參考文獻 |
Aghbolaghy, M., Soltan, J., & Chen, N. (20─18). Low temperature catalytic oxidation of binary mixture of toluene and acetone in the presence of ozone. Catalysis Letters, 148(11), 3431-3444.
Aghbolaghy, M., Soltan, J., & Sutarto, R. (2017). The role of surface carboxylates in catalytic ozonation of acetone on alumina-supported manganese oxide. Chemical Engineering Research and Design, 128, 73-84.
An, N., Wu, P., Li, S., Jia, M., & Zhang, W. (2013). Catalytic oxidation of formaldehyde over Pt/Fe2O3 catalysts prepared by different method. Applied Surface Science, 285, 805-809.
An, N., Yu, Q., Liu, G., Li, S., Jia, M., & Zhang, W. (2011). Complete oxidation of formaldehyde at ambient temperature over supported Pt/Fe2O3 catalysts prepared by colloid-deposition method. Journal of Hazardous Materials, 186(2-3), 1392-1397.
Anne, D., Thierry, A., Keisuke, S., & Michiyo, M. (2022). Transformation of highly marbled meats under various cooking processes. Meat Science, 189, 108810.
Ayrilmis, N., Lee, Y. K., Kwon, J. H., Han, T. H., & Kim, H. J. (2016). Formaldehyde emission and VOCs from LVLs produced with three grades of urea-formaldehyde resin modified with nanocellulose. Building and Environment, 97, 82-87.
Bayram, E., Lu, J., Aydin, C., Browning, N. D., Özkar, S., Finney, E., Gates, B. C., & Finke, R. G. (2015). Agglomerative sintering of an atomically dispersed Ir1/Zeolite Y Catalyst: Compelling evidence against ostwald ripening but for bimolecular and autocatalytic agglomeration catalyst sintering steps. ACS Catalysis, 5(6), 3514-3527.
Bernstein, R. S., Stayner, L. T., Elliott, L. J., Kimbrough, R., Falk, H., & Blade, L. (1984). Inhalation exposure to formaldehyde: an overview of its toxicology, epidemiology, monitoring, and control. American Industrial Hygiene Association Journal, 45(11), 778-785.
Brummer, V., Teng, S. Y., Jecha, D., Skryja, P., Vavrcikova, V., & Stehlik, P. (2022). Contribution to cleaner production from the point of view of VOC emissions abatement: A review. Journal of Cleaner Production, 132112.
Callén, M., De la Cruz, M., López, J., Murillo, R., Navarro, M., & Mastral, A. (2008). Long-range atmospheric transport and local pollution sources on PAH concentrations in a South European urban area. Fulfilling of the European directive. Water, Air, and Soil Pollution, 190(1), 271-285.
Callén, M., López, J., Iturmendi, A., & Mastral, A. (2013). Nature and sources of particle associated polycyclic aromatic hydrocarbons (PAH) in the atmospheric environment of an urban area. Environmental Pollution, 183, 166-174.
Cecinato, A., Guerriero, E., Balducci, C., & Muto, V. (2014). Use of the PAH fingerprints for identifying pollution sources. Urban Climate, 10, 630-643.
Chao, C. Y. H., Kwong, C., & Hui, K. (2007). Potential use of a combined ozone and zeolite system for gaseous toluene elimination. Journal of Hazardous Materials, 143(1-2), 118-127.
Chen, D. L., Pan, K. L., & Chang, M. B. (2017). Catalytic removal of phenol from gas streams by perovskite-type catalysts. Journal of Environmental Science (China), 56, 131-139.
Chen, Y. C., Tsai, P. J., & Mou, J. L. (2009). Reducing PAH emissions from the iron ore sintering process by optimizing its operation parameters. Environmental Science & Technology, 43(12), 4459-4465.
Chiang, T. A., Wu, P. F., & Ko, Y. C. (1999). Identification of carcinogens in cooking oil fumes. Environmental research, 81(1), 18-22.
Chien, S. M., & Huang, Y. J. (2010). Sizes and polycyclic aromatic hydrocarbon composition distributions of nano, ultrafine, fine, and coarse particulates emitted from a four-stroke motorcycle. Journal of Environmental Science and Health Part A, 45(13), 1768-1774.
