博碩士論文 105690603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:3.147.58.230
姓名 潘瑞維(Ravi Shankar Pandey)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 熱帶氣旋的環境參數及其相關地震活動
(Environmental parameters on the occurrences of tropical cyclones and the associated seismicity)
相關論文
★ 由西太平洋地區T波觀測來探討其成因與遠震參數之關係★ 以寬頻地震儀及分壓計之波形分析環境變動過程:與流體力學相關
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 此論文研究熱帶氣旋的環境因素及其可能的誘發地震活動。我使用西北太平洋北部夏季(6 月、7 月、8 月:JJA)風暴頻率和累積氣旋能量 (ACE) 的進行調查。資料包括45 年 ,來自世界上氣旋最活躍的海盆(19772021年,每年24場風暴)的熱帶氣旋 ,其中42%屬於夏季,且其中約32%直接穿過太平洋菲律賓海板塊邊界。在風暴活動極高的年份(通過風暴頻率和ACE技術),西北太平洋盆地風暴與太平洋菲律賓海板塊邊界的高地震活動相關。風暴因半徑大,甚至可以在距板塊邊界幾百公里處引發地震(相關性0.70以上)。因此比直接穿過板塊邊界的風暴(0.35以上)具有更大的相關性。本研究使用皮爾遜相關係數,該係數衡量兩個變量之間的線性相關性,由它們的協方差與標準差乘積之間的比率計算得出。對於使用基於風暴頻率分類的極端 TC 活動年測量,TC(穿過板塊邊界的 TC)頻率與太平洋-菲律賓板塊邊界的地震事件之間的相關性很強(中等)且具有相關性。 0.73(0.35),從 0.75(0.43)、0.75(0.47)到 0.79(0.66)不斷增加,深度從 120 公里(大洋岩石圈厚度)、75 公里(地震岩石圈深度)到 30 公里(張裂板塊邊緣淺層地震)。對於使用基於 ACE 的分類測量的極高 TC 活動年份,跨越板塊邊界的 TC 的上述相關性提高了 37%;相關。 0.48(21%;相關性 0.52、17%;相關性 0.55、改善 20%;相關性 0.79,地震深度分別為 120 公里、75 公里、30 公里),表明風暴的動能與引發地震。作為一種巨大的自然現象,風暴甚至可以在距板塊邊界幾百公里的地方引發地震,因此提供了比直接穿過板塊邊界的風暴(0.35 以上)更大的相關性(0.70 以上)。 Fisher 的精確和雙側卡方 (χ2) 檢驗表明,ACE 和基於 TC 頻率的技術對於北方夏季大部分研究參數是可互換的。本研究亦發現相對渦度與風暴頻率最敏感。中層對流層風(850 hPa)的作用在極低颱風活動年比在極高颱風活動年更重要。垂直切變在極高颱風活動年比極低颱風活動年更為重要。我討論了所有環境因素之間的相互關聯,以及它們對風暴頻率的影響。熱帶氣旋和地震是西北太平洋的兩種自然災害,本研究提供了寶貴的初步信息。
摘要(英) The nature and extent of response of environmental factors and possible induced seismicity are investigated using the classifications based on the storm’s frequency and the accumulated cyclone energy (ACE) in the boreal summer season (June, July, August: JJA) in the West North Pacific (WNP) during 45 years (1977-2021) of the study period. A huge number of storms (42%) in the most cyclonically active ocean basin of the world (24 storms every year during 1977-2021) belong to boreal summer, in which around 32% directly cross the Pacific-Philippine Sea Plates’ boundary. The study uses Pearson’s correlation coefficient which is a measure of linear correlation between two variables, calculated by the ratio between their covariance and product of standard deviations. For extremely high TC activity years measured using storms frequency-based classification, the correlation between the frequency of TCs (TCs that cross the plate boundary) and earthquake events at the Pacific-Philippine plates boundary is strong (moderate) with correl. 0.73 (0.35), which keeps on increasing further from 0.75 (0.43), 0.75 (0.47) to 0.79 (0.66) with decreasing depths of 120 km (oceanic lithosphere thickness), 75 km (seismological lithosphere depth) to 30 km (mid-ocean ridges and transform margins have shallow earthquakes), respectively. For extremely high TC activity years measured using ACE-based classification, the above correlation for the TCs that cross the plates’ boundary improves by a huge 37%; correl. 0.48 (21%; correl. 0.52, 17%; correl. 0.55, 20% improvement; correl. 0.79, with earthquake depths 120 km, 75 km and 30 km, respectively), suggesting that the storm’s kinetic energy is significantly linked with the triggering the earthquakes. Being a huge size of natural phenomenon, the storms can trigger earthquakes even from a few hundred km away from the plates’ boundary, thus providing a bigger correlation (above 0.70) than the storms that directly cross the plates’ boundary (above 0.35), although it is not possible with ACE based classification because ACE is more associated with stronger storms which are more than three times less than the weaker storms. The Fisher’s Exact and Two-sided chi-square (χ2) tests reveal that both ACE and TC frequency-based techniques are interchangeable for the majority of studied parameters in boreal summer except cyclonic strength-based parameters as the ACE reflects storm’s kinetic energy. The earthquake magnitudes ranging from 4.1 to 4.9 on the Richter scale account for three-fourths (75%) of the triggered earthquakes at the plates’ boundary. Relative vorticity is found as the most sensitively linked