博碩士論文 109322091 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:89 、訪客IP:18.216.251.37
姓名 楊睿涵(Jui-Han Yang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 應用Sentinel-1雷達衛星影像時間序列建立雲林水稻分布圖
(Mapping Paddy Rice Fields by Sentinel-1 Time Series in Yunlin, Taiwan)
相關論文
★ 結合多種遙測衛星數據觀測湄公河水資源變化★ 利用多時期之衛星影像改進孟加拉地區之地表水量化
★ 利用ALOS SAR影像觀測2008當雄地震同震及震後形變量★ 利用衛星影像觀測2004年印度洋地震震後之海岸地形垂直變化
★ 利用綜合遙測資訊建置之高程模型觀測近岸地形時序變遷★ 整合Sentinel-1與TerraSAR-X 永久散射體雷達差干涉法以監測地表變形
★ 利用區域電離層模式校正Sentinel-1差分干涉以偵測臺灣地表變形★ 利用衛星影像間接建立全台海岸地形模型
★ 應用Sentinel-1衛星TOPS合成孔徑雷達及最小基線長分析技術監測越南河內的地層下陷★ Sentinel-1 Radar Interferometry Decomposes Land Subsidence in Taiwan
★ 以自相似算法進行衛星影像融合和水線判釋★ 基於卷積神經網路於光學衛星影像進行跨衛星之雲偵測
★ 利用衛星遙測資訊於稻米產量預測★ 利用ICESat-2及Sentinel-2反演南海近岸水深
★ 利用行動測深系統產製淺水區深度模型★ 以多元衛星影像監測青藏高原湖泊長期水量變化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-2-1以後開放)
摘要(中) 水稻為台灣重要的糧食作物之一,然而,因為農業技術進步、天然災害頻仍、飲食習慣改變等因素,耕作面積與產量預估成為一個重要的議題,為了不讓稻米供需失衡,有效的監測稻米收穫面積成為一項重要的任務,過往以人力探訪的方式來監測稻米顯得費時費力,現今,利用免費的衛星資料可以達成有效率的大範圍面積監測,因此本研究區域選擇位於臺灣中部,傳統農業密集的雲林縣,也是主要生產稻米的縣市之一。
歐洲太空總署哥白尼計劃的C波段合成孔徑雷達衛星Sentinel-1自2014年起提供免費影像,並且其1A以及1B 兩顆衛星在台灣地區的再訪週期為6天拍攝一次,較頻繁的時間解析度對於偵測作物的短時序變化有很大的助益。本研究利用Sentinel-1於2019年拍攝60張雷達影像的兩種極化(VH與VV)後向散射係數,以其時間序列辨識水稻的物候特徵,並且利用小波分析將VH、VV以及VV/VH比值平滑化,分析水稻特定的物候特徵。本研究以像素為單位,分別找出水稻種植開始季節(SOS)、分櫱末期(EOT)、以及收穫季節(EOS)的時間點,藉此定義水稻的生長週期,最後比對水稻田的現地樣本與每一像素的時間序列之相關性。此外,也透過添加地籍資料作為物件式分類的幾何特徵來提高準確度。
結果顯示雲林縣整體Kappa值為0.64,從單一鄉鎮來分析各鄉鎮之間水稻的種植特性與分布特性,Kappa值較高鄉鎮落在斗六市、斗南鎮、大埤鄉等,由於其地區種植密度最高;而最低值落在土庫鎮、元長鄉等,由於其境內多數地區有混合種植不同作物的情形,以及耕作面積過小的因素影響。此外,從雲林整體Kappa值與地籍面積的相關係數來看,面積1000平方公尺是本方法的最小判釋單位。
摘要(英) Paddy rice is one of the leading agricultural products in Taiwan, especially in Yunlin County. However, ground-based monitoring activities are highly time- and resource-consuming, so a few have been deployed on a large scale. Among various spaceborne sensors, radar satellite data provide timely and wide-area information without affecting by the cloud. Hence, this study aims to retrieve time series of paddy-specific phenology using Sentinel-1 Synthetic Aperture Radar (SAR) data and to map parcels for paddy rice in Yunlin. Our study processed 60 SAR images in 2019, and follow three major steps: (1) Extracting specific paddy phenology curves in training sites, by the temporal behavior of SAR backscattering coefficients (VH, VH, and the ratio of VV/VH) and using Wavelet transform to remove the noise; (2) Defining the start of the season (SOS), end of tillering (EOT), and end of the season (EOS) in paddy growing cycle through backscattered signal curve; (3) Comparing the cross-correlation coefficients with the specific paddy phenology curves. Besides, we add the cadastral map as the geometric feature for object-based classification to improve accuracy. In our validation, the kappa value of Yunlin is 0.64. The overall accuracy is over 0.7 for all townships in Yunlin. The region with the high kappa value is in the eastern part of Yunlin (Douliu City, Dounan, and Dapi Township, etc.) because of the high density of the rice field. On the other hand, the region with the low kappa value is in the western part of Yunlin (Tuku and Yuanchang Township, etc.) due to crop diversification. Furthermore, the whole Yunlin’s Pearson correlation coefficient (r) compared with the kappa index and the size of the area indicates the area of 1000 square meters is the smallest unit of detecting rice fields in our study.