Chung, W. C., Mei, D. H., Tu, X., & Chang, M. B. (2018). Removal of VOCs from gas streams via plasma and catalysis. Catalysis Reviews, 61(2), 270-331.
Cincinelli, A., Del Bubba, M., Martellini, T., Gambaro, A., & Lepri, L. (2007). Gas-particle concentration and distribution of n-alkanes and polycyclic aromatic hydrocarbons in the atmosphere of Prato (Italy). Chemosphere, 68(3), 472-478.
Coates, J., Mar, K. A., Ojha, N., & Butler, T. M. (2016). The influence of temperature on ozone production under varying NOx conditions–a modelling study. Atmospheric Chemistry and Physics, 16(18), 11601-11615.
Cui, J., Liu, S., Xue, H., Wang, X., Hao, Z., Liu, R., Shang, W., Zhao, D., & Ding, H. (2021). Catalytic ozonation of volatile organic compounds (ethyl acetate) at normal temperature. Chinese Journal of Chemical Engineering, 32, 159-167.
Dat, N. D., & Chang, M. B. (2017). Review on characteristics of PAHs in atmosphere, anthropogenic sources and control technologies. Science of the Total Environment, 609, 682-693.
Dezhi, Z., Tianying, D., Xiaosong, L., Jinglin, L., Chuan, S., & Aimin, Z. (2012). Ozone catalytic oxidation of HCHO in air over MnOx at room temperature. Chinese Journal of Catalysis, 33(2-3), 396-401.
Dhandapani, B., & Oyama, S. T. (1997). Gas phase ozone decomposition catalysts. Applied Catalysis B: Environmental, 11(2), 129-166.
Dubowsky, S. D., Wallace, L. A., & Buckley, T. J. (1999). The contribution of traffic to indoor concentrations of polycyclic aromatic hydrocarbons. Journal of Exposure Science & Environmental Epidemiology, 9(4), 312-321.
Einaga, H., & Futamura, S. (2004). Catalytic oxidation of benzene with ozone over alumina-supported manganese oxides. Journal of Catalysis, 227(2), 304-312.
Feng, L., Zhang, L., Chu, S., Zhang, S., Chen, X., Du, Z., Gong, Y., & Wang, H. (2022). Controllable doping of Fe atoms into MoS2 nanosheets towards peroxidase-like nanozyme with enhanced catalysis for colorimetric analysis of glucose. Applied Surface Science, 583, 152496.
Frenklach, M., Clary, D. W., Gardiner Jr, W. C., & Stein, S. E. (1985). Detailed kinetic modeling of soot formation in shock-tube pyrolysis of acetylene. Symposium (International) on Combustion,
Ghavami, M., Aghbolaghy, M., Soltan, J., & Chen, N. (2020). Room temperature oxidation of acetone by ozone over alumina-supported manganese and cobalt mixed oxides. Frontiers of Chemical Science and Engineering, 14(6), 937-947.
Ghavami, M., Soltan, J., & Chen, N. (2021). Synthesis of MnOx/Al2O3 catalyst by polyol method and its application in room temperature ozonation of toluene in air. Catalysis Letters, 151(5), 1418-1432.
Ghorbani, M., Omraei, M., Jafari, M., & Katal, R. (2010). Application of different catalysts for oxidation of toluene in absence and presence of ozone. Asian Journal of Chemistry, 22(10), 8179.
Giroir-Fendler, A., Alves-Fortunato, M., Richard, M., Wang, C., Díaz, J. A., Gil, S., Zhang, C., Can, F., Bion, N., & Guo, Y. (2016). Synthesis of oxide supported LaMnO3 perovskites to enhance yields in toluene combustion. Applied Catalysis B: Environmental, 180, 29-37.
Golalipour, M. J., Azarhoush, R., Ghafari, S., Davarian, A., & Fazeli, S. A. (2009). Can formaldehyde exposure induce histopathologic and morphometric changes on rat kidney la exposición al formaldehído puede inducir cambios histopatológicos y morfométricos sobre . International Journal of Morphology, 27(4), 1195-1200.
