參考文獻 |
參考文獻
[1] Juang, D. S., Wu, Y. T., and Chang, W. T., “Optimum Design of Truss Structures using Discrete Lagrangian Method,” Journal of the Chinese Institute of Engineers, Vol. 25, No. 6, pp. 755?766 (2003).
[2] 莊德興、吳朗益,「離散拉格朗日法於群樁基礎低價化設計之應用,」中國土木水利學刊,第十五卷,第二期,第93?104頁 (2003)。
[3] 莊德興、張慰慈,「DLM?GA混合演算法於大型桁架離散最佳化設計之應用」,電子計算機於土木水利工程運用研討會論文集,臺北市 (2003)。
[4] 莊德興、張慰慈、吳泳達,「離散拉格朗日演算法及其在結構最佳設計之應用」,電子計算機於土木水利工程運用研討會論文集,臺北市 (2003)。
[5] Wu, Z., “The Discrete Lagrangian Theory ans its Application to Solve Nonlinear Discrete Constrain Optimization Problems,” Master Thesis, Department of Computer Science, University of Illinois at Urbana?Champaign (1998).
[6] Garlinkel, R. and Nemhauser, G., Integer Programming, John Wiley and Sons, New York, N. Y. (1992).
[7] Gupta, O. K. and Ravindran, A., “Nonlinear Mixed Integer Programming and Discrete Optimization,” Progress in Engineering Optimization, R. W. Mayne and K. M. Ragsdell, New York, N. Y. pp. 297?520 (1984).
[8] Ringertz, U. T., “On Methods for Discrete Structural Optimization,” Engineering Optimization, Vol. 13, pp. 47?64 (1988).
[9] Cha, J. Z. and Mayne, R. W., “Optimization with Discrete Variables via Quadratic Programming, Part 2: Algorithms and Results,” Transactions of the ASME, Vol. 111, No. 3, pp. 130?136 (1989).
[10] Sandgren, E., “Nonlinear Integer and Discrete Programming in Mechanical Design Optimization,” Journal of Mechanical Design, ASME., Vol. 112, No. 2, pp. 223?229 (1990).
[11] Tseng, C. H., Wang, L. W. and Ling, S. F., “A Numerical Study of the Branch and Bound Method in Structural Optimization,” Technical Report, Department of Mechanical Engineering, National Chiao Tung University, Hsinchu, Taiwan (1992).
[12] Schmit, L. A. and Fleury, C., “Discrete?Continuous Variable Structural Synthesis Using Dual Methods,” AIAA Journal, Vol. 18, No. 4, pp. 1515?1524 (1980).
[13] Olsen, G. and Vanderplaats, G. N., “A Method for Nonlinear Optimization with Discrete Variables,” AIAA Journal, Vol. 27, No. 11, pp. 1584?1589 (1989).
[14] Vanderplaats, G. N., “General Purpose Optimization Software for Engineering Design,” Proc., 3rd Air Force / NASA Symp. On Recent Adv. In Multi Disciplinary Anal. and Iptimization, San Francisco, C. A (1990).
[15] Kirkpatrick, S., Gelatt, C. D. and Vecchi, M. P., “Optimization by Simulated Annealing,” Science, Vol. 220, pp. 671?680 (1983).
[16] Trosset, M. W., “What is Simulated Annealing,” Optimization and Engineering, Vol. 2, pp. 201?213 (2002).
[17] Geman, S. and Geman, D., “Stochastic Relaxation, Gibbs Distributions and the Bayesian Restoration of Images,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 6, pp. 721?741 (1984).
[18] Hajek, B., “Optimization by Simulated Annealing: A Nece? ssary and Sufficient Condition for Convergence,” in Adaptive Statistical Procedures and Related Topics, J. Van Ryzin, Institute of Mathematical Statistics: Hayward, C. A., pp. 417?427 (1986).
[19] Hajek, B., “Cooling Schedules for Optimal Annealing,” Mathematics of Operations Research, Vol. 13, pp. 311?329 (1988).
[20] Holland, J. H., “Outline for a Logical Theory of Adaptive System,” Journal of the Association for Computing Machinery, Vol. 3, pp.297?314 (1962).
[21] Davis, J. S., Handbook of Genetic Algorithms, Van Nostrand Reinhold (1991).
[22] Whitley, D., “The Genitor Algorithm and Seiection Pressure: Why Rank?Based Allocation of Reproductive Trials is Best,” Proceeding of the Third International Conference on Genetic Algorithms, J. D. Schaffer, pp. 116?121, Morgan Kaufmann Publishers, San Mateo, California (1989).
[23] Wu, S. J. and Chow, P. T., “The Application of Genetic Alogirthms to Discrete Optimation Problems,” Journal of the Chinese Society of Mechanical Engineers, Vol. 16, No. 6, pp. 587?598 (1995).