with storms’ frequency. The role of middle-level tropospheric winds (850 hPa) is found in comparably more important for extremely low-TC activity years than in extremely high-TC activity years. Vertical shear is more crucial during extremely high-TC years than extremely low-TC years. The mutual dynamic and environmental connections among all environmental factors were discussed with their observed impact on storms frequency. Tropical cyclones (TC) and earthquakes both are the two most notorious natural hazards in the WNP-related regions, causing huge human and economic losses, while the extreme TC activity years link to flood, drought and water crises in the region. Hence, such a study is essential for the welfare of society, disaster risk-related agencies and researchers worldwide.
論文目次 Acknowledgements……………………………………………...……………… a
Abstract…………………………………………………………….…………… b
Table of contents……………………………………………………………….. d
List of figures…………………………………………………………………... g
List of tables………………………………………………………………….… m
List of symbols…………………………………………………………….…… o
List of acronyms…………………………………………………………….….. p

Chapter 1 Introduction……………………………………………………..…… 01
1.1 Introduction………………………………………………………………… 01
1.2 Objectives …………………………………………………………………. 08
1.3 Literature survey…………………………………………………………… 09
1.3.1 Storms……………………………….…………………………….…….. 09
1.3.2 Environmental factors……………………………………..……………... 10
1.3.3 Earthquakes………………………………………………………………. 12
1.3.4 ACE…………………….……………………………………………….... 14
1.4 Study area……………………………………...…………………………… 15
1.5 Scope ………………………………………………………….…………… 18
1.6 Outline ………………………….………………………………………….. 18

Chapter 2 Data and Methods…………………………………………………… 20
2.1 Data ………………………………………………………………..…….… 20
2.2 Extreme high-low TC year classification method ………………………… 21
2.3 Statistical method ……….………………………………………………… 21
2.4 TC and earthquake overlapping detection method …………………..……. 22
2.5 Climatological anomaly…………………………………….…..…..……… 23
2.6 Accumulated cyclone energy………………………………………………. 23
2.7 Storms strength classification……………………...……………………….. 23
2.8 Earthquake classification………………………......……………………….. 24

Chapter 3 Statistical analysis of environmental parameters on the occurrences of tropical cyclones and earthquakes in West North Pacific region…………………………………………………………………...…..….… 25
3.1 Extreme high-low TC year classification……………………………….…... 25
3.2 TC and earthquake…………………………………...……………………… 34
3.3 Atmospheric and oceanic factors……………………………………….…… 41
3.3.1 Sea surface temperature…………………………………………………... 41
3.3.2 Sea level pressure……………………………….………………………... 43
3.3.3 Vertical velocity (omega)……………………………………………….... 45
3.3.4 Vertical wind shear……………………………………………………….. 46
3.3.5 Outgoing longwave radiation……………………………………………... 49
3.3.6 Relative humidity……..…………………………………………………... 51
3.3.7 Vorticity…………………………………………………………………... 52
3.3.8 Geopotential height………………………...……………………………... 54
3.3.9 Vector winds at 850hPa and 200hPa...…………..………………………... 56
3.4 Mutual correlation………………………………...…………………….…… 58

Chapter 4 Detailed statistical analysis of environmental parameters on the occurrences of tropical cyclones and earthquakes using Accumulated Cyclone Energy…...….… 74
4.1 Accumulated Cyclone Energy…………………………………….…….…... 74
4.2 Storms strength classification……………………......……………………… 82
4.3 Earthquake distribution…………...…………………………………….…… 84
4.4 Atmospheric and oceanic factors……………………………………….…… 89
4.5 Upgraded mutual correlations………………….……………………….…… 97

Chapter 5 Summary and conclusions…………………………………..…...….… 123
5.1 Statistical analysis of environmental parameters on the occurrences of tropical cyclones and earthquakes in West North Pacific region…………………...…….…….…... 123
5.2 Detailed statistical analysis of environmental parameters on the occurrences of tropical cyclones and earthquakes using Accumulated Cyclone Energy…….…………… 125
5.3 Key points of the dissertation…......…………………………………….…… 131
5.4 Future scope of the dissertation…......……………………………………..… 135