Gong, S., Xie, Z., Li, W., Wu, X., Han, N., & Chen, Y. (2019). Highly active and humidity resistive perovskite LaFeO3 based catalysts for efficient ozone decomposition. Applied Catalysis B: Environmental, 241, 578-587.
Gopi, T., Swetha, G., Shekar, S. C., Krishna, R., Ramakrishna, C., Saini, B., & Rao, P. (2019). Ozone catalytic oxidation of toluene over 13X zeolite supported metal oxides and the effect of moisture on the catalytic process. Arabian Journal of Chemistry, 12(8), 4502-4513.
Haruta, M., Yamada, N., Kobayashi, T., & Iijima, S. (1989). Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. Journal of Catalysis, 115(2), 301-309.
Hosseini, M. S., & Chartrand, P. (2021). Critical assessment of thermodynamic properties of important polycyclic aromatic hydrocarbon compounds (PAHs) in coal tar pitch at typical temperature ranges of the carbonization process. Calphad, 74, 102278.
Kawalerczyk, J., Dziurka, D., Mirski, R., & Siuda, J. (2021). The reduction of adhesive application in plywood manufacturing by using nanocellulose‐reinforced urea‐formaldehyde resin. Journal of Applied Polymer Science, 138(7), 49834.
Khalili, N. R., Scheff, P. A., & Holsen, T. M. (1995). PAH source fingerprints for coke ovens, diesel and, gasoline engines, highway tunnels, and wood combustion emissions. Atmospheric Environment, 29(4), 533-542.
Kim, J., Lee, J. E., Lee, H. W., Jeon, J. K., Song, J., Jung, S. C., Tsang, Y. F., & Park, Y.-K. (2020). Catalytic ozonation of toluene using Mn–M bimetallic HZSM-5 (M: Fe, Cu, Ru, Ag) catalysts at room temperature. Journal of Hazardous Materials, 397, 122577.
Kim, M., Park, E., & Jurng, J. (2018). Oxidation of gaseous formaldehyde with ozone over MnOx/TiO2 catalysts at room temperature (25°C). Powder Technology, 325, 368-372.
Kong, S., Ding, X., Bai, Z., Han, B., Chen, L., Shi, J., & Li, Z. (2010). A seasonal study of polycyclic aromatic hydrocarbons in PM2.5 and PM2.5–10 in five typical cities of Liaoning Province, China. Journal of Hazardous Materials, 183(1-3), 70-80.
Konova, P., Stoyanova, M., Naydenov, A., & Mehandjiev, D. (2006). Catalytic oxidation of VOCs and CO by ozone over alumina supported cobalt oxide. Applied Catalysis A: General, 298, 109-114.
Kwong, C., Chao, C. Y., Hui, K., & Wan, M. (2008). Removal of VOCs from indoor environment by ozonation over different porous materials. Atmospheric Environment, 42(10), 2300-2311.
Layton, D. W., Bogen, K. T., Knize, M. G., Hatch, F. T., Johnson, V. M., & Felton, J. S. (1995). Cancer risk of heterocyclic amines in cooked foods: an analysis and implications for research. Carcinogenesis, 16(1), 39-52.
Lee, C. H., Yang, S. F., Peng, C. Y., Li, R. N., Chen, Y. C., Chan, T. F., Tsai, E. M., Kuo, F. C., Huang, J. J., & Tsai, H. T. (2010). The precancerous effect of emitted cooking oil fumes on precursor lesions of cervical cancer. International Journal of Cancer, 127(4), 932-941.
Lee, J. G., Kim, S. Y., Moon, J. S., Kim, S. H., Kang, D. H., & Yoon, H. J. (2016). Effects of grilling procedures on levels of polycyclic aromatic hydrocarbons in grilled meats. Food Chemistry, 199, 632-638.
Lee, Y. E., Chung, W. C., & Chang, M. B. (2019). Photocatalytic oxidation of toluene and isopropanol by LaFeO3/black-TiO2. Environmental Science and Pollution Research, 26(20), 20908-20919.
Lee, Y. Y., Hsieh, Y. K., Huang, B. W., Mutuku, J. K., Chang-Chien, G. P., & Huang, S. (2022). An overview: PAH and Nitro-PAH emission from the stationary sources and their transformations in the atmosphere. Aerosol and Air Quality Research, 22, 220164.