[24] Wu, S. J. and Chow, P. T., “Integrated Discrete and Configuration Optimization of Trusses Using Genetic Algorithms,” Computers and Structures, Vol. 55, No. 4, pp. 695?702 (1995).
[25] De Jong, K. A., “An Analysis of the Behavior of a Class of Genetic Adaptive Systems,” Ph.D. Dissertation, University of Michigan, Dissertation Abstracts International, No. 36, Vol. 10, 5140B. (University Microfilms No. 76?9381) (1975).
[26] Wah, B. W. and Shang, Y., A Discrete Lagrangian?Based Global?Search Metod for Solving Satisfiability Problems, Proc. DIMACS Workshop on Satisfiability Problems, Theory and Applications, Du, D.Z., Gu, J., and Pardalos, P., AMS (1996).
[27] 紀炤良,「結構在頻率限制下之最佳設計」,碩士論文,國立台灣大學土木工程研究所,臺北 (1987)。
[28] Pantelides, C. P. and Tzan, S. R., “Optimal Design of Dynamically Constrained Structures,” Computers and Structures, Vol. 62, No. 1, pp. 141?149 (1997).
[29] Tong, W. H. and Liu, W. H., “An Optimization Procedure for Truss Structures with Discrete Design Variables and Dynamics Constrains,” Computers and Structures, Vol. 79, pp. 155?162 (2001).
[30] Choi, Y. H., Bae, B. T., Kim, S. T. and Kim, T. H., “Static, Dynamic, and Sectional Topology Optimization of Structures Using a Genetic Algorithm with Dynamic Penalty,” The 6th International Conference on Engineering Design and Automation, Maui, Hawaii, 2002, pp. 610?616 (2002).
[31] 張慰慈,「DLM?GA混合搜尋法於結構離散最佳化設計之應用」,碩士論文,國立中央大學土木工程研究所,中壢 (2003)。
[32] 吳泳達,「離散拉格朗日法於結構最佳化設計之應用」,碩士論文,國立中央大學土木工程研究所,中壢 (2003) 。
[33] 莊德興,「桁架之形狀與離散斷面的整合輕量化設計」,第七屆結構工程研討會論文集,桃園大溪 (2004)。
[34] Arora, J. S., Introduction to Optimum Design, McGraw?Hill, (1989).
[35] Erbatur, F., Hasancebi, O., Tutuncu, I. and Kilic, H., “Optimal Design of Planar and Space Structures with Genetic Algorithms,” Computers and Structures, Vol. 75, pp. 209?224 (2000).
[36] AISC, Manual of Construction: Allowable Stress Design, 9nd Edition, Chicago, Illinois (1989).
[37] Groenwold, A. A. and Stander, N., “Optimal Discrete Sizing of Truss Structures Subject to Buckling Constraints,” Structural Optimization, Vol. 14, pp. 71?80 (1997).
[38] Groenwold, A. A., Stander, N. and Snyman, J. A., “A Regional Genetic Algorithms for the Discrete Optimal Design of Truss Structures,” International Journal for Numerical Methods in Engineering, Vol. 44, No.6, pp. 749?766 (1999).
[39] Haug, E. J. and Arora, J. S., Applied Optimal Design: Mechanical and Structural Systems, John Wiley & Sons, (1979).
[40] Chopra, A. K., Dynamics of Structures Theory and Applications to Earthquake Engineering, Prentice?Hall, (2000).
[41] Arora, J. S. and Tseng, C. H. “Interactive Design Optimization,” Engineering Optimization, Vol. 13, pp. 173?188 (1988).
[42] Tseng, C. H., Wang, L. W. and Ling, S. F., “Enhancing Branch?and?Bound Method for Structural Optimization,” Journal of Structural Engineering, ASCE., Vol. 121, pp. 831?837 (1995).
[43] Camp, C., Pezeshk, S. and Cao, G., “Optimized Design of Two?Dimensional Structures Using a Genetic Algorithm”, Journal of Structural Engineering, ASCE., Vol. 124, No. 5, pp. 551?559 (1998).
[44] Nanakorn, P. and Meesomklin, K., “An Adaptive Penalty Function in Genetic Algorithms for Structural Design Optimiation,” Computers and Structures, Vol. 79, pp. 2527?2539 (2001).
[45] McGee, O. G. and Phan, K. F., “A Robust Optimality Criteria Procedure for Cross?Sectional Optimization of Frame Structures with Multiple Frequency Limits,” Computers and Structures, Vol. 38, pp. 485?500 (1991).
[46] Salajegheh, E., “Optimum Design of Structures with High?Quality Approximation of Frequency Constraints,” Advances in Engineering Software, Vol. 31, pp. 381?384 (2000). |