博碩士論文 105384602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:54 、訪客IP:18.221.39.35
姓名 尼瓦娜(Wa Ode Cakra Nirwana)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 探討以Amycolatopsis thermoflava轉化阿魏酸生產香草醛之研究
(Bioconversion of Ferulic Acid to Vanillin by Amycolatopsis thermoflava)
相關論文
★ 探討菌體形態對於裂褶菌多醣體之影響★ 探討不同培養方式對猴頭菇抗氧化與抗腫瘤性質的影響
★ 探討不同培養溫度Aspergillus niger 對丹參之機能性影響★ 光合菌在光生物反應器產氫之研究
★ 探討培養溫度對巴西蘑菇液態醱酵之影響★ 利用批式液態培養來探討檸檬酸對裂褶菌生長及其多醣體生成影響之研究
★ 探討不同培養基組成對光合菌Rhodobacter sphaeroides生產Coenzyme Q10之研究★ 利用混合特定菌種生產氫氣之研究
★ 探討氧化還原電位作為Clostridium butyricum連續產氫之研究★ 探討培養基之pH值與Xanthan gum的添加對巴西蘑菇多醣體生產之影響
★ 探討麩胺酸的添加和供氧量對液態發酵生產裂褶菌多醣體之研究★ 探討以兩水相系統提昇Clostridium butyricum產氫之研究
★ 探討通氣量對於樟芝醱酵生產生物鹼之影響★ 探討深層發酵中環境因子對巴西洋菇生產多醣之影響
★ 探討通氣量對於樟芝發酵生產與純化脂解酵素之研究★ 探討以活性碳吸附酸來提昇Clostridium butyricum產氫之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-11-10以後開放)
摘要(中) 通過阿魏酸 (FA) 的微生物轉化生產香草醛最近引起了更多關注,因為從醃製的香草莢生產天然香草醛是一個昂貴的過程。然而,FA和香草醛的毒性、FA和香草醛作為碳源和能源的利用以及香草醛的高度降解是獲得高滴度香草醛的主要限制。
這項工作旨在通過工藝優化最大限度地利用 Amycolatopsis thermoflava 將 FA 生物轉化為香草醛的效率。展示了兩種方法:(第 1 部分)使用商業 FA 作為前體的生物轉化,(第 2 部分)使用來自玉米芯鹼性水解物的 FA 進行生物轉化,以利用農工業廢料作為廉價原材料。
使用商業 FA 生產香草醛(第 1 部分)表明,補充 FA 的時間強烈影響香草醛的形成。在穩定期早期加入FA有利於獲得高細胞密度和高產量。對培養溫度影響的研究表明,45 oC 培養有利於細胞生長,而 30 oC 則有利於高產,因為它可以降低香草醛的降解速度。因此,進行了兩階段分批發酵。這種策略允許使用更高濃度的 FA。為了提高香草醛的產量,通過控制FA的溫度和補料時間實施了兩階段補料分批發酵。與 30 oC 的單階段分批發酵相比,該策略顯著提高了香蘭素的產量和生產力,分別在第 0 小時將 FA 添加到肉湯中。對於分批補料操作中FA的補料方式,延長FA補充時間可以降低其對細胞的毒性作用,從而提高細胞生長速度,縮短生物轉化時間。但是,它也加速了香草醛的降解。
對於第二部分,工作開始於優化超聲輔助提取條件,以使用鹼處理從玉米芯中釋放 FA。最佳水解條件是在 0.5 M NaOH 濃度和 10% 固體負載下提取 30 分鐘,導致相對較高濃度的 FA 715 mg/L 和對香豆酸 1025 mg/L。為了最大限度地從 FA 中形成香草醛,研究了五個參數,包括滅菌方法、營養限制、初始生物量濃度、培養溫度和還原糖控制的影響。結果表明,使用高壓滅菌的水解產物進行生物轉化對細胞生長和香草醛形成都產生了較差的結果。巴氏殺菌更有利,然而,污染物的存在限制了整個過程。因此,制定了營養限制策略。對初始生物量濃度和培養溫度影響的觀察表明,最大香草醛形成分別在 1.5 g/L 和 45 oC 時獲得。為了優化香草醛的生產,開發了一種還原糖控制策略。與使用高壓滅菌水解物的生物轉化相比,香草醛的產量和生產力分別顯著增加了 29.5 倍和 585 倍。
摘要(英) Vanillin production through a microbial transformation of ferulic acid (FA) has recently attracted more attention since producing natural vanillin from cured vanilla pods is a costly process. However, the toxicity of FA and vanillin, utilization of FA and vanillin as carbon and energy sources, and high degradation of vanillin are the main limitations to obtaining a high titer of vanillin.