Li, C., He, L., Yao, X., & Yao, Z. (2022). Recent advances in the chemical oxidation of gaseous volatile organic compounds (VOCs) in liquid phase. Chemosphere, 133868.
Li, J. W., Pan, K. L., Yu, S. J., Yan, S. Y., & Chang, M. B. (2014). Removal of formaldehyde over Mn(x)Ce(1)-(x)O(2) catalysts: thermal catalytic oxidation versus ozone catalytic oxidation. Journal of Environmental Science (China), 26(12), 2546-2553.
Li, J. W., Pan, K. L., Yu, S. J., Yan, S. Y., & Chang, M. B. (2014). Removal of formaldehyde over MnxCe1− xO2 catalysts: thermal catalytic oxidation versus ozone catalytic oxidation. Journal of Environmental Sciences, 26(12), 2546-2553.
Li, M., Hui, K., Hui, K. S., Lee, S., Cho, Y., Lee, H., Zhou, W., Cho, S., Chao, C. Y. H., & Li, Y. (2011). Influence of modification method and transition metal type on the physicochemical properties of MCM-41 catalysts and their performances in the catalytic ozonation of toluene. Applied Catalysis B: Environmental, 107(3-4), 245-252.
Li, W., & Oyama, S. T. (1997). Ethanol oxidation using ozone over supported maganese oxide catalysts: an in situ laser raman study. In Studies in Surface Science and Catalysis (Vol. 110, pp. 873-882). Elsevier.
Li, Z., Yang, M., Park, J. S., Wei, S. H., Berry, J. J., & Zhu, K. (2016). Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chemistry of Materials, 28(1), 284-292.
Liljelind, P., Unsworth, J., Maaskant, O., & Marklund, S. (2001). Removal of dioxins and related aromatic hydrocarbons from flue gas streams by adsorption and catalytic destruction. Chemosphere, 42(5-7), 615-623.
Lin, C. L., Cheng, Y. H., Liu, Z. S., & Chen, J. Y. (2011). Metal catalysts supported on activated carbon fibers for removal of polycyclic aromatic hydrocarbons from incineration flue gas. Journal of Hazardous Materials, 197, 254-263.
Lin, F., Wang, Z., Zhang, Z., He, Y., Zhu, Y., Shao, J., Yuan, D., Chen, G., & Cen, K. (2020). Flue gas treatment with ozone oxidation: An overview on NOx, organic pollutants, and mercury. Chemical Engineering Journal, 382, 123030.
Lin, M., Yu, X., Yang, X., Ma, X., & Ge, M. (2019). Exploration of the active phase of the hydrotalcite-derived cobalt catalyst for HCHO oxidation. Chinese Journal of Catalysis, 40(5), 703-712.
Liu, B., Ji, J., Zhang, B., Huang, W., Gan, Y., Leung, D. Y. C., & Huang, H. (2022). Catalytic ozonation of VOCs at low temperature: A comprehensive review. Journal of Hazardous Material, 422, 126847.
Liu, B., Li, C., Zhang, Y., Liu, Y., Hu, W., Wang, Q., Han, L., & Zhang, J. (2012). Investigation of catalytic mechanism of formaldehyde oxidation over three-dimensionally ordered macroporous Au/CeO2 catalyst. Applied Catalysis B: Environmental, 111-112, 467-475.
Liu, S., Ji, J., Yu, Y., & Huang, H. (2018). Facile synthesis of amorphous mesoporous manganese oxides for efficient catalytic decomposition of ozone. Catalysis Science & Technology, 8(16), 4264-4273.
Liu, Z. S., Wey, M. Y., & Lin, C. L. (2002). Simultaneous control of acid gases and PAHs using a spray dryer combined with a fabric filter using different additives. Journal of Hazardous Materials, 91(1-3), 129-141.
Machniewski, P., Biń, A., & Kłosek, K. (2021). Effectiveness of toluene mineralization by gas-phase oxidation over Co (II)/SiO2 catalyst with ozone. Environmental Technology, 42(25), 3987-3994.
Mackay, D., Shiu, W. Y., & Ma, K. C. (1997). Illustrated handbook of physical-chemical properties of environmental fate for organic chemicals (Vol. 5). CRC Press.
