博碩士論文 106887602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:3.133.154.114
姓名 阮宏南(Nguyen Hoang Nam)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱 Disulfide-based cross-linkers for functional polymeric networks
(Disulfide-based cross-linkers for functional polymeric networks)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 交聯聚合物材料,特別是水凝膠和彈性體,在許多方面的應用越發廣泛,不僅在日常生活中,而且在工業和生物醫學領域也是如此。因此,具有生物降解、自我修復或可回收能力的材料對未來發展至關重要。高分子材料中的交聯劑在生物相容性、機械性能、降解性能、恢復性能和重複使用性能等方面的作用被低估了。在本論文中,我們開發了一系列的交聯劑,為共價交聯的聚合物材料提供不同的功能。
在第二章中,報告了一種創新的雙離子二甲基丙烯酸酯 2-[2-{2-(甲基丙烯醯氧基)乙基二甲基胺}乙基磷酸鹽]乙基二硫化物(MPCSS),用於開發具有完全受生物啟發的磷酸膽鹼(PC)結構的可生物降解和生物相容性水凝膠。 MPCSS交聯劑包括提供抗汙性能的雙離子基團和可被還原劑和酶所降解的雙硫鍵。此外,MPCSS與2-甲基丙烯醯氧乙基磷酸膽鹼(MPC) 單體中的帶電基團排列相反。與使用傳統交聯劑的MPC水凝膠相比,由MPCSS和MPC所開發的水凝膠在較高的含水量和帶相反電荷的基團之間的靜電作用下具有更強的機械性能。系統性地研究了MPC/MPCSS水凝膠的生物相容性和結垢特性。此外,通過MPCSS交聯水凝膠的重量損失和流變學數據評估了其降解情況。最終,MPC/MPCSS水凝膠被證明可以原位封裝NIH-3T3纖維母細胞,並提供一個良好的三維環境,促進細胞重塑和組織支架的生長。
在第三章中,合成了三種芳香族二硫化物交聯劑,命名為SS1、SS2和SS3,以製備可自愈合和可回收的彈性體。雙硫鍵是一種可逆的共價鍵,其鍵能比碳鍵低。因此,在碳鍵斷裂之前,雙硫鍵可以被機械力劈開。這種可逆性有助於雙硫鍵的重建,為彈性體提供自我修復能力,甚至在沒有任何額外外部刺激的情況下,也能實現自我修復。此外,在SS2和SS3的情況下,將氫鍵結合至二硫化物交聯劑的結構中,可以提高彈性體在室溫下的自愈效果。在10 MPa的壓力下,12小時後自愈率可以達到100%。彈性體在被切成小塊後可以重新塑形而不降低其機械性能。 SS1、SS2和SS3交聯劑可與許多單體(包括TRIS、HEMA、HEA和BMA)一起使用,以製備具有自癒合能力的彈性體。
摘要(英) Cross-linked polymer materials, especially hydrogels and elastomers, have been increasing in usage for many applications, not only in daily life but also in industry and the biomedical field. Therefore, materials with biodegradable, self-healable, or recyclable abilities are essential for future development. The role of the cross-linking agents in the polymer material was undervalued in terms of biocompatibility, mechanical properties, degradability, recovery, and reusability. In this thesis, we developed a series of cross-linker to provide different functions for the covalently cross-linked polymer materials.
In chapter two, an innovative zwitterionic dimethacrylate 2-[2-{2-(Methacryloyloxy)ethyldimethylammonium}ethyl-phosphate]ethyl disulfide (MPCSS) for the development of biodegradable and biocompatible hydrogels with entirely bio-inspired phosphocholine (PC) structure was reported. The MPCSS cross-linker includes the zwitterionic group providing nonfouling properties and a disulfide bond that can be degraded by reducing agents and enzymes. Moreover, MPCSS has an opposite arrangement of charged groups to that in the 2-methacryloyloxyethyl phosphorylcholine (MPC) monomer. The hydrogels developed from MPCSS and MPC allow stronger mechanical properties upon electrostatic interaction between the oppositely charged groups and the higher water content than the MPC gels with the conventional cross-linker. The biocompatibility and fouling characteristics of MPC/MPCSS hydrogels were systematically investigated. Moreover, the degradation of MPCSS cross-linked hydrogels was evaluated through their weight loss and rheological data. Ultimately, MPC/MPCSS hydrogel was demonstrated in situ to encapsulate NIH-3T3 fibroblasts and provide an excellent 3D environment, facilitating cell remodeling and growth as a tissue scaffold.
In chapter three, three aromatic disulfide cross-linkers, named SS1, SS2, and SS3, were synthesized to create self-healable and recyclable elastomers. The disulfide bond is a reversible covalent bond with lower bonding energy than the carbon bond. So that the SS bond can be cleft by mechanical forces before the carbon bond is broken. The reversibility helps the disulfide bond reform, providing the self-healing ability to the elastomer, even in room conditions without any extra external stimuli. Moreover, combining the hydrogen bond into the structure of the disulfide cross-linker, in the case of SS2 and SS3, can enhance the self-healing efficiency of the elastomer at room temperature. The self-healing rate can reach 100% after 12h under 10 MPa pressure. The elastomer can be remolded after being cut into small pieces without reducing mechanical properties. The SS1, SS2, and SS3 cross-linkers can be used with many monomers, including TRIS, HEMA, HEA, and BMA, to prepare the elastomers with self-healing ability.
關鍵字(中) ★ 交聯劑
★ 雙硫鍵
★ 水凝膠
★ 彈性體
關鍵字(英) ★ cross-linker
★ disulfide
★ hydrogel
★ elastomer
論文目次 Abstract ii
摘要 x
Acknowledgment xii
Table of Contents xiii
List of Figures xvi
List of Tables xx
List of Abbreviations xxi
CHAPTER I. Literature Review 1
1.1. Overview of cross-linked polymeric materials 1
1.2. Hydrogel 2
1.3. Elastomer 5
1.4. Crosslinking 6
1.5. Reversible covalent bonds 8
1.6. Biodegradable materials 9
1.7. Self-healing materials 11
1.8. Disulfide bond 12
CHAPTER II. Biodegradable Full Phosphocholine Zwitterionic Hydrogel with Ion-pair Designed for Cell Encapsulation Application 15
2.1. Introduction 15
2.2. Materials and Methods 18
2.2.1. Materials 18
2.2.2. Synthesis of degradable MPCSS cross-linker 19
2.2.3. Detect the degradable property of the cross-linker 21
2.2.4. The cytotoxicity of MPCSS cross-linker 21
2.2.5. MPC/MPCSS hydrogel preparation 22
2.2.6. The swelling ratio and mechanical characterization of the hydrogels 22
2.2.7. Characterize the degradability of PC hydrogels 23
2.2.8. Rheology measurement 23
2.2.9. Protein fouling test by enzyme-linked immunosorbent assay (ELISA) 23
2.2.10. The cytotoxicity of PC hydrogels 24
2.2.11. Cell adhesion on PC hydrogels 25
2.2.12. The cytotoxicity of degraded PC hydrogels 25
2.2.13. 3D cell culture of PC hydrogels 25
2.2.14. Statistical analysis 26
2.3. Results and Discussion 26
2.3.1. Synthesis of MPCSS cross-linker 26
2.3.2. Biodegradability of MPCSS 29
2.3.3. Evaluation of the cytotoxicity of MPCSS cross-linker 31
2.3.4. Swelling and mechanical properties of MPC/MPCSS hydrogels 32
2.3.5. Rheology measurement and degradation process of MPC/MPCSS hydrogel 36
2.3.6. Protein adsorption onto MPC/MPCSS hydrogel 38
2.3.7. Evaluation of in vitro biocompatibility of PC hydrogels 39
2.3.8. Assessment of cell resistance of PC hydrogels in vitro 40
2.3.9. 3D cell culture 41
2.4. Summary 44
Chapter III. Synthesis and Characterization of Disulfide Cross-linkers for Preparing Self-healing Elastomers 45
3.1. Introduction 45
3.2. Materials and Methods 48
3.2.1. Materials 48
3.2.2. Synthesis of aromatic cross-linkers 49
3.3.3. Synthesis of the elastomer 49
3.3.4. Thermal Analyses 51
3.2.5. Self-healing and Tensile Tests 51
3.2.6. The remolding test 52
3.2.7. Other characterizations 52
3.3. Results and Discussion 53
3.3.1. Synthesis of SS1, SS2, and SS3 cross-linkers 53
3.3.2. TGA 57
3.3.3. DMA 58
3.3.4. Transparency 60
3.3.5. Self-healing performance 61
3.3.6. XPS 70
3.3.7. Remolding test 72
3.3.8. Self-healing testing on other monomers 74
3.4. Summary 74
CHAPTER IV. Conclusions 76
Bibliography 77
參考文獻 1. Song, P., C. Wang, L. Chen, Y. Zheng, L. Liu, Q. Wu, G. Huang, Y. Yu, and H. Wang, Thermally stable, conductive and flame-retardant nylon 612 composites created by adding two-dimensional alumina platelets. Composites Part A: Applied Science and Manufacturing, 2017. 97: p. 100.
2. Song, P. and H. Wang, High‐performance polymeric materials through hydrogen‐bond cross‐linking. Advanced Materials, 2020. 32(18): p. 1901244.
3. Islam, S. and G. Bhat, Progress and challenges in self-healing composite materials. Materials Advances, 2021. 2(6): p. 1896.
4. Gao, D., J. Lv, and P.S. Lee, Natural Polymer in Soft Electronics: Opportunities, Challenges, and Future Prospects. Advanced Materials, 2022. 34(25): p. 2105020.
5. Liu, B., Y. Wang, Y. Miao, X. Zhang, Z. Fan, G. Singh, X. Zhang, K. Xu, B. Li, and Z. Hu, Hydrogen bonds autonomously powered gelatin methacrylate hydrogels with super-elasticity, self-heal and underwater self-adhesion for sutureless skin and stomach surgery and E-skin. Biomaterials, 2018. 171: p. 83.
6. Song, Y., Y. Liu, T. Qi, and G.L. Li, Towards dynamic but supertough healable polymers through biomimetic hierarchical hydrogen‐bonding interactions. Angewandte Chemie International Edition, 2018. 57(42): p. 13838.
7. Khalifa, M., S. Anandhan, G. Wuzella, H. Lammer, and A.R. Mahendran, Thermoplastic polyurethane composites reinforced with renewable and sustainable fillers–a review. Polymer-plastics technology and materials, 2020. 59(16): p. 1751.
8. Atiqah, A., M. Jawaid, S. Sapuan, M. Ishak, M. Ansari, and R. Ilyas, Physical and thermal properties of treated sugar palm/glass fibre reinforced thermoplastic polyurethane hybrid composites. Journal of Materials Research and Technology, 2019. 8(5): p. 3726.
9. Wan, L., C. Deng, H. Chen, Z.-Y. Zhao, S.-C. Huang, W.-C. Wei, A.-H. Yang, H.-B. Zhao, and Y.-Z. Wang, Flame-retarded thermoplastic polyurethane elastomer: From organic materials to nanocomposites and new prospects. Chemical Engineering Journal, 2021. 417: p. 129314.
10. Montarnal, D., M. Capelot, F. Tournilhac, and L. Leibler, Silica-like malleable materials from permanent organic networks. Science, 2011. 334(6058): p. 965.
11. Ratwani, C.R. and A. Abdelkader, Self-healing by Diels-Alder cycloaddition in advanced functional polymers: A review. Progress in Materials Science, 2022: p. 101001.
12. Li, D.-q., S.-y. Wang, Y.-j. Meng, Z.-w. Guo, M.-m. Cheng, and J. Li, Fabrication of self-healing pectin/chitosan hybrid hydrogel via Diels-Alder reactions for drug delivery with high swelling property, pH-responsiveness, and cytocompatibility. Carbohydrate Polymers, 2021. 268: p. 118244.
13. Wang, Z., H. Liang, H. Yang, L. Xiong, J. Zhou, S. Huang, C. Zhao, J. Zhong, and X. Fan, UV-curable self-healing polyurethane coating based on thiol-ene and Diels-Alder double click reactions. Progress in Organic Coatings, 2019. 137: p. 105282.
14. Mredha, M.T.I., J.Y. Na, J.-K. Seon, J. Cui, and I. Jeon, