參考文獻 |
土木學會及地盤工學會(2014)。平成 26 年廣島豪雨災害合同緊急調查團調查報告書,土木學會中國支部。
中央氣象局(2012)。1958-2015颱風資料庫。交通部中央氣象局。
水土保持局(2007)。水土保持手冊。行政院農委會水土保持局。
王智仁(2001)。以現場調查方式分析影響公路岩石邊坡穩定性之工程地質因子-以南橫公路梅山至啞口段為例。國立成功大學資源工程研究所碩士論文。
王俞婷、張志新、林又青、李欣輯、陳宏宇 (2012)。2012年8月蘇拉颱風勘災報告:花蓮秀林鄉坡地災害勘查。災害防救電子報,87。
何弘竹(2020)。應用邏輯斯迴歸整合土壤含水量與臨界降雨之崩塌預測模式-以高屏溪流域為例。國立中央大學土木工程研究所碩士論文。
林德貴、徐森彥、趙啟宏、溫惠鈺、許世孟、顧承宇、冀樹勇(2008)。土石流流動模擬技術於災害風險區劃定及災損評估應用之研究。中華水土保持學報,39(4),391-402。
林繼煒(2018)。應用邏輯斯迴歸於崩塌時間與空間預測的探討。國立彰化師範大學地理學系碩士論文。
吳俊鋐、陳樹群(2004)。崩塌潛勢預測方法於臺灣適用性之初探。中華水土保持學報,36(4),295-306。
吳亭燁、陳樹群(2016)。非直進式土石流流動案例探討災害影響區之劃定。中華水土保持學報,47(1),24-35。
張弼超(2005)。運用羅吉斯迴歸法進行山崩潛感分析-以臺灣中部國姓地區為例。國立中央大學應用地質研究所碩士論文。
張崇哲(2007)。邊坡防護結構及其穩定性-降雨與排水效益之探討。環球技術學院環境資源管理所碩士論文。
張綸纖(2011)。利用羅吉斯迴歸法分析崩塌對土石流降雨警戒準值之影響-以神木村為例。國立台灣大學生物環境系統工程學研究所碩士論文。
趙啟宏、林德貴、許世孟、溫惠鈺、游宗耀、徐森彥(2009)。土石流數值模擬技術於集水區工程整治成效評估之研究-以花蓮地區為例。第13屆大地工程學術研討會暨國科會成果發表會,國立傳統藝術中心,宜蘭,台灣。27, 94。
陳嬑璇(2002)。溪頭地區山崩潛感圖製作研究。國立臺灣大學土木工程研究所碩士論文。
陳樹群、馮智偉(2005)。應用Logistic迴歸繪製崩塌潛感圖─以濁水溪流域為例。中華水土保持學報,36(2),191-201。
陳樹群(2011)。筒狀模式建立坡地土砂災害警戒機制。行政院農業委員會水土保持局委託成果報告(SWCB-100-078)。
許世孟、柯建仲、林燕初、黃智昭(2012)。山區地下岩層水力特性調查-以濁水溪與北港溪流域為例。岩盤工程研討會,639-648。
許志豪、曹鼎志、鍾佩蓉、黃春銘、邱宇翔、紀宗吉(2012)。以地形分析法進行土石流地質敏感區之劃設。中華水土保持學會年會及學術研討會論文集,1-14。
黃宏斌(2010)。國有林之崩塌地處理。台灣林業雙月刊, 36, 17-25。
詹錢登、李明熹(2004)。土石流發生降雨警戒值模式。中華水土保持學報,35(3),275-285。
詹勳全、張嘉琪、陳樹群、魏郁軒、王昭堡、李桃生 (2015)。台灣山區淺層崩塌地特性調查與分析。中華水土保持學報,46 (1),19-28。
鍾欣翰(2008)。考慮水文模式的地形穩定分析-以匹亞溪集水區為例。國立中央大學應用地質研究所碩士論文。
鐘明劍、譚志豪、冀樹勇(2011)。不同尺度分析模式於崩塌潛勢評估之整合應用-以莫拉克颱風事件為例。中興工程,111,47-59。
謝正倫、陸源忠、游保杉、陳禮仁(1995)。土石流發生臨界降雨線設定方法之研究。中華水土保持學報,26(3),167-172。
謝昆祐(2021)。以SHALSTAB為基礎之土壤-裂隙雙層情境之新型崩塌模式。國立中央大學土木工程研究所碩士論文。
譚志豪、許世孟、柯建仲、鍾明劍、王金山(2013)。裂隙岩體水文地質特性研究與工程應用。中興工程季刊,120,124-130。
Baum, R. L., Savage, W. Z., and Godt J. W. (2002). TRIGRS - A Fortran Program for Transient Rainfall Infiltration and Grid-based Regional Slope-stability Analysis. U.S. Geological Survey Open-File Report 02-0424.