Masih, J., Singhvi, R., Taneja, A., Kumar, K., & Masih, H. (2012). Gaseous/particulate bound polycyclic aromatic hydrocarbons (PAHs), seasonal variation in North central part of rural India. Sustainable Cities and Society, 3, 30-36.
Masten, S. J., & Davies, S. H. (1997). Efficacy of in-situ for the remediation of PAH contaminated soils. Journal of Contaminant Hydrology, 28(4), 327-335.
Meilin, J., Haifeng, B., Yuenain, S., & Yanfeng, L. (2008). Preparation of Au/CeO2 catalyst and its catalytic performance for HCHO oxidation. Journal of Rare Earths, 26(4), 528-531.
Nakajima, D., Nagame, S., Kuramochi, H., Sugita, K., Kageyama, S., Shiozaki, T., Takemura, T., Shiraishi, F., & Goto, S. (2007). Polycyclic aromatic hydrocarbon generation behavior in the process of carbonization of wood. Bulletin of Environmental Contamination and Toxicology, 79(2), 221-225.
Nirala, G., Yadav, D., & Upadhyay, S. (2020). Ruddlesden-Popper phase A2BO4 oxides: Recent studies on structure, electrical, dielectric, and optical properties. Journal of Advanced Ceramics, 9(2), 129-148.
Nisbet, I. C., & Lagoy, P. K. (1992). Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology, 16(3), 290-300.
Odabasi, M., Cetin, E., & Sofuoglu, A. (2006). Determination of octanol–air partition coefficients and supercooled liquid vapor pressures of PAHs as a function of temperature: Application to gas–particle partitioning in an urban atmosphere. Atmospheric Environment, 40(34), 6615-6625.
Oyama, S. T., Li, W., & Zhang, W. (1999). A comparative study of ethanol oxidation with ozone on supported molybdenum and manganese oxide catalysts. In Studies in Surface Science and Catalysis (Vol. 121, pp. 105-110). Elsevier.
Pan, K. L., Pan, G. T., Chong, S., & Chang, M. B. (2018). Removal of VOCs from gas streams with double perovskite-type catalysts. Journal of Environmental Science (China), 69, 205-216.
Qi, L., Cheng, B., Ho, W., Liu, G., & Yu, J. (2015). Hierarchical Pt/NiO hollow microspheres with enhanced catalytic performance. ChemNanoMat, 1(1), 58-67.
Quiroz, J., Giraudon, J. M., Gervasini, A., Dujardin, C., Lancelot, C., Trentesaux, M., & Lamonier, J. F. (2015). Total oxidation of formaldehyde over MnOx-CeO2 catalysts: The effect of acid treatment. ACS Catalysis, 5(4), 2260-2269.
Ravindra, K., Sokhi, R., & Van Grieken, R. (2008). Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmospheric Environment, 42(13), 2895-2921.
Reilly, P., Gieray, R., Whitten, W., & Ramsey, J. (2000). Direct observation of the evolution of the soot carbonization process in an acetylene diffusion flame via real-time aerosol mass spectrometry. Combustion and Flame, 122(1-2), 90-104.
Rezaei, F., Moussavi, G., Bakhtiari, A. R., & Yamini, Y. (2016). Toluene removal from waste air stream by the catalytic ozonation process with MgO/GAC composite as catalyst. Journal of Hazardous Materials, 306, 348-358.
Ritchie, I. M., & Lehnen, R. G. (1987). Formaldehyde-related health complaints of residents living in mobile and conventional homes. American journal of Public Health, 77(3), 323-328.
Robinson, A. L., Subramanian, R., Donahue, N. M., Bernardo-Bricker, A., & Rogge, W. F. (2006). Source apportionment of molecular markers and organic aerosol. 3. Food cooking emissions. Environmental Science & Technology, 40(24), 7820-7827.
Salamanca, J. C., Meehan-Atrash, J., Vreeke, S., Escobedo, J. O., Peyton, D. H., & Strongin, R. M. (2018). E-cigarettes can emit formaldehyde at high levels under conditions that have been reported to be non-averse to users. Scientific Reports, 8(1), 1-6.
