107250.
Hu, S. and Y. Li, Polyols and polyurethane foams from base-catalyzed liquefaction of lignocellulosic biomass by crude glycerol: Effects of crude glycerol impurities. Industrial Crops and Products, 2014. 57: p. 188-194.
Hirao, K., Y. Nakatsuchi, and H. Ohara, Alcoholysis of Poly(l-lactic acid) under microwave irradiation. Polymer Degradation and Stability, 2010. 95(6): p. 925-928.
Wang, W., et al., Rigid polyurethane foams based on dextrin and glycerol. Industrial Crops and Products, 2022. 177: p. 114479.
Fang, C., et al., Synthesis of waterborne polyurethane using snow as dispersant: Structures and properties controlled by polyols utilization. Journal of Materials Science & Technology, 2019. 35(7): p. 1491-1498.
指導教授 林伯勳(Po-Hsun Lin) 審核日期 2022-9-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明