Baum, R. L., Godt, J. W. & Savage, W. Z. (2010). Estimating the timing and location of shallow rainfall-induced landslides using a model for transient, unsaturated infiltration. Journal of Geophysical Research, 115, 1-26.
Beven, K.J., Kirkby, M.J. (1979). A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Bulletin, 24, 43-69.
Beven, K.J. (2001). Rainfall-Runoff Modelling, Wiley & Sons, Chichester, 217-225.
Brooks, R.H., Corey, W.T. (1964). Hydraulic properties of porous media. Hydrology Paper 3, Colorado State University, Fort Collins.
Casadei, M., Dietrich, W. E. and Miller, N. L. (2003). Testing a model for predicting the time and location of shallow landslide initiation in soil-mantled landscapes. Earth Surface Processed and Landforms, 28, 925–950.
Chang, K. T., Chiang, S. H. (2009). An integrated model for predicting rainfall-induced landslides. Geomorphology, 105, 366-373.
Chang, K. T., Chiang, S. H., Chen, Y. C., Mondini, A. C. (2014). Modeling the spatial occurrence of shallow landslides triggered by typhoons. Geomorphology, 208, 137-148.
Chiang, S. H. (2010). Modeling Multi-Hazards: Landslide Initiation and Debris Flow. Ph.D. Dissertation, Department of Geography, National Taiwan University.
Chiang, S. H., Chang, K. T., Alessandro C. M., Tsai, B. W. and Chen C. Y. (2012). Simulation of event-based landslides and debris flows at watershed level. Geomorphology, 138, 306–318.
Chiang, S. H., Chang, K. T. and Chen, C. F. (2013). Coupling a slope stabilitymodel and a fracture flow model for predicting the timing of typhoon indiced landslide. Asian Conference on Remote Sensing, 34, 3760-3768.
Dietrich, W. E., Reiss, R., Hsu, M. L., Montgomery, D. R. (1995). A process‐based model for colluvial soil depth and shallow landsliding using digital elevation data. Hydrological Processes, 9, 383-400.
Dietrich, W. E., Montgomery, D. R. (1998). SHALSTAB: a digital terrain model for mapping shallow landslide potential. University of California.
Griswold, J.P., Iverson, R.M. (2008). Mobility and statistics and automated hazard mapping for debris flows and rock avalanches. U.S. Geological Survey Scientific Investigations Report 2007–5276.
Heimsath, A. M., Dietrich, W. E., Nishiizumi, K., Finkel, R. C. (1997). The soil production function and landscape equilibrium. Nature, 338, 358-361.
Hsu, M. (1994). A Grid-Based Model for Predicting Soil Depth and Shallow Landslides. PhD dissertation, U.C. Berkeley.
Huang, J. C., Kao, S. J. (2006). Optimal estimator for assessing landslide model efficiency. Hydrology and Earth System Sciences Discussions, 3, 1125-1144.