References…………………………...……………………………………….…… 137
參考文獻 Bibee LD, ShorJr GG, Lu RS (1980) Inter-arc spreading in the Mariana Trough. Marine Geology. 35:183-197. https://doi.org/10.1016/0025-3227(80)90030-4
BRITANNICA (2022) Climate and the oceans: Conditions associated with cyclone formation. BRITANNICA. https://www.britannica.com/science/climate-meteorology/Climate-and-the-oceans. Accessed 04 October 2022
Camargo SJ, Sobel AH (2005) Western North Pacific Tropical Cyclone Intensity and ENSO. Journal of Climate 18(15):2996-3006. https://journals.ametsoc.org/view/journals/clim/18/15/jcli3457.1.xml
Chan JCL (2006) Comment on “Changes in tropical cyclone number, duration, and intensity in a warming environment”. Science 311 (5768):1713. https://www.science.org/doi/10.1126/science.1121522
Chen Y, Fang P, Yang J, Liu C, Zhang A, Wu T, Gong T, Yin J, Duan Z, Ou J (2022) A statistics and physics-based tropical cyclone full track model for catastrophe risk modeling. Dis Prev Res 1:3. http://dx.doi.org/10.20517/dpr.2021.08
Chi WC, Chen WJ, Dolenc D, Kuo BY, Liu CR, Collins J (2010) (2) Seismological records of the 2006 Typhoon Shanshan that lits up seismic stations along its way. Seismol Res Lett 81(e):592–596. https://doi.org/10.1785/gssrl.81.4.592
Chi WC, Chen WJ, Kuo BY et al (2010) (1) Seismic monitoring of western Pacific typhoons. Mar Geophys Res 31:239–251. https://doi.org/10.1007/s11001-010-9105-x
Climate Prediction center (2022) Background information: Eastern Pacific Hurricane Season. United States Climate Prediction Center. Accessed 22 August 2022
Condie KC (2011) Chapter 4 - The Mantle, Earth as an Evolving Planetary System (Second Edition). Academic Press 121-180. https://doi.org/10.1016/B978-0-12-385227-4.00007-9
DeMaria M, Kaplan J (1999) An updated statistical hurricane intensity prediction scheme (SHIPS) for the Atlantic and eastern North Pacific basins. Wea. Forecasting 14:326–337. https://journals.ametsoc.org/view/journals/wefo/14/3/1520-0434_1999_014_0326_auship_2_0_co_2.xml
Fitzpatrick PJ (1997) Understanding and forecasting tropical cyclone intensity change with the Typhoon Intensity Predictions Scheme (TIPS). Wea. Forecasting 12:826–846. https://www.gri.msstate.edu/publications/docs/1997/01/5230tips.pdf
Gallina GM, Velden CS (2002) Environmental vertical wind shear and tropical cyclone intensity change utilizing satellite derived wind information. Amer. Meteor. Soc. 172–173
Gavin PH, Michael WH, Harley MB, Antonio HV, Kevin P, Gregory MS (2013) U.S. Geological Survey Seismicity of the Earth 1900-2012: Philippine Sea plate and vicinity reports. https://doi.org/10.3133/ofr20101083M
Gray WM (1968) Global view of the origin of tropical disturbances and storms. Mon. Weather Rev. 96:669–700. https://doi.org/10.1175/1520-0493(1968)096<0669:gvotoo>2.0.co;2
Geissler WH, Jokat W, Jegen M, Baba K (2017) Thickness of the oceanic crust, the lithosphere, and the mantle transition zone in the vicinity of the Tristan da Cunha hot spot estimated from ocean-bottom and ocean-island seismometer receiver functions. Tectonophysics 716:33-51. https://doi.org/10.1016/j.tecto.2016.12.013
Gualtieri L, Camargo SJ, Pascale S, Pons FM, Ekström G (2018) The persistent signature of tropical cyclones in ambient seismic noise. Earth and Planetary Science Letters 484:287–294. https://doi.org/10.1016/j.epsl.2017.12.026
Hanley D, Molinari J, Keyser, D (2001) A composite study of the interactions between tropical cyclones and upper-tropospheric troughs. Mon. Wea. Rev. 129:2570–2584. https://journals.ametsoc.org/view/journals/mwre/129/10/1520-0493_2001_129_2570_acsoti_2.0.co_2.xml
Hornyak T (2020) Typhoons Getting Stronger, Making Landfall More Often. Eos Transactions American Geophysical Union 101. https://doi.org/10.1016/j.wace.2020.100272
Hsu YJ, Chang YS, Liu CC, Lee HM, Linde AT, Sacks S, Kitagawa G, Chen YG (2015) Revisiting borehole strain, typhoons, and slow earthquakes using quantitative estimates of precipitation-induced strain changes. J. Geophys. Res. Solid Earth. 120 (6):4556–4571.
