博碩士論文 109326015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:68 、訪客IP:18.222.98.29
姓名 黃有猷(Yu-You Huang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 以臭氧催化氧化法去除甲醛及多環芳香烴之效率探討
(Removal of Formaldehyde and Polycyclic Aromatic Hydrocarbons via Ozone Catalytic Oxidation)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來國民生活水準日益提高,民眾對周邊生活環境品質要求也日益提升,全國各環保局接獲陳情案件中餐飲業油煙異味陳情數量大幅增加,值得重視。本研究以LaMnO3 (LMO)為基礎,開發新穎之double perovskite觸媒,包括LaFe1-xMnxO3 (x=0.5)及LaNi1-xMnxO3 (x=0.5) (LFMO、LNMO),並結合臭氧催化氧化技術 (Ozone catalytic oxidation, OZCO)以去除氣流中之甲醛(Formaldehyde, HCHO)及多環芳香烴(polycyclic aromatic hydrocarbons, PAHs)兩種污染物。本研究主要分為兩大方向,一為LFMO與LNMO應用於催化氧化系統,以不同溫度區間及系統氧含量變化,比較催化表現之差異,找出最佳參數結合OZCO系統以改善甲醛之去除效率;二為進行SCR觸媒與LMO觸媒對蒽(Ant)之去除效率比較,並探討結合OZCO系統對蒽之去除效率,結果顯示LNMO及LFMO觸媒催化表現優於傳統Perovskite-type觸媒,且經由26 hr觸媒長效性測試得知兩觸媒皆有良好穩定性,此外觸媒特性分析結果指出LFMO及LNMO觸媒擁有相較於其它文獻較高之Perovskite-type觸媒比表面積及氧空位,且兩觸媒皆擁有緊密質地及高反應之活性位點;另外將LNMO及LFMO觸媒結合OZCO系統去除甲醛,結果顯示於100℃,兩觸媒皆有良好之甲醛轉化效率,而後進行8 hr長效性測試結果表明LFMO觸媒穩定性比LNMO佳,未來可進一步改良開發並應用於實場。
另外將LMO觸媒與SCR觸媒進行蒽降解效率之比較,結果顯示LMO觸媒擁有最佳去除效率(達89%),且LMO對蒽無吸附效應存在,處理後毒性當量也比SCR觸媒低,故Perovskite-type觸媒可進一步針對PAHs降解進行開發。
摘要(英) During the past decades, emission of formaldehyde (HCHO) and polycyclic aromatic hydrocarbons (PAHs) from anthropogenic sources including industries, transportation and indoor has greatly increased and has caused devastating impact on atmosphere. This work aims to develop a high-efficiency catalyst for degradation of HCHO and anthracene (Ant) with ozone catalytic oxidation (OZCO). Perovskite-type catalysts have two advantages of high thermal stability and oxygen mobility and are widely applied in the field of air pollution control. In this study, a series of B-site partially substituted perovskites LaB’xMn1-xO3 (B =Fe,Ni) (x=0.5) were prepared and compared with conventional perovskites (LNO, LFO and LMO) for HCHO removal activities. The results indicate that the catalytic performances of LFMO and LNMO are superior to LNO, LFO and LMO. In addition, LFMO and LNMO have good stability through 26 hr on stream test. In comparison with previous studies, LFMO and LNMO have higher specific surface areas and oxygen vacancies, and both catalysts are of compact texture and highly reactive active sites. Moreover, as OZCO is combined with LFMO or LNMO reveal optimal catalytic performance at 100℃. However, the stability of LFMO is better than that of LNMO and they can be further improved for real application.
Finally, SCR is compared with LMO for degradation of Ant. The results show that the LMO has a high Ant removal efficiency (89%). In addition, Ant is not adsorbed on the catalyst, indicating the LMO catalyst has a good potential for reducing PAHs emission.