關鍵字(中) ★ 合成孔徑雷達
★ 時間序列分析
★ 後向散射係數
★ 水稻物候學
關鍵字(英) ★ Synthetic Aperture Radar
★ Time Series Analysis
★ Backscattering Coefficient
★ Paddy Phenology
論文目次 摘 要 i
Abstract ii
Table of Contents iii
List of Figures v
List of Tables vii
Chapter 1 Introduction 1
1.1 Introduction 1
1.2 Related work 3
1.3 Architecture 6
Chapter 2 Phenology of rice 7
Chapter 3 Synthetic Aperture Radar 10
3.1 Principle of Synthetic Aperture Radar 10
3.2 Polarization and Backscattering of SAR image 11
Chapter 4 Study area 14
Chapter 5 Dataset and Methodology 17
5.1 Dataset 17
5.1.1 Sentinel-1 17
5.1.2 Ground truth data and cadastre 18
5.2 Workflow 18
5.3 Image preprocessing 19
5.4 Wavelet transform 22
5.5 Rice rule-based algorithm on backscattering signal 27
5.6 Cross-correlation coefficient 30
5.7 Object-based classification by cadastre 31
Chapter 6 Result and Discussion 32
6.1 Classification results 33
6.1.1 Omission error and commission error 34
6.1.2 Accuracy of large area 39
6.1.3 Rice map of Yunlin 41
6.1.4 Relationship between backscattering and EOT 42
6.2 Discussion 44
6.2.1 Agreement between EOT and ratio of VV/VH 44
6.2.2 Reasons for using Sentinel-1 C band 45
6.2.3 Different polarization and mechanism of backscattering 46
Chapter 7 Conclusion 48
Reference 50



參考文獻 Reference
1.The world bank,Population. 2023 [cited Jan12, 2023; Available from:
https://data.worldbank.org/indicator/SP.POP.TOTL.
2.Kinnunen, P., et al., Local food crop production can fulfil demand for less than one-third of the population. Nature Food, 2020. 1(4): p. 229-237.
3.Deng, Z., et al., The Russia–Ukraine war disproportionately threatens the nutrition security of developing countries. Discover Sustainability, 2022. 3(1): p. 40.
4.Elahi, E., et al., Extreme weather events risk to crop-production and the adaptation of innovative management strategies to mitigate the risk: A retrospective survey of rural Punjab, Pakistan. Technovation, 2022. 117: p. 102255.
5.World Food Program USA. 2022 [cited 2023 Jan 12]; Available from: https://www.wfpusa.org/articles/8-facts-to-know-about-food-waste-and-hunger/.
6.Goulding, K.W.T., Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use and Management, 2016. 32(3): p. 390-399.
7.Sebilo, M., et al., Long-term fate of nitrate fertilizer in agricultural soils. Proceedings of the National Academy of Sciences, 2013. 110(45): p. 18185-18189.
8.Gross, B.L. and Z. Zhao, Archaeological and genetic insights into the origins of domesticated rice. Proc Natl Acad Sci U S A, 2014. 111(17): p. 6190-7.
9.Food and Agriculture Organization Statistic. [cited 2023 Jan, 12]; Available from: https://www.fao.org/faostat/en/#rankings/commodities_by_country.
10.Climate Monitoring 2021 Annual Report. 2022, Central Weather Bureau.
11.Orynbaikyzy, A., U. Gessner, and C. Conrad, Crop type classification using a combination of optical and radar remote sensing data: a review. International Journal of Remote Sensing, 2019. 40(17): p. 6553-6595.
