參考文獻 |
Alberts, T. and Duminil-Copin, H. (2010). Bridge decomposition of restriction measures.
Journal of Statistical Physics, 140(3):467–493.
Bak, J. and Newman, D. (2010). Complex Analysis. Undergraduate Texts in Mathematics.
Springer New York.
Bauer, M., Bernard, D., and Houdayer, J. (2005). Dipolar stochastic Loewner evolutions.
Journal of Statistical Mechanics: Theory and Experiment, 2005(03):P03001.
Bauer, M., Bernard, D., and Kennedy, T. (2009). Conditioning Schramm–Loewner evolutions
and loop erased random walks. Journal of mathematical physics, 50(4):043301.
Beffara, V. (2008). The dimension of the SLE curves. The Annals of Probability, 36(4):
1421–1452.
Billingsley, P. (2013). Convergence of Probability Measures. Wiley Series in Probability
and Statistics. Wiley.
Camia, F. and Newman, C. M. (2007). Critical percolation exploration path and SLE6 :
a proof of convergence. Probability theory and related fields, 139(3-4):473–519.
Chelkak, D., Duminil-Copin, H., Hongler, C., Kemppainen, A., and Smirnov, S. (2014).
Convergence of Ising interfaces to Schramm’s SLE curves. Comptes Rendus Mathematique,
352(2):157–161.
Chelkak, D. and Smirnov, S. (2012). Universality in the 2D Ising model and conformal
invariance of fermionic observables. Inventiones mathematicae, 189(3):515–580.
Conway, J. B. (2012). Functions of one complex variable II, volume 159. Springer Science
& Business Media.
de Branges, L. (1985). A proof of the Bieberbach conjecture. Acta Mathematica, 154(1):
137–152.
Dubédat, J. (2005). SLE (?, ?) martingales and duality. The Annals of Probability, 33(1):
223–243.
Field, L. S. and Lawler, G. F. (2013). Reversed radial SLE and the Brownian loop
measure. Journal of Statistical Physics, 150(6):1030–1062.
Han, Y. (2017). Some problems about SLE. PhD thesis, Université d’Orléans.
Hongler, C. and Kytölä, K. (2013). Ising interfaces and free boundary conditions. Journal
of the American Mathematical Society, 26(4):1107–1189.
Izyurov, K. (2015). Smirnov’s observable for free boundary conditions, interfaces and
crossing probabilities. Communications in Mathematical Physics, 337(1):225–252.
Kang, N.-G. and Tak, H.-J. (2013). Conformal field theory of dipolar SLE with the
dirichlet boundary condition. Analysis and Mathematical Physics, 3(4):333–373.
Kemppainen, A. (2010). Stationarity of SLE. Journal of Statistical Physics, 139(1):
108–121.
Kemppainen, A. (2017). Schramm–Loewner Evolution. SpringerBriefs in Mathematical
Physics. Springer International Publishing.
Kesten, H. (1963). On the number of self-avoiding walks. Journal of Mathematical Physics,
4(7):960–969.
Kesten, H. (1964). On the number of self-avoiding walks. II. Journal of Mathematical
Physics, 5(8):1128–1137.
Kytölä, K. (2006). On conformal field theory of SLE(?, ?). Journal of statistical physics,
123(6):1169–1181.
Lawler, G. F. (1996). Hausdorff dimension of cut points for Brownian motion. Electronic
Journal of Probability, 1:1–20.
Lawler, G. F. (2008). Conformally Invariant Processes in the Plane. Mathematical surveys
and monographs. American Mathematical Society.
Lawler, G. F. (2009). Partition functions, loop measure, and versions of SLE. Journal of
Statistical Physics, 134(5):813–837.
Lawler, G. F. (2013). Continuity of radial and two-sided radial SLE at the terminal point.
Contemporary Mathematics, 590:101–124.
Lawler, G. F. (2018). Notes on the bessel process. Lecture notes. Available on the webpage
of the author.
Lawler, G. F., Schramm, O., and Werner, W. (2001). Values of Brownian intersection
exponents, II: Plane exponents. Acta Mathematica, 187(2):275–308.
Lawler, G. F., Schramm, O., and Werner, W. (2003). Conformal restriction: the chordal
case. Journal of the American Mathematical Society, 16(4):917–955.