關鍵字(中) ★ 甲醛
★ 臭氧催化氧化系統
★ 多環芳香烴
★ Perovskite-type觸媒
關鍵字(英) ★ Formaldehyde
★ Polycyclic Aromatic Hydrocarbons (PAHs)
★ Ozone catalytic oxidation (OZCO)
★ Perovskite-type catalyst
論文目次 摘要 i
Abstract ii
誌謝 ⅲ
目錄 iv
圖目錄 vi
表目錄 ix
第一章 前言 1
1.1研究緣起 1
1.2研究目的 2
第二章文獻回顧 4
2.1甲醛 4
2.1.1甲醛之物化特性、用途及危害 4
2.1.2甲醛來源 7
2.1.3甲醛控制技術 9
2.1.4觸媒催化氧化法 12
2.1.5臭氧催化氧化法控制甲醛排放 24
2.1.6鈣鈦礦觸媒 34
2.2 多環芳香烴 36
2.2.1多環芳香烴來源 36
2.2.2多環芳香烴物化特性及危害 39
2.2.3多環芳香烴控制技術 42
第三章研究方法 44
3.1研究流程及架構 44
3.2觸媒製備 47
3.2.1鈣鈦礦型觸媒製備 47
3.2.2SCR觸媒及Perovskite-type 觸媒製備 48
3.2.3觸媒特性分析 48
3.3實驗系統及架構 51
3.3.1甲醛去除系統 51
3.3.2 PAH去除系統 54
3.4 計算公式 57
3.5 實驗材料設備 58
第四章 結果與討論 66
4.1Perovskite-type 觸媒之表面特性 66
4.1.1 XRD及BET分析結果 66
4.1.2 SEM及HRTEM影像圖 68
4.1.3 EDX及ICP-AES分析 73
4.1.4 ESCA分析 75
4.2 觸媒催化活性測試 80
4.2.1傳統Perovskite-type 觸媒活性對甲醛轉化效率之探討 80
4.2.2 Double Perovskite-type觸媒活性對甲醛去除 84
4.2.3不同氧含量於催化氧化系統甲醛轉化效率之影響 86
4.2.4 Perovskite-type觸媒長效性探討 90
4.3 OZCO系統之甲醛轉化效率探討 92
4.3.1 以OZCO偕同Double perovskite-type觸媒去除甲醛效率探討 92
4.3.2 OZCO系統觸媒活性之長效性測試 93
4.4 OZCO系統反應前後觸媒之特性對比 96
4.4.1 XRD及BET分析 96
4.4.2 HRTEM及EDX分析 97
4.4.3 ESCA分析 99
4.5PAHs去除效果測試 105
第五章 結論與建議 109
5.1 結論 109
5.2 建議 110
參考文獻 111
參考文獻 Aghbolaghy, M., Soltan, J., & Chen, N. (20─18). Low temperature catalytic oxidation of binary mixture of toluene and acetone in the presence of ozone. Catalysis Letters, 148(11), 3431-3444.
Aghbolaghy, M., Soltan, J., & Sutarto, R. (2017). The role of surface carboxylates in catalytic ozonation of acetone on alumina-supported manganese oxide. Chemical Engineering Research and Design, 128, 73-84.
An, N., Wu, P., Li, S., Jia, M., & Zhang, W. (2013). Catalytic oxidation of formaldehyde over Pt/Fe2O3 catalysts prepared by different method. Applied Surface Science, 285, 805-809.
An, N., Yu, Q., Liu, G., Li, S., Jia, M., & Zhang, W. (2011). Complete oxidation of formaldehyde at ambient temperature over supported Pt/Fe2O3 catalysts prepared by colloid-deposition method. Journal of Hazardous Materials, 186(2-3), 1392-1397.
Anne, D., Thierry, A., Keisuke, S., & Michiyo, M. (2022). Transformation of highly marbled meats under various cooking processes. Meat Science, 189, 108810.
Ayrilmis, N., Lee, Y. K., Kwon, J. H., Han, T. H., & Kim, H. J. (2016). Formaldehyde emission and VOCs from LVLs produced with three grades of urea-formaldehyde resin modified with nanocellulose. Building and Environment, 97, 82-87.
Bayram, E., Lu, J., Aydin, C., Browning, N. D., Özkar, S., Finney, E., Gates, B. C., & Finke, R. G. (2015). Agglomerative sintering of an atomically dispersed Ir1/Zeolite Y Catalyst: Compelling evidence against ostwald ripening but for bimolecular and autocatalytic agglomeration catalyst sintering steps. ACS Catalysis, 5(6), 3514-3527.
Bernstein, R. S., Stayner, L. T., Elliott, L. J., Kimbrough, R., Falk, H., & Blade, L. (1984). Inhalation exposure to formaldehyde: an overview of its toxicology, epidemiology, monitoring, and control. American Industrial Hygiene Association Journal, 45(11), 778-785.
Brummer, V., Teng, S. Y., Jecha, D., Skryja, P., Vavrcikova, V., & Stehlik, P. (2022). Contribution to cleaner production from the point of view of VOC emissions abatement: A review. Journal of Cleaner Production, 132112.
Callén, M., De la Cruz, M., López, J., Murillo, R., Navarro, M., & Mastral, A. (2008). Long-range atmospheric transport and local pollution sources on PAH concentrations in a South European urban area. Fulfilling of the European directive. Water, Air, and Soil Pollution, 190(1), 271-285.
Callén, M., López, J., Iturmendi, A., & Mastral, A. (2013). Nature and sources of particle associated polycyclic aromatic hydrocarbons (PAH) in the atmospheric environment of an urban area. Environmental Pollution, 183, 166-174.
Cecinato, A., Guerriero, E., Balducci, C., & Muto, V. (2014). Use of the PAH fingerprints for identifying pollution sources. Urban Climate, 10, 630-643.
Chao, C. Y. H., Kwong, C., & Hui, K. (2007). Potential use of a combined ozone and zeolite system for gaseous toluene elimination. Journal of Hazardous Materials, 143(1-2), 118-127.
Chen, D. L., Pan, K. L., & Chang, M. B. (2017). Catalytic removal of phenol from gas streams by perovskite-type catalysts. Journal of Environmental Science (China), 56, 131-139.