Janapati J, Seela BK., Lin P, Wang PK, Kumar U (2019) An assessment of tropical cyclones rainfall erosivity for Taiwan. Sci. Rep. 9:15862. https://doi.org/10.1038/s41598-019-52028-5
Kalnay E et al (1996) The NCEP/NCAR 40-Year Reanalysis Project. Bull Amer Meteor Soc 77:437–471. https://ui.adsabs.harvard.edu/link_gateway/1996BAMS...77..437K/doi:10.1175/1520-0477(1996)077%3C0437:TNYRP%3E2.0.CO;2
Kiehl JT, Trenberth KE (1997) Earth′s Annual Global Mean Energy Budget, Bulletin of the American Meteorological Society 78(2):197-208. https://journals.ametsoc.org/view/journals/bams/78/2/1520-0477_1997_078_0197_eagmeb_2_0_co_2.xml
Knapp KR, Diamond HJ, Kossin JP, Kruk MC, Schreck CJ (2018) International Best Track Archive for Climate Stewardship (IBTrACS) Project Version 4. NOAA National Centers for Environmental Information. doi:10.25921/82ty-9e16
Knapp KR, Kruk MC, Levinson DH, Diamond HJ, Neumann CJ (2010) The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone best track data. Bulletin of the American Meteorological Society 91:363-376. doi:10.1175/2009BAMS2755.1
Kornei K (2020) Storms Interact but Rarely Merge into Bigger Tempests. Eos Transactions American Geophysical Union 101. https://doi.org/10.1016/j.wace.2020.100272
Li F, Li J, Wang H et al (2022) Role of the intraseasonal IPCO in the absence of typhoons in July 2020. Clim Dyn. https://doi.org/10.1007/s00382-022-06527-3
Lin J, Lin J, Xu M (2017) Microseisms generated by super typhoon Megi in the western Pacific Ocean. Journal of Geophysical Research: Oceans 122:9518– 9529. https://doi.org/10.1002/2017JC013310
Liou YA, Pandey RS (2020) Interactions between typhoons Parma and Melor in the North West Pacific Ocean. Weather and Climate Extremes 29. https://doi.org/10.1016/j.wace.2020.100272
Liu C, Linde A, Sacks I (2009) Slow earthquakes triggered by typhoons. Nature 459:833–836. https://doi.org/10.1038/nature08042
Liu Q, Ni S, Qiu Y, Zeng X, Zhang B, Wang F et al (2020) Observation of teleseismic S wave microseisms generated by typhoons in the Western Pacific Ocean. Geophysical Research Letters 47:e2020GL089031. https://doi.org/10.1029/2020GL089031
Lovett R (2013) Hurricane may have triggered earthquake aftershocks. Nature. https://doi.org/10.1038/nature.2013.12839
Lu X, Yu H, Lei X (2011) Statistics for size and radial wind profile of tropical cyclones in the western North Pacific. Acta Meteorol Sin 25:104–112. https://doi.org/10.1007/s13351-011-0008-9
Mei W, Xie SP, Primeau F, McWilliams JC, Pasquero C (2015) Northwestern Pacific typhoon intensity controlled by changes in ocean temperatures. Sci Adv. 1(4):e1500014. doi: 10.1126/sciadv.1500014
Mouyen M, Canitano A, Chao BF, Hsu YJ, Steer P, Longuevergne L, Boy JP (2017) Typhoon-induced ground deformation. Geophys. Res. Lett. 44 (21):11004–11011.