Lawler, G. F., Schramm, O., and Werner, W. (2004a). Conformal invariance of planar looperased
random walks and uniform spanning trees. The Annals of Probability, 32(1B):
939 – 995.
Lawler, G. F., Schramm, O., and Werner, W. (2004b). On the scaling limit of planar selfavoiding
walk. In Fractal geometry and applications: A jubilee of Benoît Mandelbrot.
Multifractals, probability and statistical mechanics, applications. In part the proceedings
of a special session held during the annual meeting of the American Mathematical Society,
San Diego, CA, USA, January 2002, pages 339–364. Providence, RI: American
Mathematical Society (AMS).
Lawler, G. F. and Werner, W. (2004). The Brownian loop soup. Probability theory and
related fields, 128(4):565–588.
Le Gall, J.-F. (2016). Brownian motion, martingales, and stochastic calculus. Springer.
Lind, J. R. (2005). A sharp condition for the Loewner equation to generate slits. Annales
Academiae Scientiarum Fennicae. Mathematica, 30(1):143–158.
Mandelbrot, B. B. (1982). The fractal geometry of nature, volume 1. WH freeman New
York.
Marshall, D. E. and Rohde, S. (2005). The Loewner Differential Equation and Slit Mappings.
Journal of the American Mathematical Society, 18(4):763–778.
Miller, J. and Sheffield, S. (2016). Imaginary geometry III: reversibility of SLE? for
? ∈ (4, 8). Annals of Mathematics, 184(2):455–486.
Pommerenke, C. (1992). Boundary Behaviour of Conformal Maps. Grundlehren der
mathematischen Wissenschaften. Springer Berlin Heidelberg.
Revuz, D. and Yor, M. (2013). Continuous martingales and Brownian motion, volume
293. Springer Science & Business Media.
Rudin, W. (1987). Real and Complex Analysis. Mathematics series. McGraw-Hill.
Schramm, O. (2000). Scaling limits of loop-erased random walks and uniform spanning
trees. Israel Journal of Mathematics, 118(1):221–288.
Schramm, O. (2001). A percolation formula. Electronic Communications in Probability,
6:115–120.
Schramm, O. (2006). Conformally Invariant Scaling Limits. http://dbwilson.com/schra
mm/memorial/ICM.pdf. (ICM Madrid 2006 plenary lecture).
Schramm, O. and Rohde, S. (2005). Basic properties of SLE. Annals of mathematics,
161(2):883–924.
Schramm, O. and Sheffield, S. (2005). Harmonic explorer and its convergence to SLE4.
The Annals of Probability, 33(6):2127–2148.
Schramm, O. and Sheffield, S. (2009). Contour lines of the two-dimensional discrete
Gaussian free field. Acta mathematica, 202(1):21–137.
Schramm, O. and Wilson, D. B. (2005). SLE coordinate changes. New York J. Math,
11:659–669.
Smirnov, S. (2001). Critical percolation in the plane : I. Conformal invariance and Cardy’s
formula. II. Continuum scaling limit.
Smirnov, S. (2010). Conformal invariance in random cluster models. I. Holmorphic
fermions in the Ising model. Annals of mathematics, pages 1435–1467.
Virág, B. (2003). Brownian beads. Probability theory and related fields, 127(3):367–387.
Werner, W. (2004). Girsanov’s transformation for SLE(?, ?) processes, intersection exponents
and hiding exponents. Annales de la Faculté des sciences de Toulouse : Mathématiques,
Ser. 6, 13(1):121–147.
Wu, H. (2015). Conformal restriction: the radial case. Stochastic Processes and their
Applications, 125(2):552–570.
Zhan, D. (2004). Random Loewner chains in Riemann surfaces. PhD thesis, California
Institute of Technology.
Zhan, D. (2008a). Duality of chordal SLE. Inventiones mathematicae, 174(2):309–353.
Zhan, D. (2008b). Reversibility of Chordal SLE. The Annals of Probability, 36(4):1472–
1494.
Zhan, D. (2008c). The scaling limits of planar LERW in finitely connected domains. The
Annals of Probability, 36(2):467–529.
Zhan, D. (2010). Duality of chordal SLE, II. Annales de l’I.H.P. Probabilités et statistiques,
46(3):740–759. |