This work aims to maximize the efficiency of bioconversion of FA to vanillin using Amycolatopsis thermoflava by process optimization. Two approaches were demonstrated: (Part 1) bioconversion using commercial FA as a precursor, (Part 2) bioconversion using FA from alkaline hydrolysate of corn cobs to utilize agro-industrial waste as a cheap raw material.

Vanillin production using commercial FA (Part 1) showed that the timing of FA supplementation strongly affects vanillin formation. The addition of FA in the early stationary phase was favorable to obtaining high cell density and high yield. Studies on the effect of culture temperature showed that cultivation at 45 oC favored cell growth, while 30 oC favored high yields since it could reduce the rate of vanillin degradation. Therefore, a two-stage batch fermentation was conducted. This strategy allowed the use of higher concentrations of FA. To increase vanillin productivity, a two-stage fed-batch fermentation by controlling the temperature and feeding time of FA was implemented. This strategy significantly increased the yield and productivity of vanillin by 1.8 and 12.0 folds, respectively, compared to single-stage batch fermentation at 30 oC where FA was initially added to the broth at the 0th h. Concerning the feeding method of FA at fed-batch operation, expanding the time of FA supplementation could lower its toxic effect on cells, thereby increasing cell growth rate and shortening bioconversion time. However, it also accelerated the degradation of vanillin.

For part two, the work was started by optimizing the ultrasound-assisted extraction conditions to release FA from corn cobs using alkaline treatment. Optimal hydrolysis conditions were obtained at 0.5 M NaOH concentration and 10% solid loading for 30 min of extraction, resulting in relatively high concentrations of FA 715 mg/L and p-Coumaric acid 1025 mg/L. To maximize vanillin formation from FA, five parameters were investigated including the effects of sterilization method, nutrient limitation, initial biomass concentration, culture temperature, and reducing sugar control. The results showed that bioconversion using autoclaved hydrolysate gave poor results both for cell growth and vanillin formation. Pasteurization was more favorable however, the presence of contaminants limited the entire process. Therefore, a nutrient limitation strategy was developed. Observations on the effects of initial biomass concentration and culture temperature showed that the maximum vanillin formation was obtained at 1.5 g/L and 45 oC, respectively. To optimize vanillin production, a reducing sugar control strategy was developed. The yield and productivity of vanillin significantly increased by 29.5 and 585 folds, respectively, compared to bioconversion using autoclaved hydrolysate.
關鍵字(中) ★ 生物轉化
★ 香草醛
★ 阿魏酸
★ 農業廢棄物
★ 玉米棒子
★ Amycolatopsis thermoflava
關鍵字(英) ★ Bioconversion
★ Vanillin
★ Ferulic acid
★ Agrowaste
★ Corn cobs
★ Amycolatopsis thermoflava
論文目次 摘要 i
ABSTRACT iii
ACKNOWLEDGEMENT v
TABLE OF CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES xv
CHAPTER 1 INTRODUCTION 1
1-1 Background 1
1-2 Aim of the research 3
CHAPTER 2 LITERATURE REVIEW 5
2-1 Vanilla and Vanillin 5
2-2 Vanillin Production 6
2-2-1 Vanillin from vanilla plant 6
2-2-2 Vanillin from chemical synthetics 10
2-2-3 Vanillin from biotechnological routes 11
2-2-3-1 De novo biosynthetic 11
2-2-3-2 Bioconversion or biotransformation 13
2-3 Bioconversion of ferulic acid to vanillin 13
2-4 Agro-industrial wastes for vanillin production 19
2-4-1 Releasing ferulic acid from agro-industrial waste 19
2-4-2 Bioconversion of ferulic acid from agro-industrial waste to vanillin 20
2-4-3 Bioconversion of ferulic acid from corn cobs to vanillin 21
CHAPTER 3 MATERIALS AND METHODS 22
3-1 Scheme of the research 22
3-2 Chemicals 23
3-3 Equipment and Instruments 24
3-4 Microorganism 25
3-5 Medium and culture conditions 26