Chen, Y. C., Tsai, P. J., & Mou, J. L. (2009). Reducing PAH emissions from the iron ore sintering process by optimizing its operation parameters. Environmental Science & Technology, 43(12), 4459-4465.
Chiang, T. A., Wu, P. F., & Ko, Y. C. (1999). Identification of carcinogens in cooking oil fumes. Environmental research, 81(1), 18-22.
Chien, S. M., & Huang, Y. J. (2010). Sizes and polycyclic aromatic hydrocarbon composition distributions of nano, ultrafine, fine, and coarse particulates emitted from a four-stroke motorcycle. Journal of Environmental Science and Health Part A, 45(13), 1768-1774.
Chung, W. C., Mei, D. H., Tu, X., & Chang, M. B. (2018). Removal of VOCs from gas streams via plasma and catalysis. Catalysis Reviews, 61(2), 270-331.
Cincinelli, A., Del Bubba, M., Martellini, T., Gambaro, A., & Lepri, L. (2007). Gas-particle concentration and distribution of n-alkanes and polycyclic aromatic hydrocarbons in the atmosphere of Prato (Italy). Chemosphere, 68(3), 472-478.
Coates, J., Mar, K. A., Ojha, N., & Butler, T. M. (2016). The influence of temperature on ozone production under varying NOx conditions–a modelling study. Atmospheric Chemistry and Physics, 16(18), 11601-11615.
Cui, J., Liu, S., Xue, H., Wang, X., Hao, Z., Liu, R., Shang, W., Zhao, D., & Ding, H. (2021). Catalytic ozonation of volatile organic compounds (ethyl acetate) at normal temperature. Chinese Journal of Chemical Engineering, 32, 159-167.
Dat, N. D., & Chang, M. B. (2017). Review on characteristics of PAHs in atmosphere, anthropogenic sources and control technologies. Science of the Total Environment, 609, 682-693.
Dezhi, Z., Tianying, D., Xiaosong, L., Jinglin, L., Chuan, S., & Aimin, Z. (2012). Ozone catalytic oxidation of HCHO in air over MnOx at room temperature. Chinese Journal of Catalysis, 33(2-3), 396-401.
Dhandapani, B., & Oyama, S. T. (1997). Gas phase ozone decomposition catalysts. Applied Catalysis B: Environmental, 11(2), 129-166.
Dubowsky, S. D., Wallace, L. A., & Buckley, T. J. (1999). The contribution of traffic to indoor concentrations of polycyclic aromatic hydrocarbons. Journal of Exposure Science & Environmental Epidemiology, 9(4), 312-321.
Einaga, H., & Futamura, S. (2004). Catalytic oxidation of benzene with ozone over alumina-supported manganese oxides. Journal of Catalysis, 227(2), 304-312.
Feng, L., Zhang, L., Chu, S., Zhang, S., Chen, X., Du, Z., Gong, Y., & Wang, H. (2022). Controllable doping of Fe atoms into MoS2 nanosheets towards peroxidase-like nanozyme with enhanced catalysis for colorimetric analysis of glucose. Applied Surface Science, 583, 152496.
Frenklach, M., Clary, D. W., Gardiner Jr, W. C., & Stein, S. E. (1985). Detailed kinetic modeling of soot formation in shock-tube pyrolysis of acetylene. Symposium (International) on Combustion,
Ghavami, M., Aghbolaghy, M., Soltan, J., & Chen, N. (2020). Room temperature oxidation of acetone by ozone over alumina-supported manganese and cobalt mixed oxides. Frontiers of Chemical Science and Engineering, 14(6), 937-947.
Ghavami, M., Soltan, J., & Chen, N. (2021). Synthesis of MnOx/Al2O3 catalyst by polyol method and its application in room temperature ozonation of toluene in air. Catalysis Letters, 151(5), 1418-1432.
Ghorbani, M., Omraei, M., Jafari, M., & Katal, R. (2010). Application of different catalysts for oxidation of toluene in absence and presence of ozone. Asian Journal of Chemistry, 22(10), 8179.
Giroir-Fendler, A., Alves-Fortunato, M., Richard, M., Wang, C., Díaz, J. A., Gil, S., Zhang, C., Can, F., Bion, N., & Guo, Y. (2016). Synthesis of oxide supported LaMnO3 perovskites to enhance yields in toluene combustion. Applied Catalysis B: Environmental, 180, 29-37.
Golalipour, M. J., Azarhoush, R., Ghafari, S., Davarian, A., & Fazeli, S. A. (2009). Can formaldehyde exposure induce histopathologic and morphometric changes on rat kidney la exposición al formaldehído puede inducir cambios histopatológicos y morfométricos sobre . International Journal of Morphology, 27(4), 1195-1200.
Gong, S., Xie, Z., Li, W., Wu, X., Han, N., & Chen, Y. (2019). Highly active and humidity resistive perovskite LaFeO3 based catalysts for efficient ozone decomposition. Applied Catalysis B: Environmental, 241, 578-587.