Hunt, B. (1994). Newtonian fluid mechanics treatment of debris flow and avalanches. Journal of Hydraulic Engineering ASCE 120, 1350–1363.
Jang, S. J., Kim, S. W., Kim, M. and Chun, K. W. (2021). Evaluating the effect of root cohesion on shallow landslides for physically based modeling. Sensors and Materials, 33(11), 3847–3862.
Kim, M. S., Onda, Y., Uchida, T., Kim, J. K. (2016). Effects of soil depth and subsurface flow along the subsurface topography on shallow landslide predictions at the site of a small granitic hillslope. Geomorphology, 271, 40-54.
Lanni, C., Borga M., Tarolli P., Rigon R. (2012). Modelling shallow landslide susceptibility by means of a subsurface flow path connectivity index and estimates of soil depth spatial distribution. Hydrology and Earth System Sciences, 16, 3959-3971.
Lee, S., Choi, J., Woo, I. (2004). The effect of spatial resolution on the accuracy of landslide susceptibility mapping: a case study in Boun, Korea, Geosciences Jounral, 8(1), 51-60.
Iverson, R. M. (2000). Landslide triggering by rain infiltration. Water Resources Research, 36(7), 1897-1910.
Montgomery, D. R., Dietrich, W. E. (1994). A physically based model for the topographic control on shallow landslidin. Water Resources Research, 30(4), 1153-1171.
Montgomery, D. R., Dietrich, W. E., Torres, R., Anderson, S. P., Heffner, J. T., Loague, K. (1997). Hydrologic response of a steep, unchanneled valley to natural and applied rainfall. Water Resources Research, 33(1), 91-109.
Montgomery, D. R., Sullivan, K., Greenberg, H. M. (1998). Regional test of a model for shallow landsliding. Hydrological Processes, 12, 943-955.
Onda, Y., Tsujimura, M., Tabuchi, H. (2004) The role of subsurface water flow paths on hillslope hydrological processes, landslides and landform development in steep mountains of Japan. Hydrological Processes, 18, 637-650.
O’Brien, J.S., Julien, P.J. and Fullerton, W.T. (1993) Two-dimensional water flood and mudflow simulation. Journal of Hydraulic Engineering, ASCE, 119(2), 244-261.
Pack, R. T., Tarboton, D. G., Goodwin, C. N. (1998). The SINMAP approach to terrain stability mapping. 8th Congress of the International Association of Engineering Geology, Vancouver, British Columbia.
Palamakumbure, D., Flentje, P., Stirling, D. (2015). Consideration of optimal pixel resolution in deriving landslide susceptibility zoning within the Sydney Basin, New South Wales, Australia, Computers & Geosciences, 82(2015), 13-22.
Santacana, N., Baeza, B., Corominas, J. (2003). A GIS-Based Multivariate Statistical Analysis for Shallow Landslide Susceptibility Mapping in La Pobla de Lillet Area (Eastern Pyrenees, Spain). Natural Hazards, 30, 281-295.
Takahashi, T. (1991) Debris Flow. IAHR, Monograph, A. A. Balkema, Rotterdam, The Netherland.
Takahashi, T., Nakagawa, H., Harada, T., Yamashiki, Y. (1992). Routing debris flows with particle segregation. Journal of Hydraulic Engineering ASCE 11, 1490–1507
Varnes, D. J. (1978). Slope movement types and processes: In Landslides, Analysis and Control. Nat. Acad. Sci. Spec. Rep., 176, 11-35.
Wang, C., Esaki, T., Xie, M., Qiu, C. (2006). Landslide and debris-flow hazard analysis and prediction using GIS in Minamata–Hougawachi area, Japan. Environmental Geology, 51, 91–102.
Wilson, C. J., Dietrich, W. E. (1987). The contribution of bedrock groundwater flow to storm runoff and high pore pressure development in hollows. IAHS-AISH publ., 165, 49-59. |