Salamanca, J. C., Munhenzva, I., Escobedo, J. O., Jensen, R. P., Shaw, A., Campbell, R., Luo, W., Peyton, D. H., & Strongin, R. M. (2017). Formaldehyde hemiacetal sampling, recovery, and quantification from electronic cigarette aerosols. Scientific Reports, 7(1), 1-8.
Sarı, B., Ayrilmis, N., Nemli, G., Baharoğlu, M., Gümüşkaya, E., & Bardak, S. (2014). Effects of chemical composition of wood and resin type on properties of particleboard. Lignocellulose J, 1, 174-184.
Schauer, J. J., Kleeman, M. J., Cass, G. R., & Simoneit, B. R. (2002). Measurement of emissions from air pollution sources. 4. C1− C27 organic compounds from cooking with seed oils. Environmental Science & Technology, 36(4), 567-575.
Smedley, J. (1996). Is formaldehyde an important cause of allergic respiratory disease? In (Vol. 26, pp. 247-249): Wiley Online Library.
Smith, V., Kolar, P., Boyette, M., Chinn, M., Smith, C., Gangadharan, R., & Zhang, G. (2012). Advanced oxidation of toluene using Ni-Olivine catalysts: Part 1. synthesis, characterization, and evaluation of Ni-Olivine catalysts for toluene oxidation. Transactions of the ASABE, 55(3), 1013-1024.
Sprince, H., Parker, C. M., & Smith, G. G. (1979). Comparison of Protection byl-ascorbic acid, l-cysteine, and adrenergic-blocking agents against acetaldehyde, acrolein, and formaldehyde toxicity: Implications in smoking. Agents and Actions, 9(4), 407-414.
Stoyanova, M., Konova, P., Nikolov, P., Naydenov, A., & Mehandjiev, D. (2006). Alumina-supported nickel oxide for ozone decomposition and catalytic ozonation of CO and VOCs. Chemical Engineering Journal, 122(1-2), 41-46.
Su, J., Cheng, C., Guo, Y., Xu, H., & Ke, Q. (2019). OMS-2-based catalysts with controllable hierarchical morphologies for highly efficient catalytic oxidation of formaldehyde. Journal of Hazardous Materials, 380, 120890.
Tang, X., Chen, J., Huang, X., Xu, Y., & Shen, W. (2008). Pt/MnOx–CeO2 catalysts for the complete oxidation of formaldehyde at ambient temperature. Applied Catalysis B: Environmental, 81(1-2), 115-121.
Tian, M., Liu, S., Wang, L., Ding, H., Zhao, D., Wang, Y., Cui, J., Fu, J., Shang, J., & Li, G. K. (2020). Complete degradation of gaseous methanol over Pt/FeOx catalysts by normal temperature catalytic ozonation. Environmental Science & Technology, 54(3), 1938-1945.
Tian, S., Zhan, S., Lou, Z., Zhu, J., Feng, J., & Xiong, Y. (2021). Electrodeposition synthesis of 3D-NiO1-δ flowers grown on Ni foam monolithic catalysts for efficient catalytic ozonation of VOCs. Journal of Catalysis, 398, 1-13.
Tohei, T., Watanabe, Y., Lee, H.-S., & Ikuhara, Y. (2016). First principles calculation of thermal expansion coefficients of pure and Cr doped α-alumina crystals. Journal of Applied Physics, 120(14).
Tseng, H. H., Lu, C. Y., Chang, F. Y., Wey, M. Y., & Cheng, H. T. (2011). Catalytic removal of NO and PAHs over AC-supported catalysts from incineration flue gas: Bench-scale and pilot-plant tests. Chemical Engineering Journal, 169(1-3), 135-143.
Voorhoeve, R., Remeika, J., & Trimble, L. (1976). Defect chemistry and catalysis in oxidation and reduction over perovskite‐type oxides. Annals of the New York Academy of Sciences, 272(1), 3-21.
Wang, C., Liu, H., Chen, T., Qing, C., Zou, X., Xie, J., & Zhang, X. (2018). Synthesis of palygorskite-supported Mn1−xCexO2 clusters and their performance in catalytic oxidation of formaldehyde. Applied Clay Science, 159, 50-59.
Wang, H., Guo, W., Jiang, Z., Yang, R., Jiang, Z., Pan, Y., & Shangguan, W. (2018). New insight into the enhanced activity of ordered mesoporous nickel oxide in formaldehyde catalytic oxidation reactions. Journal of Catalysis, 361, 370-383.
Wang, H., Huang, Z., Jiang, Z., Jiang, Z., Zhang, Y., Zhang, Z., & Shangguan, W. (2018a). Trifunctional C@ MnO catalyst for enhanced stable simultaneously catalytic removal of formaldehyde and ozone. ACS Catalysis, 8(4), 3164-3180.
Wang, H., Huang, Z., Jiang, Z., Jiang, Z., Zhang, Y., Zhang, Z., & Shangguan, W. (2018b). Trifunctional C@MnO catalyst for enhanced stable simultaneously catalytic removal of formaldehyde and ozone. ACS Catalysis, 8(4), 3164-3180.
Wang, Q., Yao, X., Geng, Y., Zhou, Q., Lu, X., & Zhang, S. (2015). Deep eutectic solvents as highly active catalysts for the fast and mild glycolysis of poly (ethylene terephthalate)(PET). Green Chemistry, 17(4), 2473-2479.
Wang, X., Ying, J., Mai, Y., Zhang, J., Chen, J., Wen, M., & Yu, L. (2019). MOF-derived metal oxide composite Mn2Co1Ox/CN for efficient formaldehyde oxidation at low temperature. Catalysis Science & Technology, 9(20), 5845-5854.
Wang, Y., Ding, L., Shi, Q., Liu, S., Qian, L., Yu, Z., Wang, H., Lei, J., Gao, Z., & Long, H. (2022). Volatile organic compounds (VOC) emissions control in iron ore sintering process: recent progress and future development. Chemical Engineering Journal, 137601.
Wang, Y., Zhu, X., Crocker, M., Chen, B., & Shi, C. (2014). A comparative study of the catalytic oxidation of HCHO and CO over Mn0.75Co2.25O4 catalyst: the effect of moisture. Applied Catalysis B: Environmental, 160, 542-551.
Williams, P. T., Besler, S., & Taylor, D. T. (1990). The pyrolysis of scrap automotive tyres: The influence of temperature and heating rate on product composition. Fuel, 69(12), 1474-1482.
Wu, P. F., Chiang, T. A., Wang, L. F., Chang, C. S., & Ko, Y. C. (1998). Nitro-polycyclic aromatic hydrocarbon contents of fumes from heated cooking oils and prevention of mutagenicity by catechin. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 403(1-2), 29-34.
Xu, P. l., Wei, T., Yue, H. y., Wen, Y. c., Wei, Y., Guo, T. j., Li, S. j., Li, W., & Wang, X. q. (2020). Effect of different nitric acid concentrations on manganese/activated carbon-modified catalysts for the catalytic ozonation of toluene. Catalysis Science & Technology, 10(19), 6729-6737.
Xu, Y., Dhainaut, J., Dacquin, J. P., Mamede, A. S., Marinova, M., Lamonier, J. F., Vezin, H., Zhang, H., & Royer, S. (2021). La1-x(Sr, Na, K)xMnO3 perovskites for HCHO oxidation: The role of oxygen species on the catalytic mechanism. Applied Catalysis B: Environmental, 287.
Xu, Z., Qin, Z., Zhang, T., & Chen, X. (2021). Catalytic ozonation of ethyl acetate over mesoporous manganese oxides synthesized by a sonochemical method. Asia‐Pacific Journal of Chemical Engineering, 16(2), e2605.
Yan, Z., Xu, Z., Yu, J., & Jaroniec, M. (2015). Highly active mesoporous ferrihydrite supported Pt catalyst for formaldehyde removal at room temperature. Environmental Science & Technology, 49(11), 6637-6644.
Yan, Z., Xu, Z., Yu, J., & Jaroniec, M. (2016). Enhanced formaldehyde oxidation on CeO2/AlOOH-supported Pt catalyst at room temperature. Applied Catalysis B: Environmental, 199, 458-465.
Yan, Z., Xu, Z., Yue, L., Shi, L., & Huang, L. (2018). Hierarchical Ni− Al hydrotalcite supported Pt catalyst for efficient catalytic oxidation of formaldehyde at room temperature. Chinese Journal of Catalysis, 39(12), 1919-1928.
Yang, H. H., Lee, W. J., Chen, S. J., & Lai, S. O. (1998). PAH emission from various industrial stacks. Journal of Hazardous Materials, 60(2), 159-174.
Yang, S., Ford, P., Subramanian, S., Singleton, D., Sanders, J., & Cronin, S. B. (2021). Transient plasma-enhanced remediation of nanoscale particulate matter in restaurant smoke emissions via electrostatic precipitation. Particuology, 55, 43-47.
Yegiazarov, Y., Clark, J., Potapova, L., Radkevich, V., Yatsimirsky, V., & Brunel, D. (2005). Adsorption-catalytic process for carbon disulfide removal from air. Catalysis Today, 102, 242-247.
Yu, K. P., Yang, K. R., Chen, Y. C., Gong, J. Y., Chen, Y. P., Shih, H. C., & Candice Lung, S. C. (2015). Indoor air pollution from gas cooking in five Taiwanese families. Building and Environment, 93, 258-266.
Zhang, C., He, H., & Tanaka, K. I. (2006). Catalytic performance and mechanism of a Pt/TiO2 catalyst for the oxidation of formaldehyde at room temperature. Applied Catalysis B: Environmental, 65(1-2), 37-43.
Zhang, Y., Chen, M., Zhang, Z., Jiang, Z., Shangguan, W., & Einaga, H. (2019). Simultaneously catalytic decomposition of formaldehyde and ozone over manganese cerium oxides at room temperature: Promotional effect of relative humidity on the MnCeOx solid solution. Catalysis Today, 327, 323-333.
Zhang, Y., Shi, J., Fang, W., Chen, M., Zhang, Z., Jiang, Z., Shangguan, W., & Einaga, H. (2019). Simultaneous catalytic elimination of formaldehyde and ozone over one‐dimensional rod‐like manganese dioxide at ambient temperature. Journal of Chemical Technology & Biotechnology, 94(7), 2305-2317.
Zhao, D. Z., Shi, C., Li, X. S., Zhu, A. M., & Jang, B. W. L. (2012). Enhanced effect of water vapor on complete oxidation of formaldehyde in air with ozone over MnOx catalysts at room temperature. Journal of Hazardous Materials, 239, 362-369.
Zhao, J., Xu, X., Zhou, W., & Zhu, Z. (2017). An in situ formed MnO–Co composite catalyst layer over Ni–Ce0.8 Sm0.2O2− x anodes for direct methane solid oxide fuel cells. Journal of Materials Chemistry A, 5(14), 6494-6503.
Zhao, Z., Yang, X., & Wu, Y. (1996). Comparative study of Nickel-based perovskite-like mixed oxide catalysts for direct decomposition of NO. Applied Catalysis B: Environmental, 8(3), 281-297.
Zhou, H. C., Zhong, Z. P., Jin, B. S., Huang, Y. J., & Xiao, R. (2005). Experimental study on the removal of PAHs using in-duct activated carbon injection. Chemosphere, 59(6), 861-869.
Zhu, B., Li, X. S., Sun, P., Liu, J. L., Ma, X. Y., Zhu, X., & Zhu, A. M. (2017). A novel process of ozone catalytic oxidation for low concentration formaldehyde removal. Chinese Journal of Catalysis, 38(10), 1759-1769.
Zhu, G., Zhu, J., Jiang, W., Zhang, Z., Wang, J., Zhu, Y., & Zhang, Q. (2017). Surface oxygen vacancy induced α-MnO2 nanofiber for highly efficient ozone elimination. Applied Catalysis B: Environmental, 209, 729-737.
李金靖,「以介電質放電法(DBD)處理毒性空氣污染物-甲醛之初步研究」,國立中央大學環境工程研究所碩士論文,台灣,(2003)
MSDS物質安全資料表
Agency for Toxic substances and Disease Registry (ATSDR):
https://www.atsdr.cdc.gov/
National Institute of Standards and Technology (NIST):
https://www.nist.gov/
United States Enviromental Protection Agency (US EPA):
https://www.epa.gov/ |