3-5-1 Bioconversion of commercial ferulic acid to vanillin by Amycolatopsis thermoflava 26
3-5-1-1 Effect of culture temperature, ferulic acid initially added at the 0th h 27
3-5-1-2 Effect of initial feeding time of ferulic acid 27
3-5-1-3 Effect of culture temperature, ferulic acid initially added in the early stationary phase 27
3-5-1-4 Two-stage batch fermentation 28
3-5-1-5 Two-stage batch fermentation with high concentrations of ferulic acid 28
3-5-1-6 Two-stage fed-batch fermentation 28
3-5-2 Bioconversion of ferulic acid from corn cobs to vanillin by Amycolatopsis thermoflava 28
3-5-2-1 Releasing ferulic acid from corn cobs by alkaline treatment 28
3-5-2-2 Effect of sterilization method 29
3-5-2-3 Effect of nutrient limitation 29
3-5-2-4 Effect of initial biomass concentration 30
3-5-2-5 Effect of temperature 30
3-5-2-6 Effect of reducing sugar control 30
3-6 Analysis methods 31
3-6-1 Biomass concentration 31
3-6-2 Reducing sugar 31
3-6-3 Phenolic compounds concentration 32
CHAPTER 4 RESULTS AND DISCUSSION 36
4-1 Bioconversion of commercial ferulic acid to vanillin by Amycolatopsis thermoflava 36
4-1-1 Effect of culture temperature, ferulic acid initially added at the 0th h 36
4-1-2 Effect of initial feeding time of ferulic acid 42
4-1-3 Effect of culture temperature, ferulic acid initially added in the early stationary phase 47
4-1-4 Two-stage batch fermentation 53
4-1-5 Two-stage batch fermentation using high concentrations of ferulic acid 54
4-1-6 Two-stage fed-batch fermentation 58
4-2 Bioconversion of ferulic acid from corn cobs to vanillin by Amycolatopsis thermoflava 62
4-2-1 Releasing ferulic acid from corn cobs by alkaline treatment 62
4-2-2 Effect of sterilization method 64
4-2-3 Effect of nutrient limitation 68
4-2-4 Effect of initial biomass concentration 75
4-2-5 Effect of temperature 79
4-2-6 Effect of reducing sugar control 85
CHAPTER 5 CONCLUSION AND RECOMMENDATIONS 88
5-1 Conclusion 88
5-2 Recommendations 88
REFERENCES 89
參考文獻 [1] A. Braga, C. Guerreiro, I. Belo, “Generation of flavors and fragrances through biotransformation and de novo synthesis”, Food and Bioprocess Technology, Vol 11, pp. 2217–2228, 2018.
[2] Grand view research. (2019). In flavors & fragrances market worth $28.64 billion by 2025. https://www.grandviewresearch.com.
[3] N.J. Gallage and B.L. Møller, “Vanillin-bioconversion and bioengineering of the most popular plant flavor and its de novo biosynthesis in the vanilla orchid”, Molecular Plant, Vol 8, pp. 40–57, 2015.
[4] G.A. Martău, L.F. Călinoiu, D.C. Vodnar, “Bio-vanillin: Towards a sustainable industrial production”, Trends in Food Science and Technology, Vol 109, pp. 579–592, 2021.
[5] A.K. Sinha, U.K. Sharma, N. Sharma, “A comprehensive review on vanilla flavor: Extraction, isolation and quantification of vanillin and others constituents”, International Journal of Food Sciences and Nutrition, Vol 59, pp. 299–326, 2008.
[6] S.R. Rao, and G.A. Ravishankar, “Vanilla flavour: Production by conventional and biotechnological routes”, Journal of the Science of Food and Agriculture, Vol 80, pp. 289–304, 2000.
[7] G. Banerjee and P. Chattopadhyay, “Vanillin biotechnology: the perspectives and future”, Journal of the Science of Food and Agriculture, Vol 99, pp. 499–506, 2019.
[8] A.P. Dionísio, G. Molina, D.S. de Carvalho, R. dos Santos, J.L. Bicas, G.M. Pastore, Natural flavourings from biotechnology for foods and beverages, In: D. Baines, R. Seal, (Eds.), Natural Food Additives, Ingredients and Flavorings. Woodhead Publishing, Cambridge, pp. 231–259, 2012.
[9] F. Luziatelli, L. Brunetti, A.G. Ficca, M. Ruzzi, “Maximizing the Efficiency of Vanillin Production by Biocatalyst Enhancement and Process Optimization” Frontiers in Bioengineering and Biotechnology, Vol 7, pp. 1–14, 2019.
[10] G. Bettio, L.C. Zardo, C.A. Rosa, M.A.Z. Ayub, “Bioconversion of ferulic acid into aroma compounds by newly isolated yeast strains of the Latin American biodiversity”, Biotechnology Progress, Vol 37, pp. 1–15, 2020.
[11] J. Overhage, H. Priefert, J. Rabenhorst, A. Steinbüchel, “Biotransformation of eugenol to vanillin by a mutant of Pseudomonas sp. strain HR199 constructed by disruption of the vanillin dehydrogenase (vdh) gene” Applied Microbiology and Biotechnology, Vol 52, pp. 820–828, 1999.
[12] M. Ashengroph, I. Nahvi, H. Zarkesh-Esfahani, F. Momenbeik, “Conversion of isoeugenol to vanillin by Psychrobacter sp. strain CSW4”, Applied Biochemistry and Biotechnology, Vol 166, pp. 1–12, 2012.
[13] E. Bonnin, L. Lesage-Meessen, M. Asther, J.F. Thibault, “Enhanced bioconversion of vanillic acid into vanillin by the use of ‘natural’ cellobiose”, Journal of the Science of Food and Agriculture, Vol 79, pp. 484–486, 1999.
[14] A. Converti, B. Aliakbarian, J.M. Domínguez, G.B. Vázquez, P. Perego, “Microbial production of biovanillin”, Brazilian Journal of Microbiology, Vol 41, pp. 519–530, 2010.
[15] Yoon SH, E.G. Lee, A. Das, S.H. Lee, C. Li, H.K. Ryu, et al., “Enhanced vanillin production from recombinant E. coli using NTG mutagenesis and adsorbent resin”, Biotechnology Progress, Vol 23, pp. 1143–1148, 2007.
[16] X.K. Ma and A.J. Daugulis, “Transformation of ferulic acid to vanillin using a fed-batch solid-liquid two-phase partitioning bioreactor”, Biotechnology Progress, Vol 30, pp. 207–214, 2014.
[17] A. Muheim and K. Lerch, “Towards a high-yield bioconversion of ferulic acid to vanillin”, Applied Microbiology and Biotechnology, Vol 51, pp. 456–461, 1999.
[18] D. Hua, C. Ma, L. Song, L. Shan, Z. Zhang, Z. Deng, P. Xu, “Enhanced vanillin production from ferulic acid using adsorbent resin”, Applied Microbiology and Biotechnology, Vol 74, pp. 783–790, 2007.
[19] X.K. Ma and A.J. Daugulis, “Effect of bioconversion conditions on vanillin production by Amycolatopsis sp. ATCC 39116 through an analysis of competing by-product formation”, Bioprocess and Biosystems Engineering, Vol 37, pp. 891–899, 2014.
[20] N. Pérez-Rodríguez, R.P.S. Oliveira, A.M.T. Agrasar, J.M. Domínguez, “Ferulic acid transformation into the main vanilla aroma compounds by Amycolatopsis sp. ATCC 39116”, Applied Microbiology and Biotechnology, Vol 100, pp. 1677–1689, 2016.
[21] J.B. Sutherland, D.L. Crawford, A.L. Pometto, “Metabolism of cinnamic, p-coumaric, and ferulic acids by Streptomyces setonii”, Canadian Journal of Microbiology, Vol 29, pp. 1253–1257, 1983.
[22] D.D. Gioia, F. Luziatelli, A. Negroni, A.G. Ficca, F. Fava, M. Ruzzi, “Metabolic engineering of Pseudomonas fluorescens for the production of vanillin from ferulic acid”, Journal of Biotechnology, Vol 156, pp. 309–316, 2011.
[23] P. Barghini, D.D. Gioia, F. Fava, M. Ruzzi, “Vanillin production using metabolically engineered Escherichia coli under non-growing conditions”, Microbial Cell Factories, Vol 6, 2007.
[24] J. Oddou, B.C. Ceccaldi, C. Stentelaire, L. Lesage-Meessen, M. Asther, “Improvement of ferulic acid bioconversion into vanillin by use of high- density cultures of Pycnoporus cinnabarinus”, Applied Microbiology and Biotechnology, Vol 53, pp. 1–6, 1999.
[25] P. Chen, L. Yan, Z. Wu, S. Li, Z. Bai, X. Yan, et al., “A microbial transformation using Bacillus subtilis B7-S to produce natural vanillin from ferulic acid”, Scientific Reports, Vol 6, pp. 1–10, 2016.
[26] L. Yan, P. Chen, S. Zhang, S. Li, X. Yan, N. Wang, N. Liang, H. Li, “Biotransformation of ferulic acid to vanillin in the packed bed-stirred fermentors”, Scientific Reports, Vol 6, pp. 1–12, 2016.
[27] R. Valério, A.R.S. Bernardino, C.A.V. Torres, C. Brazinha, M.L. Tavares, J.G. Crespo, M.A.M. Reis, “Feeding strategies to optimize vanillin production by Amycolatopsis sp. ATCC 39116”, Bioprocess and Biosystems Engineering, Vol 44, pp. 737–747, 2021.
[28] L. Lesage-Meessen, C. Stentelaire, A. Lomascolo, D. Couteau, A. Mi, S. Moukha, E. Record, J.C. Sigoillot, M. Asther, “Fungal transformation of FA from sugar beet pulp to natural vanillin”, Journal of the Science of Food and Agriculture, Vol 79, pp. 487–490, 1999.
[29] L. Lesage-Meessen, A. Lomascolo, E. Bonnin, J.F. Thibault, A. Buleon, M. Roller, et al., “A biotechnological process involving filamentous fungi to produce natural crystalline vanillin from maize bran”, Applied Biochemistry and Biotechnology, Vol 102–103, pp. 141–153, 2002.
[30] L. Zheng, P. Zheng, Z. Sun, Y. Bai, J. Wang, X. Guo, “Production of vanillin from waste residue of rice bran oil by Aspergillus niger and Pycnoporus cinnabarinus”, Bioresource Technology, Vol 98, pp. 1115–1119, 2007.
[31] B.R. Torres, B. Aliakbarian, P. Torre, P. Perego, J.M. Domínguez, M. Zilli, A. Converti, “Vanillin bioproduction from alkaline hydrolyzate of corn cob by Escherichia coli JM109/pBB1”, Enzyme and Microbial Technology, Vol 44, pp. 154–158, 2009.
[32] D. Chakraborty, A. Selvam, B. Kaur, J.W.C. Wong, O.P. Karthikeyan, “Application of recombinant Pediococcus acidilactici BD16 (fcs +/ech +) for bioconversion of agrowaste to vanillin”, Applied Microbiology and Biotechnology, Vol 101, pp. 5615–5626, 2017.
[33] P. Chattopadhyay, G. Banerjee, S.K. Sen, “Cleaner production of vanillin through biotransformation of ferulic acid esters from agroresidue by Streptomyces sannanensis”, Journal of Cleaner Production, Vol 182, pp. 272–279, 2018.
[34] D.D. Gioia, L. Sciubba, L. Setti, F. Luziatelli, M. Ruzzi, D. Zanichelli, F. Fava, “Production of biovanillin from wheat bran”, Enzyme and Microbial Technology, Vol 41, pp. 498–505, 2007.
[35] D.D. Gioia, L. Sciubba, M. Ruzzi, L. Setti, F. Fava, “Production of vanillin from wheat bran hydrolyzates via microbial bioconversion”, Journal of Chemical Technology and Biotechnology, Vol 84, pp. 1441–1448, 2009.
[36] C.T. Rejani and S. Radhakrishnan, “Microbial conversion of vanillin from ferulic acid extracted from raw coir pith”, Natural Product Research, pp. 1–9, 2020.
[37] P.L. Tang and O. Hassan, “Bioconversion of ferulic acid attained from pineapple peels and pineapple crown leaves into vanillic acid and vanillin by Aspergillus niger I-1472”, BMC Chemistry, Vol 14, pp. 1–11, 2020.
[38] S. Khoyratty, H. Kodja, R. Verpoorte, “Vanilla flavor production methods: A review”, Industrial Crops and Products, Vol 125, pp. 433–442, 2018.
[39] Dried vanilla pods and vanilla orchid. https://en.wikipedia.org. Accessed on March 1, 2022.
[40] I. Baqueiro-Peña and J.Á. Guerrero-Beltrán, “Vanilla (Vanilla planifolia Andr.), its residues and other industrial by-products for recovering high value flavor molecules: A review”, Journal of Applied Research on Medicinal and Aromatic Plants, Vol 6, pp. 1–9, 2017.
[41] A.S. Ranadive, Vanilla: cultivation, curing, chemistry, technology and commercial products, In: G. Charalambous (Ed.) Spices, herbs and edible fungi. Elsevier Science B.V., Amsterdam, pp. 517-576, 1994.
[42] K. Anuradha, B.N. Shyamala, M.M. Naidu, “Vanilla- Its Science of Cultivation, Curing, Chemistry, and Nutraceutical Properties”, Critical Reviews in Food Science and Nutrition, Vol 53, pp. 1250–1276, 2013.
[43] A.S. Ranadive. Quality Control of Vanilla Beans and Extracts. In: D.Havkin-Frenkel, F.C. Belanger, (Eds.), Handbook of Vanilla Science and Technology, Blackwell Publishing Ltd., pp. 141–160, 2011.
[44] Vanilla plant at flowering stage. https://sites.evergreen.edu. Accessed on March 1, 2022.
[45] Artificial pollination by hand. https://www.mainepublic.org. Accessed on March 1, 2022.
[46] Vanilla beans maturing on the vine. https://keolamagazine.com. Accessed on March 1, 2022.
[47] H. Priefert, J. Rabenhorst, A. Steinbüchel, “Biotechnological production of vanillin”, Applied Microbiology and Biotechnology, Vol 56, pp. 296–314, 2001.
[48] M.B. Hocking, “Vanillin: Synthetic flavoring from spent sulfite liquor”, Journal of Chemical Education, Vol 74, pp. 1055–1059, 1997.
[49] M. Fache, B. Boutevin, S. Caillol, “Vanillin Production from Lignin and Its Use as a Renewable Chemical”, ACS Sustainable Chemistry and Engineering, Vol 4, pp. 35–46, 2016.
[50] R. Ciriminna, A. Fidalgo, F. Meneguzzo, F. Parrino, L.M. Ilharco, M. Pagliaro, “Vanillin: The Case for Greener Production Driven by Sustainability Megatrend”, Chemistry Open, Vol 8, pp. 660–667, 2019.
[51] K. Li, J.W. Frost, “Synthesis of vanillin from glucose”, Journal of the American Chemical Society, Vol 120, pp. 10545–10546, 1998.
[52] E.H. Hansen, B.L. Møller, G.R. Kock, C.M. Bünner, C. Kristensen, O.R. Jensen, et al., “De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker’s yeast (Saccharomyces cerevisiae)”, Applied and Environmental Microbiology, Vol 75, pp. 2765–2774, 2009.
[53] A.R. Brochado, C. Matos, B.L. Møller, J. Hansen, U.H. Mortensen, K.R. Patil, “Improved vanillin production in baker’s yeast through in silico design”, Microbial Cell Factories, Vol 9, pp. 1–15, 2010.
[54] A.M. Kunjapur, Y. Tarasova, K.L,J. Prather, “Synthesis and accumulation of aromatic aldehydes in an engineered strain of Escherichia coli”, Journal of the American Chemical Society, Vol 136, pp. 11644–11654, 2014.
[55] J. Ni, F. Tao, H. Du, P. Xu, “Mimicking a natural pathway for de novo biosynthesis: Natural vanillin production from accessible carbon sources”, Scientific Reports, Vol 5, pp. 1–12, 2015.
[56] A.P. Dionísio, G. Molina, D.S. Carvalho, R. dos Santos, J.L. Bicas, G.M. Pastore, Natural flavourings from biotechnology for foods and beverages. In: D. Baines, R. Seal, (Eds.), Natural Food Additives, Ingredients and Flavorings. Woodhead Publishing, Cambridge, pp. 231–59, 2012.
[57] N.B. Akacha, M. Gargouri, “Food and Bioproducts Processing Microbial and enzymatic technologies used for the production of natural aroma compounds : Synthesis, recovery modeling, and bioprocesses”, Food and Bioproducts Processing, Vol 94, pp. 675–706, 2014.
[58] M. Sabisch and D. Smith, The Complex Regulatory Landscape for Natural Flavor Ingredients, 2014, accessed on March 10, 2022, http://www.sigmaaldrich. com.
[59] N. Kumar and V. Pruthi, “Potential applications of ferulic acid from natural sources”, Biotechnology Reports, Vol 4, pp. 86–93, 2014.
[60] G. Gurujeyalakshmi and A. Mahadevan, “Dissimilation of Ferulic Acid by Bacillus subtilis”, Current Microbiology, Vol 16, pp. 69–73, 1987.
[61] Z. Huang, L. Dostal, J.P.N. Rosazza, “Mechanisms of ferulic acid conversions to vanillic acid and guaiacol by Rhodotorula rubra”, Journal of Biological Chemistry, Vol 268, pp. 23954–23958, 1993.
[62] M.H. Zenk, B. Ulbrich, J. Busse, J. Stöckigt, “Procedure for the enzymatic synthesis and isolation of cinnamoyl-CoA thiolesters using a bacterial system”, Analytical Biochemistry, Vol 101, pp. 182–187, 1980.
[63] B. Karmakar, R.M. Vohra, H. Nandanwar, P. Sharma, K.G. Gupta, R.C. Sobti, “Rapid degradation of ferulic acid via 4-vinylguaiacol and vanillin by a newly isolated strain of Bacillus coagulans”, Journal of Biotechnology, Vol 80, pp. 195–202, 2000.
[64] R. Plaggenborg, A. Steinbüchel, H. Priefert, “The coenzyme A-dependent, non-β-oxidation pathway and not direct deacetylation is the major route for ferulic acid degradation in Delftia acidovorans”, FEMS Microbiology Letters, Vol 205, pp. 9–16, 2001.
[65] X. Li, J. Yang, X. Li, W. Gu, J. Huang, K.Q. Zhang, “The metabolism of ferulic acid via 4-vinylguaiacol to vanillin by Enterobacter sp. Px6-4 isolated from Vanilla root”, Process Biochemistry, Vol 43, pp. 1132–1137, 2008.
[66] S. Nazareth and S. Mavinkurve, “Degradation of ferulic acid via 4-vinylguaiacol by Fusarium solani (Mart.) Sacc.”, Canadian Journal of Microbiology, Vol 32, pp. 494–497, 1986.
[67] R. Plaggenborg, J. Overhage, A. Steinbuchel, H. Priefert, “Functional analyses of genes involved in the metabolism of ferulic acid in Pseudomonas putida KT2440”, Applied Microbiology and Biotechnology, Vol 61, pp. 528–535, 2003.
[68] L. Zheng, P. Zheng, Z. Sun, Y. Bai, J. Wang, X. Guo, “Production of vanillin from waste residue of rice bran oil by Aspergillus Niger and Pycnoporus cinnabarinus”, Bioresource Technology, Vol 98, pp. 1115–1119, 2007.
[69] E.G. Lee, S.H. Yoon, A. Das, S.H. Lee, C. Li, J.Y. Kim, et al., “Directing vanillin production from ferulic acid by increased acetyl-CoA consumption in recombinant Escherichia coli”, Biotechnology and Bioengineering, Vol 102, pp. 200–208, 2009.
[70] T. Furuya, M. Miura, K. Kino, “A coenzyme-independent decarboxylase/oxygenase cascade for the efficient synthesis of vanillin”, ChemBioChem, Vol 15, pp. 2248–2225, 2014.
[71] A. Paz, D. Outeiriño, R.P.S. Oliveira, J.M. Domínguez, “Fed-batch production of vanillin by Bacillus aryabhattai BA03”, New Biotechnology, Vol 40, pp. 186–191, 2018.
[72] L.Q. Zhao, Z.H. Sun, P. Zheng, L.L. Zhu, “Biotransformation of isoeugenol to vanillin by a novel strain of Bacillus fusiformis”, Biotechnology Letters, Vol 27, pp. 1505–1509, 2005.
[73] D. Hua, C. Ma, S. Lin, L. Song, Z. Deng, Z. Maomy, et al., “Biotransformation of isoeugenol to vanillin by a newly isolated Bacillus pumilus strain: Identification of major metabolites”, Journal of Biotechnology, Vol 130, pp. 463–470, 2007.
[74] M. Yamada, Y. Okada, T. Yoshida, T. Nagasawa, “Vanillin production using Escherichia coli cells over-expressing isoeugenol monooxygenase of Pseudomonas putida”, Biotechnology Letters, Vol 30, pp. 665–670, 2008.
[75] J. Overhage, A. Steinbuchel, H. Priefert, “Harnessing eugenol as a substrate for production of aromatic compounds with recombinant strains of Amycolatopsis sp. HR167”, Journal of Biotechnology, Vol 125, pp. 369–376, 2006.
[76] A. Narbad, M.J. Gasson, “Metabolism of ferulic acid via vanillin using a novel CoA-dependent pathway in a newly-isolated strain of Pseudomonas fluorescens”, Microbiology, Vol 144, pp. 1397–1405, 1998.
[77] N. Motedayen, M.B.T. Ismail, F. Nazarpour, “Bioconversion of ferulic acid to vanillin by combined action of Aspergillus niger K8 and Phanerochaete crysosporium ATCC 24725”, African Journal of Biotechnology, Vol 12, pp. 6618–6624, 2013.
[78] L. Lesage-Meessen, M. Delattre, M. Haon, J.F. Thibault, B.C. Ceccaldi, P. Brunerie, M. Asther, “A two-step bioconversion process for vanillin production from ferulic acid combining Aspergillus niger and Pycnoporus cinnabarinus”, Journal of Biotechnology, Vol 50, pp. 107–113, 1996.
[79] Z. Zhao, M.H. Moghadasian, “Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: A review”, Food Chemistry, Vol 109, pp. 691–702, 2008.
[80] A.U. Buranov, G. Mazza, “Extraction and purification of ferulic acid from flax shives, wheat and corn bran by alkaline hydrolysis and pressurised solvents”, Food Chemistry, Vol 115, pp. 1542–1548, 2009.
[81] T. Lau, N. Harbourne, M.J. Oruña-Concha, “Optimization of enzyme-assisted extraction of ferulic acid from sweet corn cob by response surface methodology”, Journal of the Science of Food and Agriculture, Vol 100, pp. 1479–1485, 2020.
[82] D.W.S. Wong, V.J. Chan, S.B. Batt, G. Sarath, H. Liao, “Engineering Saccharomyces cerevisiae to produce feruloyl esterase for the release of ferulic acid from switchgrass”, Journal of Industrial Microbiology and Biotechnology, Vol 38, pp. 1961–1967, 2011.
[83] P. Torre, B. Aliakbarian, B. Rivas, J.M. Domínguez, A. Converti, “Release of ferulic acid from corn cobs by alkaline hydrolysis”, Biochemical Engineering Journal, Vol 40, pp. 500–506, 2008.
[84] F. Xu, R.C. Sun, J.X. Sun, C.F. Liu, B.H. He, J.S. Fan, “Determination of cell wall ferulic and p-coumaric acids in sugarcane bagasse”, Analytica Chimica Acta, Vol 552, pp. 207–217, 2005.
[85] P. Li, S.P. Li, S.C. Lao, C.M. Fu, K.K.W. Kan, Y.T. Wang, “Optimization of pressurized liquid extraction for Z-ligustilide, Z-butylidenephthalide and ferulic acid in Angelica sinensis”, Journal of Pharmaceutical and Biomedical Analysis, Vol 40, pp. 1073–1079, 2006.
[86] Z. Liu, J. Wang, P. Shen, C. Wang, Y. Shen, “Microwave-assisted extraction and high-speed counter-current chromatography purification of ferulic acid from Radix Angelicae sinensis”, Separation and Purification Technology, Vol 52, pp. 18–21, 2006.
[87] Y. Sun, W. Wang, “Ultrasonic extraction of ferulic acid from Ligusticum chuanxiong”, Journal of the Chinese Institute of Chemical Engineers, Vol 39, pp. 653–656, 2008.
[88] Y. Sun, S. Li, H. Song, S. Tian, “Extraction of ferulic acid from Angelica sinensis with supercritical CO2”, Natural Product Research, Vol 20, pp. 835–841, 2006.
[89] H.T. Truong, M.V. Do, L.D. Huynh, L.T. Nguyen, A.T. Do, T. Thanh, et al., “Ultrasound-assisted, base-catalyzed, homogeneous reaction for ferulic acid production from γ-Oryzanol”, Journal of Chemistry, Vol 2018, pp. 1–9, 2018.
[90] F. Chemat, N. Rombaut, A.G. Sicaire, A. Meullemiestre, A.S. Fabiano-Tixier, M. Abert-Vian, “Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review”, Ultrasonics Sonochemistry, Vol 34, pp. 540–560, 2017.
[91] H.-D. Shin, S. McClendon, T. Le, F. Taylor, R.R. Chen, “A complete enzymatic recovery of ferulic acid from corn residues with extracellular enzymes from Neosartorya spinosa NRRL185”, Biotechnology and Bioengineering, Vol 95, pp. 1108–1115, 2006.
[92] J. Zheng, K. Choo, C. Bradt, R. Lehoux, L. Rehmann, “Enzymatic hydrolysis of steam exploded corncob residues after pretreatment in a twin-screw extruder”, Biotechnology Reports, Vol 3, pp. 99–107, 2014.
[93] S.M. Alnaimat and S. Abushattal, Laboratory manual in general microbiology for undergraduate students, Al-Hussein Bin Talal University, Jordan, 2012.
[94] G.L. Miller, “Use of dinitrosalicylic acid reagent for determination of reducing sugar”, Analytical Chemistry, Vol 31, pp. 426–428, 1959.
[95] L.J. Jönsson, B. Alriksson, N.-O. Nilvebrant, “Bioconversion of lignocellulose: inhibitors and detoxification”, Biotechnology for Biofuels, Vol 6, 2013.
指導教授 徐敬衡(Chin-Hang Shu) 審核日期 2022-11-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明