NOAA Hurricane Research Division Report (2010) http://www.aoml.noaa.gov/hrd/tcfaq/E25.html. Accessed Oct 26, 2018
NCCO (2022) North Carolina Climate Office: Hurricanes: Development. NCCO. https://legacy.climate.ncsu.edu/climate/hurricanes/development. Accessed 04 October 2022
PAGASA (2022) About tropical cyclones. GOVPH. https://www.pagasa.dost.gov.ph/information/about-tropical-cyclone. Accessed 04 October 2022
Pandey RS, Liou YA (2020) Decadal behaviors of tropical storm tracks in the North West Pacific Ocean. Atmos. Res. 246. https://doi.org/10.1016/j.wace.2021.100307
Pandey RS, Liou YA (2022) Typhoon strength rising in the past four decades. Weather and Climate Extremes 36. https://doi.org/10.1016/j.wace.2022.100446
Pandey RS, Liou YA, Liu JC (2021) Season-dependent Variability and Influential Environmental Factors of Super-typhoons in the Northwest Pacific Basin during 2013-2017. Weather and Climate Extremes 31. https://doi.org/10.1016/j.wace.2021.100307
Paterson LA, Hanstrum BN, Davidson NE, Weber HC (2005) Influence of Environmental Vertical Wind Shear on the Intensity of Hurricane-Strength Tropical Cyclones in the Australian Region Monthly Weather Review 133(12):3644-3660. https://journals.ametsoc.org/view/journals/mwre/133/12/mwr3041.1.xml. Accessed 04 October 2022
Peduzzi P, Chatenoux B, Dao H, De Bono A, Herold C, Kossin J, Mouton F, Nordbeck O (2012) Global trends in tropical cyclone risk. Nature Clim Change. 2:289–294. https://doi.org/10.1038/nclimate1410
Retailleau L, Gualtieri L (2019) Toward high-resolution period-dependent seismic monitoring of tropical cyclones. Geophysical Research Letters 46:1329– 1337. https://doi.org/10.1029/2018GL080785
Retailleau L, Gualtieri L (2021) Multi-phase seismic source imprint of tropical cyclones. Nat Commun 12:2064. https://doi.org/10.1038/s41467-021-22231-y
Stowasser M, Wang Y, Hamilton K (2007) Tropical Cyclone Changes in the Western North Pacific in a Global Warming Scenario. Journal of Climate 20(11):2378-2396. https://journals.ametsoc.org/view/journals/clim/20/11/jcli4126.1.xml
Subrahmanyam MV, Shengyan Y, Raju PVS (2020) Typhoon Haikui induced sea surface temperature cooling and rainfall influence over Zhejiang coastal waters. Atmósfera 34(4):385–394. https://doi.org/10.20937/ATM.52845
Takahashi N, Kodaira S, Tatsumi Y, Kaneda Y, Suyehiro K (2008) Structure and growth of the Izu-Bonin-Mariana arc crust: 1. Seismic constraint on crust and mantle structure of the Mariana arc–back-arc system. Journal Of Geophysical Research. 113:B01104. doi:10.1029/2007JB005120
Teng H, Kuo Y, Done JM (2021) Importance of Midlevel Moisture for Tropical Cyclone Formation in Easterly and Monsoon Environments over the Western North Pacific. Monthly Weather Review 149(7):2449-2469. https://journals.ametsoc.org/view/journals/mwre/149/7/MWR-D-20-0313.1.xml
Teng WH, Hsu MH, Wu CH et al (2006) Impact of Flood Disasters on Taiwan in the Last Quarter Century. Nat Hazards 37:191–207. https://doi.org/10.1007/s11069-005-4667-7
Tsuji T, Nakamura Y, Tokuyama H, Coffin MF, Koda K (2007) Oceanic crust and Moho of the Pacific Plate in the eastern Ogasawara Plateau region. Island Arc. 16:361-373. https://doi.org/10.1111/j.1440-1738.2007.00589.x
Wan K, Lin J, Xia, S., Sun, J., Xu, M., Yang, H., et al. (2019). Deep seismic structure across the southernmost Mariana Trench: Implications for arc rifting and plate hydration. Journal of Geophysical Research: Solid Earth. 124:4710– 4727. https://doi.org/10.1029/2018JB017080
WMO (1976) Special Environmental Report no.8: The Quantitative Evaluation of the Risk of Disaster from Tropical Cyclones. https://library.wmo.int/doc_num.php?explnum_id=8258
Wu Y, Chen S, Li W, Fang R, Liu H (2020) Relative vorticity is the major environmental factor controlling tropical cyclone intensification over the Western North Pacific. Atmospheric Research 237. https://doi.org/10.1016/j.atmosres.2020.104874
Zehr RM, (1992) Tropical cyclogenesis in the western North Pacific. NOAA Tech. Rep. NESDIS 61:181.
指導教授 戚務正(Wu-Cheng Chi) 審核日期 2023-1-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明