12.Kilwenge, R., et al., UAV-Based Mapping of Banana Land Area for Village-Level Decision-Support in Rwanda. Remote Sensing, 2021. 13(24).
13.Hu, J., et al. Object based fusion of polarimetric SAR and hyperspectral imaging for land use classification. in 2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS). 2016.
14.Brown, J.C., et al., Classifying multiyear agricultural land use data from Mato Grosso using time-series MODIS vegetation index data. Remote Sensing of Environment, 2013. 130: p. 39-50.
15.Veloso, A., et al., Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sensing of Environment, 2017. 199: p. 415-426.
16.Shang, J., et al., Detection of Crop Seeding and Harvest through Analysis of Time-Series Sentinel-1 Interferometric SAR Data. Remote Sensing, 2020. 12(10).
17.Nasrallah, A., et al., Sentinel-1 Data for Winter Wheat Phenology Monitoring and Mapping. Remote Sensing, 2019. 11(19).
18.Bazzi, H., et al., Mapping Paddy Rice Using Sentinel-1 SAR Time Series in Camargue, France. Remote Sensing, 2019. 11(7).
19.Nasrallah, A., et al. Sentinel-1 Data for Winter Wheat Phenology Monitoring and Mapping. Remote Sensing, 2019. 11, DOI: 10.3390/rs11192228.
20.Khabbazan, S., et al., Crop Monitoring Using Sentinel-1 Data: A Case Study from The Netherlands. Remote Sensing, 2019. 11(16).
21.Vreugdenhil, M., et al., Sensitivity of Sentinel-1 Backscatter to Vegetation Dynamics: An Austrian Case Study. Remote Sensing, 2018. 10(9).
22.Schlund, M. and S. Erasmi, Sentinel-1 time series data for monitoring the phenology of winter wheat. Remote Sensing of Environment, 2020. 246.
23.Davi, H., et al., Diversity of leaf unfolding dynamics among tree species: New insights from a study along an altitudinal gradient. Agricultural and Forest Meteorology, 2011. 151(12): p. 1504-1513.
24.Meroni, M., et al., Comparing land surface phenology of major European crops as derived from SAR and multispectral data of Sentinel-1 and -2. Remote Sens Environ, 2021. 253: p. 112232.
25.Hufkens, K., et al., Monitoring crop phenology using a smartphone based near-surface remote sensing approach. Agricultural and Forest Meteorology, 2019. 265: p. 327-337.
26.Flores, A., et al., The SAR Handbook: Comprehensive Methodologies for Forest Monitoring and Biomass Estimation. 2019.
27.Emery, W. and A. Camps, Chapter 5 - Radar, in Introduction to Satellite Remote Sensing, W. Emery and A. Camps, Editors. 2017, Elsevier. p. 291-453.
28.Phung, H.-P., et al., Monitoring rice growth status in the Mekong Delta, Vietnam using multitemporal Sentinel-1 data. Journal of Applied Remote Sensing, 2020. 14(01).
29.Evans, D.L., et al., Seasat—A 25-year legacy of success. Remote Sensing of Environment, 2005. 94(3): p. 384-404.
30.Csorba, A., et al., Characterization of rice agriculture in the Southern Province of Rwanda by means of microwave remote sensing. Physics and Chemistry of the Earth, Parts A/B/C, 2019. 112: p. 58-65.
31.Lee, H., et al., Interferometric SAR for Wetland Hydrology: An Overview of Methods, Challenges, and Trends. IEEE Geoscience and Remote Sensing Magazine, 2020. 8(1): p. 120-135.
32.Brown, S.C.M., et al., High-resolution measurements of scattering in wheat canopies-implications for crop parameter retrieval. IEEE Transactions on Geoscience and Remote Sensing, 2003. 41(7): p. 1602-1610.
33.Freeman, A. and S.L. Durden, A three-component scattering model for polarimetric SAR data. IEEE Transactions on Geoscience and Remote Sensing, 1998. 36(3): p. 963-973.
34.Wu, F., et al., Rice Crop Monitoring in South China With RADARSAT-2 Quad-Polarization SAR Data. IEEE Geoscience and Remote Sensing Letters, 2011. 8(2): p. 196-200.
35.Holtgrave, A.-K., et al., Comparing Sentinel-1 and -2 Data and Indices for Agricultural Land Use Monitoring. Remote Sensing, 2020. 12(18).
