博碩士論文 107326004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:53 、訪客IP:3.15.239.17
姓名 張瓊云(Qiong-Yun Zhang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 調查經零價鐵與硫酸鹽處理之水田根系土 於稻作栽種期間主要最終電子接受程序
(Investigation of the primary terminal electron accepting process in the paddy rhizosphere amended with zerovalent iron and sulfate during rice cultivation)
相關論文
★ 埔心溪補助灌溉水水質與渠道底泥重金屬含量調查分析★ 桃園航空城三所國小周界大氣PAHs濃度探討
★ 無塵室揮發性有機氣體異味調查探討 -以某晶圓級封裝廠為例★ 利用土壤植栽與固相微萃取探討植作對非離子態有機污染物之吸收模式
★ 零價鐵與硫酸鹽的添加對於水田根圈環境汞 之生物有效性與菌相組成的影響★ 以紫外光/二氧化鈦光催化降解程序去除水溶液相內分泌干擾物質壬基苯酚之研究
★ 異化性鐵還原狀態下非生物性汞氧化還原 作用及其對地下水水質之影響★ 水溶液相中多壁奈米碳管分散懸浮與抑菌效果之相關性探討
★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用-以北投垃圾焚化爐為例★ 以淨水污泥灰及廢玻璃為矽鋁源合成MCM-41並應用於重鉻酸鹽吸附之研究
★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用 -以台中火力發電廠為例★ 細胞固定化影響厭氧氨氧化程序脫氮效能之研究
★ 藉由非抗性模式細菌對鎘之攝取機制探討量子點的生態毒性潛勢★ 利用生物性聚合物交聯所成穿透式網絡結構穩定污染土壤中之重金屬(鉛、鉻、鎘)
★ 蚯蚓處理加速堆肥廚餘去化可行性評估-以臺北市為例★ 氣相層析三段四極柱串聯質譜儀應用於多溴二苯醚環境樣品之分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 過往的文獻已證實藉由二價鐵與硫酸鹽(sulfate)的適度添加,可讓汞(Hg)與鎘(Cd)穩定於底泥跟土壤介質中,達到兩金屬生物有效性顯著降低之功效。然而,實驗室前期盆栽試驗的結果,卻發現僅有零價鐵可發揮降低水田根系土壤中鎘之生物有效性的功能,硫酸鹽的效果卻遠不如預期。由於後續菌種組成的調查顯示試驗土壤中的硫酸鹽還原菌佔比極低,故本研究從生態氧化序列(ecological redox sequence)的角度切入,試圖調查硫
酸鹽無法發揮功效的原因,是否與前期試驗時所用的肥料含有比硫酸鹽更容易被現地微生物利用的最終電子受體有關。有鑑於此,本研究利用原有的污染土壤及定期加入與所測得的根系分泌物等量的有機碳(葡萄糖與醋酸鹽),並分成有無添加肥料的組別,進行為期兩個月的土壤縮模培養試驗,以探討(兩種)肥料、硫酸鹽及零價鐵三者於模擬稻田覆水時期根圈土壤達厭氧狀態時,彼此的兢爭關係,並以孔隙水中重金屬濃度的減少與否,做為該金屬在試驗期間於土壤介質中生物有效性降低的證據。研究結果發現未含肥料組別的土壤及孔隙水樣品,隨時間皆能順利觀察到硫化物與二價鐵存在的跡象,且鎘於孔隙水中的濃度得以有效降低。而在含有肥料的組別中,零價體與硫酸鹽的還原速度相較於未含肥料組則來得緩慢、甚至毫無反應,並在孔隙水中檢測到硝酸鹽,其濃度隨時間逐漸降低,過程中也一度發現亞硝酸鹽的蹤影,藉此可確定系統中正進行硝酸鹽還原(或脫硝)反應,也由此可推測該土壤中的硝酸鹽會與零價鐵及硫酸鹽競爭,並優先成為系統中微生物呼吸作用的電子受體,最後使得硫酸鹽所受的影響最大,因無法被有效還原,以至於無法顯著降低鎘在系統中的生物有效性。這些結果表明故當利用硫酸鹽進行受鎘或其他重金屬污染的稻田土整治時,必須優先檢測所用肥料是否含有一定濃度的硝酸鹽,因其最終效用會與此含有硝酸鹽的氮肥形成衝突,兩者在厭氧根圈中競爭的後果將造成硫酸鹽帶來的整治效果不彰;但假使環境中缺少充足硝酸鹽作為電子受體,硫酸鹽的添加仍具有良好的效果,可以有效降低稻田土孔隙水中的鎘濃度,且其價格低廉,是值得考慮的土壤改良劑。
摘要(英) Previous literatures have confirmed that by moderate addition of ferrous iron and sulfate,
mercury and cadmium can be stabilized in the sediment and soil medium, and the bioavailability
of the two metals can be significantly reduced. However, the results of the previous pot
experiments in the laboratory found that only zero-valent iron can play a role in reducing the
bioavailability of cadmium in the root soil of paddy fields, while the effect of sulfate is far less
than expected. Since the subsequent investigation of bacterial species composition showed that
the proportion of sulfate-reducing bacteria in the test soil was extremely low, this study started
from the perspective of ecological redox sequence, and tried to investigate whether the reason
why sulfate could not exert its effect was the same as that in the previous period. Fertilizers
used in the experiments contained final electron acceptors that were more readily available to
local microorganisms than sulfate. In view of this, this study used the original contaminated
soil and regularly added the same amount of organic carbon (glucose and acetate) as the
measured root exudates, and divided them into groups with or without added fertilizers for a
period of two months. Soil miniature model culture experiment to explore the relationship
between (two) fertilizers, sulfate and zero-valent iron when the rhizosphere soil reaches
anaerobic state in the simulated paddy water-covered period, and the reduction of heavy metal
concentration in pore water Whether or not, as evidence of reduced bioavailability of the metal
in soil media during the test period.The results of the study found that the presence of sulfide
and ferrous iron could be successfully observed over time in soil and pore water samples
without fertilizers, and the concentration of cadmium in pore water was effectively reduced. In
the group containing fertilizer, the reduction rate of zerovalent body and sulfate was slower than
that of the group without fertilizer, and there was no response. Nitrate was detected in pore
water, and its concentration gradually decreased with time. During the process, traces of nitrite
were also found, which can confirm that the nitrate reduction (or denitrification) reaction is
going on in the system, and it can be speculated that the nitrate in the soil will compete with
zero-valent iron and sulfate, and It preferentially becomes the electron acceptor for microbial respiration in the system, and finally makes the sulfate most affected, because it cannot be effectively reduced, so that the bioavailability of cadmium in the system cannot be significantly reduced.These results indicate that when using sulfate to remediate paddy soil contaminated with cadmium or other heavy metals, it is necessary to first detect whether the fertilizer used contains a certain concentration of nitrate, because its final effect will conflict with this nitrogen fertilizer containing nitrate, and the two The result of the competition between the two in the
anaerobic rhizosphere will cause the ineffective remediation effect brought by sulfate; but if there is a lack of sufficient nitrate as an electron acceptor in the environment, the addition of sulfate still has a good effect, which can effectively reduce the amount of soil in paddy fields.Cadmium concentration in pore water, and its low price, is a soil conditioner worth considering.
關鍵字(中) ★ 水田根圈土壤
★ 鎘污染
★ 生物有效性
★ 硫酸鹽添加
★ 生態氧化序列
★ 含硝酸鹽肥料
關鍵字(英) ★ paddy rhizosphere
★ cadmium pollution
★ bioavailability
★ sulfate amendment
★ ecological redox sequence
★ nitrate-containing fertilizer
論文目次 摘要 ........................................................................................................................................ i
Abstract ................................................................................................................................. ii
第一章 前言 ................................................................................................................... 1
1.1 研究背景 ............................................................................................................ 1
1.1.1 重金屬污染農田帶來的影響 ................................................................. 1
1.1.2 農地重金屬污染整治技術 ..................................................................... 2
1.1.3 鎘在水稻田覆水期間時的型態 ............................................................. 2
1.1.4 利用硫酸鹽與零價鐵整治水稻土原因 .................................................. 3
1.1.5 土壤介質中硫酸鹽、零價鐵與鎘的相互關係 ...................................... 4
1.1.6 硫酸鹽、零價鐵、鎘對生物體和植作體的影響 ................................... 5
1.1.7 硫酸鹽與零價鐵植栽試驗結果 ............................................................. 6
1.1.8 生態氧化還原序列 ............................................................................... 14
1.2 研究目的 .......................................................................................................... 16
第二章 材料與方法 ...................................................................................................... 17
2.1 實驗設計與架構 .............................................................................................. 17
2.1.1 土壤配製 .............................................................................................. 17
2.1.2 土壤縮模實驗架構 ............................................................................... 20
2.1.3 土壤根系分泌物收集方式與添加 ........................................................ 24
2.2 孔隙水參數分析 .............................................................................................. 28
2.2.1 孔隙水採集 .......................................................................................... 28
2.2.2 孔隙水中DOC 濃度定量分析 ............................................................. 29
2.2.3 孔隙水中總氮濃度定量分析 ............................................................... 29
2.2.4 孔隙水中硫化物濃度定量分析 ........................................................... 29
2.2.5 孔隙水中亞鐵濃度定量分析 ............................................................... 30
2.2.6 孔隙水中硝酸鹽/亞硝酸鹽/硫酸鹽濃度定量分析 .............................. 30
2.2.7 孔隙水中重金屬(鎘、銅、鋅)濃度定量分析 ...................................... 30
2.3 土壤參數分析 .................................................................................................. 30
vi
2.3.1 土壤中可被稀鹽酸溶解萃取之總鐵/亞鐵分析 ................................... 30
2.3.2 土壤中揮發性硫化物(acid-volatile suifide, AVS)分析 ......................... 32
第三章 結果與討論 ...................................................................................................... 33
3.1 根系分泌物的收集與成分的衰減 ................................................................... 33
3.2 土壤背景與肥料分析 ...................................................................................... 35
3.3 縮模實驗中零價鐵與硫化物在土壤固相中的測值 ........................................ 39
3.4 縮模實驗中孔隙水中總碳及總氮的測值 ........................................................ 42
3.5 縮模實驗中孔隙水中硝酸鹽與亞硝酸鹽的測值 ............................................ 45
3.6 縮模實驗中零價鐵與硫酸鹽在孔隙水中的測值 ............................................ 48
3.7 縮模實驗中親硫金屬(Cd、Cu、Zn)於孔隙水中的測值 ................................ 53
3.8 NRB、IRB 與SRB 三者於生態圈中的相互關係 ........................................... 57
3.9 在開放系統中硝酸鹽還原菌與氮肥間於土壤中的關係 ................................. 58
第四章 結論與建議 ...................................................................................................... 60
4.1 結論 ................................................................................................................. 60
4.2 建議 ................................................................................................................. 61
參考文獻 ............................................................................................................................. 62
附錄 ..................................................................................................................................... 68
參考文獻 Achtnich, C., Bak, F., & Conrad, R. (1995). Competition for electron donors among nitrate
reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil.
Biology and fertility of soils, 19(1), 65-72.
Ali, H., Khan, E., & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous
heavy metals: environmental persistence, toxicity, and bioaccumulation. Journal of
chemistry, 2019.
Alvarez, R., Diaz, R. A., Barbero, N., Santanatoglia, O. J., & Blotta, L. (1995). Soil organic
carbon, microbial biomass and CO2-C production from three tillage systems. Soil and
Tillage Research, 33(1), 17-28.
Andal, R., Bhuvaneswari, K., & Subba-Rao, N. (1956). Root exudates of paddy. Nature,
178(4541), 1063-1063.
Arth, I., Frenzel, P., & Conrad, R. (1998). Denitrification coupled to nitrification in the
rhizosphere of rice. Soil Biology and Biochemistry, 30(4), 509-515.
Aulakh, M., Wassmann, R., Bueno, C., Kreuzwieser, J., & Rennenberg, H. (2001).
Characterization of root exudates at different growth stages of ten rice (Oryza sativa L.)
cultivars. Plant biology, 3(02), 139-148.
Ayangbenro, A. S., & Babalola, O. O. (2017). A new strategy for heavy metal polluted
environments: a review of microbial biosorbents. International journal of environmental
research and public health, 14(1), 94.
Azam, F., Ashraf, M., Lodhi, A., & Sajjad, M. (1991). Relative significance of soil and
nitrogenous fertilizer in nitrogen nutrition and growth of wetland rice (Oryza sativa L.).
Biology and fertility of soils, 11(1), 57-61.
Badri, D. V., & Vivanco, J. M. (2009). Regulation and function of root exudates. Plant, cell &
environment, 32(6), 666-681.
Cao, Z.-Z., Qin, M.-L., Lin, X.-Y., Zhu, Z.-W., & Chen, M.-X. (2018). Sulfur supply reduces
cadmium uptake and translocation in rice grains (Oryza sativa L.) by enhancing iron
plaque formation, cadmium chelation and vacuolar sequestration. Environmental
Pollution, 238, 76-84.
63
Chanmugathas, P., & Bollag, J. M. (1987). Microbial mobilization of cadmium in soil under
aerobic and anaerobic conditions (0047-2425).
Chaturvedi, I. (2005). Effect of nitrogen fertilizers on growth, yield and quality of hybrid rice
(Oryza sativa). Journal of Central European Agriculture, 6(4), 611-618.
Chen, H.-Y. (2019). 零價鐵與硫酸鹽的添加對於水田根圈環境汞 之生物有效性與菌相
組成的影響 National Central University].
Cheng, H., Wang, M., Wong, M. H., & Ye, Z. (2014). Does radial oxygen loss and iron plaque
formation on roots alter Cd and Pb uptake and distribution in rice plant tissues? Plant
and Soil, 375(1), 137-148.
Colmer, T. D., Gibberd, M. R., Wiengweera, A., & Tinh, T. K. (1998). The barrier to radial
oxygen loss from roots of rice (Oryza sativa L.) is induced by growth in stagnant
solution. Journal of Experimental Botany, 49(325), 1431-1436.
Crea, F., Foti, C., Milea, D., & Sammartano, S. (2013). Speciation of cadmium in the
environment. Cadmium: from toxicity to essentiality, 63-83.
de Livera, J., McLaughlin, M. J., Hettiarachchi, G. M., Kirby, J. K., & Beak, D. G. (2011).
Cadmium solubility in paddy soils: effects of soil oxidation, metal sulfides and
competitive ions. Science of The Total Environment, 409(8), 1489-1497.
DeAngelis, K. M., Silver, W. L., Thompson, A. W., & Firestone, M. K. (2010). Microbial
communities acclimate to recurring changes in soil redox potential status.
Environmental microbiology, 12(12), 3137-3149.
Fulda, B., Voegelin, A., & Kretzschmar, R. (2013). Redox-controlled changes in cadmium
solubility and solid-phase speciation in a paddy soil as affected by reducible sulfate and
copper. Environmental science & technology, 47(22), 12775-12783.
Gadd, G. M. (2010). Metals, minerals and microbes: geomicrobiology and bioremediation.
Microbiology, 156(3), 609-643.
Hao, O. J., Chen, J. M., Huang, L., & Buglass, R. L. (1996). Sulfate‐reducing bacteria. Critical
Reviews in Environmental Science and Technology, 26(2), 155-187.
Hubert, C., & Voordouw, G. (2007). Oil field souring control by nitrate-reducing
Sulfurospirillum spp. that outcompete sulfate-reducing bacteria for organic electron
donors. Applied and Environmental Microbiology, 73(8), 2644-2652.
64
Jauregui, M. A., & Reisenauer, H. (1982). Dissolution of oxides of manganese and iron by root
exudate components. Soil Science Society of America Journal, 46(2), 314-317.
Jean, G. E., & Bancroft, G. M. (1986). Heavy metal adsorption by sulphide mineral surfaces.
Geochimica et Cosmochimica Acta, 50(7), 1455-1463.
Jones, D., & Darrah, P. (1992). Re-sorption of organic components by roots of Zea mays L. and
its consequences in the rhizosphere. Plant and Soil, 143(2), 259-266.
Järup, L. (2003). Hazards of heavy metal contamination. British medical bulletin, 68(1), 167-
182.
Kerdchoechuen, O. (2005). Methane emission in four rice varieties as related to sugars and
organic acids of roots and root exudates and biomass yield. Agriculture, ecosystems &
environment, 108(2), 155-163.
Klemps, R., Cypionka, H., Widdel, F., & Pfennig, N. (1985). Growth with hydrogen, and further
physiological characteristics of Desulfotomaculum species. Archives of Microbiology,
143(2), 203-208.
Knowles, R. (1982). Denitrification. Microbiological reviews, 46(1), 43-70.
Kwon, M. J., O’Loughlin, E. J., Boyanov, M. I., Brulc, J. M., Johnston, E. R., Kemner, K. M.,
& Antonopoulos, D. A. (2016). Impact of organic carbon electron donors on microbial
community development under iron-and sulfate-reducing conditions. PloS one, 11(1),
e0146689.
Leitenmaier, B., & Küpper, H. (2013). Compartmentation and complexation of metals in
hyperaccumulator plants. Frontiers in plant science, 4, 374.
Li, H., Luo, N., Li, Y. W., Cai, Q. Y., Li, H. Y., Mo, C. H., & Wong, M. H. (2017). Cadmium in
rice: transport mechanisms, influencing factors, and minimizing measures.
Environmental Pollution, 224, 622-630.
Li, Y., Feng, W., Chi, H., Huang, Y., Ruan, D., Chao, Y., Qiu, R., & Wang, S. (2019). Could the
rhizoplane biofilm of wetland plants lead to rhizospheric heavy metal precipitation and
iron-sulfur cycle termination? Journal of Soils and Sediments, 19(11), 3760-3772.
Liamleam, W., & Annachhatre, A. P. (2007). Electron donors for biological sulfate reduction.
Biotechnology advances, 25(5), 452-463.
65
Liu, J., Leng, X., Wang, M., Zhu, Z., & Dai, Q. (2011). Iron plaque formation on roots of
different rice cultivars and the relation with lead uptake. Ecotoxicology and
Environmental Safety, 74(5), 1304-1309.
Lovley, D. R., Stolz, J. F., Nord, G. L., & Phillips, E. J. P. (1987). Anaerobic production of
magnetite by a dissimilatory iron-reducing microorganism. Nature, 330(6145), 252-254.
https://doi.org/10.1038/330252a0
Lv, D., Zhou, X., Zhou, J., Liu, Y., Li, Y., Yang, K., Lou, Z., Baig, S. A., Wu, D., & Xu, X.
(2018). Design and characterization of sulfide-modified nanoscale zerovalent iron for
cadmium (II) removal from aqueous solutions. Applied Surface Science, 442, 114-123.
Ma, M., Du, H., & Wang, D. (2019). Mercury methylation by anaerobic microorganisms: A
review. Critical Reviews in Environmental Science and Technology, 49(20), 1893-1936.
Marschner, H. (2011). Marschner′s mineral nutrition of higher plants. Academic press.
Moreno-Vivián, C., Cabello, P. n., Martínez-Luque, M., Blasco, R., & Castillo, F. (1999).
Prokaryotic nitrate reduction: molecular properties and functional distinction among
bacterial nitrate reductases. Journal of bacteriology, 181(21), 6573-6584.
Nealson, K. H., & Saffarini, D. (1994). Iron and manganese in anaerobic respiration:
environmental significance, physiology, and regulation. Annual review of microbiology,
48, 311-344.
Ogawa, I., Nakanishi, H., Mori, S., & Nishizawa, N. K. (2009). Time course analysis of gene
regulation under cadmium stress in rice. Plant and Soil, 325(1), 97-108.
Patrick Jr, W., & Delaune, R. (1972). Characterization of the oxidized and reduced zones in
flooded soil. Soil Science Society of America Journal, 36(4), 573-576.
Patrick Jr, W., & Reddy, K. (1976). Nitrification‐denitrification reactions in flooded soils and
water bottoms: Dependence on oxygen supply and ammonium diffusion (0047-2425).
Prüsse, U., Daum, J., Bock, C., & Vorlop, K.-D. (2000). Catalytic nitrate reduction: kinetic
investigations. In Studies in Surface Science and Catalysis (Vol. 130, pp. 2237-2242).
Elsevier.
Qian, Y., Chen, C., Zhang, Q., Li, Y., Chen, Z., & Li, M. (2010). Concentrations of cadmium,
lead, mercury and arsenic in Chinese market milled rice and associated population
health risk. Food control, 21(12), 1757-1763.
66
Reddy, K., Patrick, W., & Broadbent, F. (1984). Nitrogen transformations and loss in flooded
soils and sediments. Critical Reviews in Environmental Science and Technology, 13(4),
273-309.
Rovira, A. D. (1969). Plant root exudates. The botanical review, 35(1), 35-57.
Russell, E. W. (1962). Soil conditions and plant growth. Soil Science, 93(1), 73.
Scheid, D., Stubner, S., & Conrad, R. (2004). Identification of rice root associated nitrate,
sulfate and ferric iron reducing bacteria during root decomposition. FEMS microbiology
ecology, 50(2), 101-110. https://doi.org/10.1016/j.femsec.2004.06.001
Sebastian, A., & Prasad, M. N. V. (2014). Cadmium minimization in rice. A review. Agronomy
for sustainable development, 34(1), 155-173.
Shan, S., Guo, Z., Lei, P., Wang, Y., Li, Y., Cheng, W., Zhang, M., Wu, S., & Yi, H. (2019).
Simultaneous mitigation of tissue cadmium and lead accumulation in rice via sulfatereducing
bacterium. Ecotoxicology and Environmental Safety, 169, 292-300.
Sigel, A., Sigel, H., & Sigel, R. K. (2013). Cadmium: from toxicity to essentiality (Vol. 11).
Springer.
Smith, R. L., & Klug, M. J. (1981). Electron donors utilized by sulfate-reducing bacteria in
eutrophic lake sediments. Applied and Environmental Microbiology, 42(1), 116-121.
Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity
and the environment. Molecular, clinical and environmental toxicology, 133-164.
Tsou, Y.-C. (2019). 利用具環境友善的地球化學調控法 現地降低鎘於污染水稻土壤中的
生物有效性 National Central University].
Ulrich, P. D., & Sedlak, D. L. (2010). Impact of iron amendment on net methylmercury export
from tidal wetland microcosms. Environmental science & technology, 44(19), 7659-
7665.
Wang, X., Ye, Z., Li, B., Huang, L., Meng, M., Shi, J., & Jiang, G. (2014). Growing rice
aerobically markedly decreases mercury accumulation by reducing both Hg
bioavailability and the production of MeHg. Environmental science & technology, 48(3),
1878-1885.
Watson, J., Cressey, B., Roberts, A., Ellwood, D., Charnock, J., & Soper, A. (2000). Structural
and magnetic studies on heavy-metal-adsorbing iron sulphide nanoparticles produced
67
by sulphate-reducing bacteria. Journal of magnetism and magnetic materials, 214(1-2),
13-30.
Watson, J., Ellwood, D., Deng, Q., Mikhalovsky, S., Hayter, C., & Evans, J. (1995). Heavy
metal adsorption on bacterially produced FeS. Minerals Engineering, 8(10), 1097-1108.
Weber, K. A., Achenbach, L. A., & Coates, J. D. (2006). Microorganisms pumping iron:
anaerobic microbial iron oxidation and reduction. Nature Reviews Microbiology, 4(10),
752-764.
Widdel, F., & Pfennig, N. (1977). A new anaerobic, sporing, acetate-oxidizing, sulfate-reducing
bacterium, Desulfotomaculum (emend.) acetoxidans. Archives of Microbiology, 112(1),
119-122.
Wijler, J., & Delwiche, C. (1954). Investigations on the denitrifying process in soil. Plant and
Soil, 155-169.
Wind, T., & Conrad, R. (1997). Localization of sulfate reduction in planted and unplanted rice
field soil. Biogeochemistry, 37(3), 253-278.
Xie, Y., Dong, H., Zeng, G., Tang, L., Jiang, Z., Zhang, C., Deng, J., Zhang, L., & Zhang, Y.
(2017). The interactions between nanoscale zero-valent iron and microbes in the
subsurface environment: a review. Journal of Hazardous Materials, 321, 390-407.
Xu, J., Sun, J., Du, L., & Liu, X. (2012). Comparative transcriptome analysis of cadmium
responses in Solanum nigrum and Solanum torvum. New Phytologist, 196(1), 110-124.
Xu, W., Hu, X., Lou, Y., Jiang, X., Shi, K., Tong, Y., Xu, X., Shen, C., Hu, B., & Lou, L. (2020).
Effects of environmental factors on the removal of heavy metals by sulfide-modified
nanoscale zerovalent iron. Environmental Research, 187, 109662.
Zhang, C., Ge, Y., Yao, H., Chen, X., & Hu, M. (2012). Iron oxidation-reduction and its impacts
on cadmium bioavailability in paddy soils: a review. Frontiers of Environmental Science
& Engineering, 6(4), 509-517.
Zhao, Q., Li, X., Xiao, S., Peng, W., & Fan, W. (2021). Integrated remediation of sulfate
reducing bacteria and nano zero valent iron on cadmium contaminated sediments.
Journal of Hazardous Materials, 406, 124680.
Zouboulis, A., Loukidou, M., & Matis, K. (2004). Biosorption of toxic metals from aqueous
solutions by bacteria strains isolated from metal-polluted soils. Process biochemistry,
39(8), 909-916.
指導教授 林居慶(Chu-Ching Lin) 審核日期 2022-9-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明