Gopi, T., Swetha, G., Shekar, S. C., Krishna, R., Ramakrishna, C., Saini, B., & Rao, P. (2019). Ozone catalytic oxidation of toluene over 13X zeolite supported metal oxides and the effect of moisture on the catalytic process. Arabian Journal of Chemistry, 12(8), 4502-4513.
Haruta, M., Yamada, N., Kobayashi, T., & Iijima, S. (1989). Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. Journal of Catalysis, 115(2), 301-309.
Hosseini, M. S., & Chartrand, P. (2021). Critical assessment of thermodynamic properties of important polycyclic aromatic hydrocarbon compounds (PAHs) in coal tar pitch at typical temperature ranges of the carbonization process. Calphad, 74, 102278.
Kawalerczyk, J., Dziurka, D., Mirski, R., & Siuda, J. (2021). The reduction of adhesive application in plywood manufacturing by using nanocellulose‐reinforced urea‐formaldehyde resin. Journal of Applied Polymer Science, 138(7), 49834.
Khalili, N. R., Scheff, P. A., & Holsen, T. M. (1995). PAH source fingerprints for coke ovens, diesel and, gasoline engines, highway tunnels, and wood combustion emissions. Atmospheric Environment, 29(4), 533-542.
Kim, J., Lee, J. E., Lee, H. W., Jeon, J. K., Song, J., Jung, S. C., Tsang, Y. F., & Park, Y.-K. (2020). Catalytic ozonation of toluene using Mn–M bimetallic HZSM-5 (M: Fe, Cu, Ru, Ag) catalysts at room temperature. Journal of Hazardous Materials, 397, 122577.
Kim, M., Park, E., & Jurng, J. (2018). Oxidation of gaseous formaldehyde with ozone over MnOx/TiO2 catalysts at room temperature (25°C). Powder Technology, 325, 368-372.
Kong, S., Ding, X., Bai, Z., Han, B., Chen, L., Shi, J., & Li, Z. (2010). A seasonal study of polycyclic aromatic hydrocarbons in PM2.5 and PM2.5–10 in five typical cities of Liaoning Province, China. Journal of Hazardous Materials, 183(1-3), 70-80.
Konova, P., Stoyanova, M., Naydenov, A., & Mehandjiev, D. (2006). Catalytic oxidation of VOCs and CO by ozone over alumina supported cobalt oxide. Applied Catalysis A: General, 298, 109-114.
Kwong, C., Chao, C. Y., Hui, K., & Wan, M. (2008). Removal of VOCs from indoor environment by ozonation over different porous materials. Atmospheric Environment, 42(10), 2300-2311.
Layton, D. W., Bogen, K. T., Knize, M. G., Hatch, F. T., Johnson, V. M., & Felton, J. S. (1995). Cancer risk of heterocyclic amines in cooked foods: an analysis and implications for research. Carcinogenesis, 16(1), 39-52.
Lee, C. H., Yang, S. F., Peng, C. Y., Li, R. N., Chen, Y. C., Chan, T. F., Tsai, E. M., Kuo, F. C., Huang, J. J., & Tsai, H. T. (2010). The precancerous effect of emitted cooking oil fumes on precursor lesions of cervical cancer. International Journal of Cancer, 127(4), 932-941.
Lee, J. G., Kim, S. Y., Moon, J. S., Kim, S. H., Kang, D. H., & Yoon, H. J. (2016). Effects of grilling procedures on levels of polycyclic aromatic hydrocarbons in grilled meats. Food Chemistry, 199, 632-638.
Lee, Y. E., Chung, W. C., & Chang, M. B. (2019). Photocatalytic oxidation of toluene and isopropanol by LaFeO3/black-TiO2. Environmental Science and Pollution Research, 26(20), 20908-20919.
Lee, Y. Y., Hsieh, Y. K., Huang, B. W., Mutuku, J. K., Chang-Chien, G. P., & Huang, S. (2022). An overview: PAH and Nitro-PAH emission from the stationary sources and their transformations in the atmosphere. Aerosol and Air Quality Research, 22, 220164.
Li, C., He, L., Yao, X., & Yao, Z. (2022). Recent advances in the chemical oxidation of gaseous volatile organic compounds (VOCs) in liquid phase. Chemosphere, 133868.
Li, J. W., Pan, K. L., Yu, S. J., Yan, S. Y., & Chang, M. B. (2014). Removal of formaldehyde over Mn(x)Ce(1)-(x)O(2) catalysts: thermal catalytic oxidation versus ozone catalytic oxidation. Journal of Environmental Science (China), 26(12), 2546-2553.
Li, J. W., Pan, K. L., Yu, S. J., Yan, S. Y., & Chang, M. B. (2014). Removal of formaldehyde over MnxCe1− xO2 catalysts: thermal catalytic oxidation versus ozone catalytic oxidation. Journal of Environmental Sciences, 26(12), 2546-2553.
Li, M., Hui, K., Hui, K. S., Lee, S., Cho, Y., Lee, H., Zhou, W., Cho, S., Chao, C. Y. H., & Li, Y. (2011). Influence of modification method and transition metal type on the physicochemical properties of MCM-41 catalysts and their performances in the catalytic ozonation of toluene. Applied Catalysis B: Environmental, 107(3-4), 245-252.
Li, W., & Oyama, S. T. (1997). Ethanol oxidation using ozone over supported maganese oxide catalysts: an in situ laser raman study. In Studies in Surface Science and Catalysis (Vol. 110, pp. 873-882). Elsevier.
Li, Z., Yang, M., Park, J. S., Wei, S. H., Berry, J. J., & Zhu, K. (2016). Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chemistry of Materials, 28(1), 284-292.
Liljelind, P., Unsworth, J., Maaskant, O., & Marklund, S. (2001). Removal of dioxins and related aromatic hydrocarbons from flue gas streams by adsorption and catalytic destruction. Chemosphere, 42(5-7), 615-623.
Lin, C. L., Cheng, Y. H., Liu, Z. S., & Chen, J. Y. (2011). Metal catalysts supported on activated carbon fibers for removal of polycyclic aromatic hydrocarbons from incineration flue gas. Journal of Hazardous Materials, 197, 254-263.
Lin, F., Wang, Z., Zhang, Z., He, Y., Zhu, Y., Shao, J., Yuan, D., Chen, G., & Cen, K. (2020). Flue gas treatment with ozone oxidation: An overview on NOx, organic pollutants, and mercury. Chemical Engineering Journal, 382, 123030.
Lin, M., Yu, X., Yang, X., Ma, X., & Ge, M. (2019). Exploration of the active phase of the hydrotalcite-derived cobalt catalyst for HCHO oxidation. Chinese Journal of Catalysis, 40(5), 703-712.
Liu, B., Ji, J., Zhang, B., Huang, W., Gan, Y., Leung, D. Y. C., & Huang, H. (2022). Catalytic ozonation of VOCs at low temperature: A comprehensive review. Journal of Hazardous Material, 422, 126847.
Liu, B., Li, C., Zhang, Y., Liu, Y., Hu, W., Wang, Q., Han, L., & Zhang, J. (2012). Investigation of catalytic mechanism of formaldehyde oxidation over three-dimensionally ordered macroporous Au/CeO2 catalyst. Applied Catalysis B: Environmental, 111-112, 467-475.
Liu, S., Ji, J., Yu, Y., & Huang, H. (2018). Facile synthesis of amorphous mesoporous manganese oxides for efficient catalytic decomposition of ozone. Catalysis Science & Technology, 8(16), 4264-4273.
Liu, Z. S., Wey, M. Y., & Lin, C. L. (2002). Simultaneous control of acid gases and PAHs using a spray dryer combined with a fabric filter using different additives. Journal of Hazardous Materials, 91(1-3), 129-141.
Machniewski, P., Biń, A., & Kłosek, K. (2021). Effectiveness of toluene mineralization by gas-phase oxidation over Co (II)/SiO2 catalyst with ozone. Environmental Technology, 42(25), 3987-3994.
Mackay, D., Shiu, W. Y., & Ma, K. C. (1997). Illustrated handbook of physical-chemical properties of environmental fate for organic chemicals (Vol. 5). CRC Press.
Masih, J., Singhvi, R., Taneja, A., Kumar, K., & Masih, H. (2012). Gaseous/particulate bound polycyclic aromatic hydrocarbons (PAHs), seasonal variation in North central part of rural India. Sustainable Cities and Society, 3, 30-36.
Masten, S. J., & Davies, S. H. (1997). Efficacy of in-situ for the remediation of PAH contaminated soils. Journal of Contaminant Hydrology, 28(4), 327-335.
Meilin, J., Haifeng, B., Yuenain, S., & Yanfeng, L. (2008). Preparation of Au/CeO2 catalyst and its catalytic performance for HCHO oxidation. Journal of Rare Earths, 26(4), 528-531.
Nakajima, D., Nagame, S., Kuramochi, H., Sugita, K., Kageyama, S., Shiozaki, T., Takemura, T., Shiraishi, F., & Goto, S. (2007). Polycyclic aromatic hydrocarbon generation behavior in the process of carbonization of wood. Bulletin of Environmental Contamination and Toxicology, 79(2), 221-225.
Nirala, G., Yadav, D., & Upadhyay, S. (2020). Ruddlesden-Popper phase A2BO4 oxides: Recent studies on structure, electrical, dielectric, and optical properties. Journal of Advanced Ceramics, 9(2), 129-148.
Nisbet, I. C., & Lagoy, P. K. (1992). Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology, 16(3), 290-300.
Odabasi, M., Cetin, E., & Sofuoglu, A. (2006). Determination of octanol–air partition coefficients and supercooled liquid vapor pressures of PAHs as a function of temperature: Application to gas–particle partitioning in an urban atmosphere. Atmospheric Environment, 40(34), 6615-6625.
Oyama, S. T., Li, W., & Zhang, W. (1999). A comparative study of ethanol oxidation with ozone on supported molybdenum and manganese oxide catalysts. In Studies in Surface Science and Catalysis (Vol. 121, pp. 105-110). Elsevier.
Pan, K. L., Pan, G. T., Chong, S., & Chang, M. B. (2018). Removal of VOCs from gas streams with double perovskite-type catalysts. Journal of Environmental Science (China), 69, 205-216.
Qi, L., Cheng, B., Ho, W., Liu, G., & Yu, J. (2015). Hierarchical Pt/NiO hollow microspheres with enhanced catalytic performance. ChemNanoMat, 1(1), 58-67.
Quiroz, J., Giraudon, J. M., Gervasini, A., Dujardin, C., Lancelot, C., Trentesaux, M., & Lamonier, J. F. (2015). Total oxidation of formaldehyde over MnOx-CeO2 catalysts: The effect of acid treatment. ACS Catalysis, 5(4), 2260-2269.
Ravindra, K., Sokhi, R., & Van Grieken, R. (2008). Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmospheric Environment, 42(13), 2895-2921.
Reilly, P., Gieray, R., Whitten, W., & Ramsey, J. (2000). Direct observation of the evolution of the soot carbonization process in an acetylene diffusion flame via real-time aerosol mass spectrometry. Combustion and Flame, 122(1-2), 90-104.
Rezaei, F., Moussavi, G., Bakhtiari, A. R., & Yamini, Y. (2016). Toluene removal from waste air stream by the catalytic ozonation process with MgO/GAC composite as catalyst. Journal of Hazardous Materials, 306, 348-358.
Ritchie, I. M., & Lehnen, R. G. (1987). Formaldehyde-related health complaints of residents living in mobile and conventional homes. American journal of Public Health, 77(3), 323-328.
Robinson, A. L., Subramanian, R., Donahue, N. M., Bernardo-Bricker, A., & Rogge, W. F. (2006). Source apportionment of molecular markers and organic aerosol. 3. Food cooking emissions. Environmental Science & Technology, 40(24), 7820-7827.
Salamanca, J. C., Meehan-Atrash, J., Vreeke, S., Escobedo, J. O., Peyton, D. H., & Strongin, R. M. (2018). E-cigarettes can emit formaldehyde at high levels under conditions that have been reported to be non-averse to users. Scientific Reports, 8(1), 1-6.
Salamanca, J. C., Munhenzva, I., Escobedo, J. O., Jensen, R. P., Shaw, A., Campbell, R., Luo, W., Peyton, D. H., & Strongin, R. M. (2017). Formaldehyde hemiacetal sampling, recovery, and quantification from electronic cigarette aerosols. Scientific Reports, 7(1), 1-8.
Sarı, B., Ayrilmis, N., Nemli, G., Baharoğlu, M., Gümüşkaya, E., & Bardak, S. (2014). Effects of chemical composition of wood and resin type on properties of particleboard. Lignocellulose J, 1, 174-184.
Schauer, J. J., Kleeman, M. J., Cass, G. R., & Simoneit, B. R. (2002). Measurement of emissions from air pollution sources. 4. C1− C27 organic compounds from cooking with seed oils. Environmental Science & Technology, 36(4), 567-575.
Smedley, J. (1996). Is formaldehyde an important cause of allergic respiratory disease? In (Vol. 26, pp. 247-249): Wiley Online Library.
Smith, V., Kolar, P., Boyette, M., Chinn, M., Smith, C., Gangadharan, R., & Zhang, G. (2012). Advanced oxidation of toluene using Ni-Olivine catalysts: Part 1. synthesis, characterization, and evaluation of Ni-Olivine catalysts for toluene oxidation. Transactions of the ASABE, 55(3), 1013-1024.
Sprince, H., Parker, C. M., & Smith, G. G. (1979). Comparison of Protection byl-ascorbic acid, l-cysteine, and adrenergic-blocking agents against acetaldehyde, acrolein, and formaldehyde toxicity: Implications in smoking. Agents and Actions, 9(4), 407-414.
Stoyanova, M., Konova, P., Nikolov, P., Naydenov, A., & Mehandjiev, D. (2006). Alumina-supported nickel oxide for ozone decomposition and catalytic ozonation of CO and VOCs. Chemical Engineering Journal, 122(1-2), 41-46.
Su, J., Cheng, C., Guo, Y., Xu, H., & Ke, Q. (2019). OMS-2-based catalysts with controllable hierarchical morphologies for highly efficient catalytic oxidation of formaldehyde. Journal of Hazardous Materials, 380, 120890.
Tang, X., Chen, J., Huang, X., Xu, Y., & Shen, W. (2008). Pt/MnOx–CeO2 catalysts for the complete oxidation of formaldehyde at ambient temperature. Applied Catalysis B: Environmental, 81(1-2), 115-121.
Tian, M., Liu, S., Wang, L., Ding, H., Zhao, D., Wang, Y., Cui, J., Fu, J., Shang, J., & Li, G. K. (2020). Complete degradation of gaseous methanol over Pt/FeOx catalysts by normal temperature catalytic ozonation. Environmental Science & Technology, 54(3), 1938-1945.
Tian, S., Zhan, S., Lou, Z., Zhu, J., Feng, J., & Xiong, Y. (2021). Electrodeposition synthesis of 3D-NiO1-δ flowers grown on Ni foam monolithic catalysts for efficient catalytic ozonation of VOCs. Journal of Catalysis, 398, 1-13.
Tohei, T., Watanabe, Y., Lee, H.-S., & Ikuhara, Y. (2016). First principles calculation of thermal expansion coefficients of pure and Cr doped α-alumina crystals. Journal of Applied Physics, 120(14).
Tseng, H. H., Lu, C. Y., Chang, F. Y., Wey, M. Y., & Cheng, H. T. (2011). Catalytic removal of NO and PAHs over AC-supported catalysts from incineration flue gas: Bench-scale and pilot-plant tests. Chemical Engineering Journal, 169(1-3), 135-143.
Voorhoeve, R., Remeika, J., & Trimble, L. (1976). Defect chemistry and catalysis in oxidation and reduction over perovskite‐type oxides. Annals of the New York Academy of Sciences, 272(1), 3-21.
Wang, C., Liu, H., Chen, T., Qing, C., Zou, X., Xie, J., & Zhang, X. (2018). Synthesis of palygorskite-supported Mn1−xCexO2 clusters and their performance in catalytic oxidation of formaldehyde. Applied Clay Science, 159, 50-59.
Wang, H., Guo, W., Jiang, Z., Yang, R., Jiang, Z., Pan, Y., & Shangguan, W. (2018). New insight into the enhanced activity of ordered mesoporous nickel oxide in formaldehyde catalytic oxidation reactions. Journal of Catalysis, 361, 370-383.
Wang, H., Huang, Z., Jiang, Z., Jiang, Z., Zhang, Y., Zhang, Z., & Shangguan, W. (2018a). Trifunctional C@ MnO catalyst for enhanced stable simultaneously catalytic removal of formaldehyde and ozone. ACS Catalysis, 8(4), 3164-3180.
Wang, H., Huang, Z., Jiang, Z., Jiang, Z., Zhang, Y., Zhang, Z., & Shangguan, W. (2018b). Trifunctional C@MnO catalyst for enhanced stable simultaneously catalytic removal of formaldehyde and ozone. ACS Catalysis, 8(4), 3164-3180.
Wang, Q., Yao, X., Geng, Y., Zhou, Q., Lu, X., & Zhang, S. (2015). Deep eutectic solvents as highly active catalysts for the fast and mild glycolysis of poly (ethylene terephthalate)(PET). Green Chemistry, 17(4), 2473-2479.
Wang, X., Ying, J., Mai, Y., Zhang, J., Chen, J., Wen, M., & Yu, L. (2019). MOF-derived metal oxide composite Mn2Co1Ox/CN for efficient formaldehyde oxidation at low temperature. Catalysis Science & Technology, 9(20), 5845-5854.
Wang, Y., Ding, L., Shi, Q., Liu, S., Qian, L., Yu, Z., Wang, H., Lei, J., Gao, Z., & Long, H. (2022). Volatile organic compounds (VOC) emissions control in iron ore sintering process: recent progress and future development. Chemical Engineering Journal, 137601.
Wang, Y., Zhu, X., Crocker, M., Chen, B., & Shi, C. (2014). A comparative study of the catalytic oxidation of HCHO and CO over Mn0.75Co2.25O4 catalyst: the effect of moisture. Applied Catalysis B: Environmental, 160, 542-551.
Williams, P. T., Besler, S., & Taylor, D. T. (1990). The pyrolysis of scrap automotive tyres: The influence of temperature and heating rate on product composition. Fuel, 69(12), 1474-1482.
Wu, P. F., Chiang, T. A., Wang, L. F., Chang, C. S., & Ko, Y. C. (1998). Nitro-polycyclic aromatic hydrocarbon contents of fumes from heated cooking oils and prevention of mutagenicity by catechin. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 403(1-2), 29-34.
Xu, P. l., Wei, T., Yue, H. y., Wen, Y. c., Wei, Y., Guo, T. j., Li, S. j., Li, W., & Wang, X. q. (2020). Effect of different nitric acid concentrations on manganese/activated carbon-modified catalysts for the catalytic ozonation of toluene. Catalysis Science & Technology, 10(19), 6729-6737.
Xu, Y., Dhainaut, J., Dacquin, J. P., Mamede, A. S., Marinova, M., Lamonier, J. F., Vezin, H., Zhang, H., & Royer, S. (2021). La1-x(Sr, Na, K)xMnO3 perovskites for HCHO oxidation: The role of oxygen species on the catalytic mechanism. Applied Catalysis B: Environmental, 287.
Xu, Z., Qin, Z., Zhang, T., & Chen, X. (2021). Catalytic ozonation of ethyl acetate over mesoporous manganese oxides synthesized by a sonochemical method. Asia‐Pacific Journal of Chemical Engineering, 16(2), e2605.
Yan, Z., Xu, Z., Yu, J., & Jaroniec, M. (2015). Highly active mesoporous ferrihydrite supported Pt catalyst for formaldehyde removal at room temperature. Environmental Science & Technology, 49(11), 6637-6644.
Yan, Z., Xu, Z., Yu, J., & Jaroniec, M. (2016). Enhanced formaldehyde oxidation on CeO2/AlOOH-supported Pt catalyst at room temperature. Applied Catalysis B: Environmental, 199, 458-465.
Yan, Z., Xu, Z., Yue, L., Shi, L., & Huang, L. (2018). Hierarchical Ni− Al hydrotalcite supported Pt catalyst for efficient catalytic oxidation of formaldehyde at room temperature. Chinese Journal of Catalysis, 39(12), 1919-1928.
Yang, H. H., Lee, W. J., Chen, S. J., & Lai, S. O. (1998). PAH emission from various industrial stacks. Journal of Hazardous Materials, 60(2), 159-174.
Yang, S., Ford, P., Subramanian, S., Singleton, D., Sanders, J., & Cronin, S. B. (2021). Transient plasma-enhanced remediation of nanoscale particulate matter in restaurant smoke emissions via electrostatic precipitation. Particuology, 55, 43-47.
Yegiazarov, Y., Clark, J., Potapova, L., Radkevich, V., Yatsimirsky, V., & Brunel, D. (2005). Adsorption-catalytic process for carbon disulfide removal from air. Catalysis Today, 102, 242-247.
Yu, K. P., Yang, K. R., Chen, Y. C., Gong, J. Y., Chen, Y. P., Shih, H. C., & Candice Lung, S. C. (2015). Indoor air pollution from gas cooking in five Taiwanese families. Building and Environment, 93, 258-266.
Zhang, C., He, H., & Tanaka, K. I. (2006). Catalytic performance and mechanism of a Pt/TiO2 catalyst for the oxidation of formaldehyde at room temperature. Applied Catalysis B: Environmental, 65(1-2), 37-43.
Zhang, Y., Chen, M., Zhang, Z., Jiang, Z., Shangguan, W., & Einaga, H. (2019). Simultaneously catalytic decomposition of formaldehyde and ozone over manganese cerium oxides at room temperature: Promotional effect of relative humidity on the MnCeOx solid solution. Catalysis Today, 327, 323-333.
Zhang, Y., Shi, J., Fang, W., Chen, M., Zhang, Z., Jiang, Z., Shangguan, W., & Einaga, H. (2019). Simultaneous catalytic elimination of formaldehyde and ozone over one‐dimensional rod‐like manganese dioxide at ambient temperature. Journal of Chemical Technology & Biotechnology, 94(7), 2305-2317.
Zhao, D. Z., Shi, C., Li, X. S., Zhu, A. M., & Jang, B. W. L. (2012). Enhanced effect of water vapor on complete oxidation of formaldehyde in air with ozone over MnOx catalysts at room temperature. Journal of Hazardous Materials, 239, 362-369.
Zhao, J., Xu, X., Zhou, W., & Zhu, Z. (2017). An in situ formed MnO–Co composite catalyst layer over Ni–Ce0.8 Sm0.2O2− x anodes for direct methane solid oxide fuel cells. Journal of Materials Chemistry A, 5(14), 6494-6503.
Zhao, Z., Yang, X., & Wu, Y. (1996). Comparative study of Nickel-based perovskite-like mixed oxide catalysts for direct decomposition of NO. Applied Catalysis B: Environmental, 8(3), 281-297.
Zhou, H. C., Zhong, Z. P., Jin, B. S., Huang, Y. J., & Xiao, R. (2005). Experimental study on the removal of PAHs using in-duct activated carbon injection. Chemosphere, 59(6), 861-869.
Zhu, B., Li, X. S., Sun, P., Liu, J. L., Ma, X. Y., Zhu, X., & Zhu, A. M. (2017). A novel process of ozone catalytic oxidation for low concentration formaldehyde removal. Chinese Journal of Catalysis, 38(10), 1759-1769.
Zhu, G., Zhu, J., Jiang, W., Zhang, Z., Wang, J., Zhu, Y., & Zhang, Q. (2017). Surface oxygen vacancy induced α-MnO2 nanofiber for highly efficient ozone elimination. Applied Catalysis B: Environmental, 209, 729-737.
李金靖,「以介電質放電法(DBD)處理毒性空氣污染物-甲醛之初步研究」,國立中央大學環境工程研究所碩士論文,台灣,(2003)
MSDS物質安全資料表
Agency for Toxic substances and Disease Registry (ATSDR):
https://www.atsdr.cdc.gov/
National Institute of Standards and Technology (NIST):
https://www.nist.gov/
United States Enviromental Protection Agency (US EPA):
https://www.epa.gov/
指導教授 張木彬(Moo-Been Chang) 審核日期 2022-9-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明