36.Yang, H., et al., A systematic method for spatio-temporal phenology estimation of paddy rice using time series Sentinel-1 images. Remote Sensing of Environment, 2021. 259.
37.Xu, L., et al., Crop Classification Based on Temporal Information Using Sentinel-1 SAR Time-Series Data. Remote Sensing, 2018. 11(1).
38.Annual Report of Agricultural from Council of Agriculture. 2022: Executive Yuan, R.O.C.(Taiwan).
39.Introduction to Yunlin Geography 2018; Available from: https://www.yunlin.gov.tw/cp.aspx?n=1357.
40.Sentinel-1 SAR User Guide. [cited 2023 Jan,13]; Available from: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar;jsessionid=21E5F896CFC2CE44017AEB3544BB24E1.eodisp-prod4040.
41.Nguyen, D.B. and W. Wagner, European Rice Cropland Mapping with Sentinel-1 Data: The Mediterranean Region Case Study. Water, 2017. 9(6).
42.Filipponi, F., Sentinel-1 GRD Preprocessing Workflow, in 3rd International Electronic Conference on Remote Sensing. 2019.
43.Zurich Instruments. Principles of Boxcar Averaging. 2021; Available from: https://www.zhinst.cn/china/en/resources/principles-of-boxcar-averaging.
44.Xie, J., et al., Speckle Filtering of GF-3 Polarimetric SAR Data with Joint Restriction Principle. Sensors (Basel), 2018. 18(5).
45.Percival, D.B. and A.T. Walden, The Discrete Wavelet Transform, in Wavelet Methods for Time Series Analysis, A.T. Walden and D.B. Percival, Editors. 2000, Cambridge University Press: Cambridge. p. 56-158.
46.Hafez, A.G. and T. Kohda. Accurate P-wave arrival detection via MODWT. in 2009 International Conference on Computer Engineering & Systems. 2009.
47.Sun, Z., et al., High Accuracy and Real-Time Positioning Using MODWT for Long Range Asymmetric Interferometer Vibration Sensors. Journal of Lightwave Technology, 2021. 39(7): p. 2205-2214.
48.Box, G.E.P., G.M. Jenkins, and G.C. Reinsel, Time series analysis : forecasting and control. 3rd ed. ed. 1994, Englewood Cliffs, N.J: Prentice Hall.
49.Landis, J.R. and G.G. Koch, The Measurement of Observer Agreement for Categorical Data. Biometrics, 1977. 33(1): p. 159-174.
50.Xiao, W., S. Xu, and T. He, Mapping Paddy Rice with Sentinel-1/2 and Phenology-, Object-Based Algorithm—A Implementation in Hangjiahu Plain in China Using GEE Platform. Remote Sensing, 2021. 13(5).
51.Son, N.-T., et al. A Phenology-Based Classification of Time-Series MODIS Data for Rice Crop Monitoring in Mekong Delta, Vietnam. Remote Sensing, 2014. 6, 135-156 DOI: 10.3390/rs6010135.
52.Badrul Hisham, N.H., et al., Monitoring of Rice Growth Phases Using Multi-Temporal Sentinel-2 Satellite Image. IOP Conference Series: Earth and Environmental Science, 2022. 1051(1): p. 012021.
53.Soriano-González, J., et al., Monitoring rice crop and yield estimation with Sentinel-2 data. Field Crops Research, 2022. 281: p. 108507.
54.Phan, H., T. Le Toan, and A. Bouvet, Understanding Dense Time Series of Sentinel-1 Backscatter from Rice Fields: Case Study in a Province of the Mekong Delta, Vietnam. Remote Sensing, 2021. 13(5).
55.Toan, T.L., et al., Rice Crop Mapping and Monitoring Using ERS-1 Data Based on Experiment and Modeling Results. IEEE Transactions on Geoscience and Remote Sensing, 1997. 35(1): p. 41-56.
56.McNairn, H., et al., Providing crop information using RADARSAT-1 and satellite optical imagery. International Journal of Remote Sensing, 2002. 23(5): p. 851-870.
57.Baghdadi, N., et al., Operational performance of current synthetic aperture radar sensors in mapping soil surface characteristics in agricultural environments: application to hydrological and erosion modelling. Hydrological Processes, 2008. 22(1): p. 9-20.
指導教授 曾國欣 審核日期 2023-1-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明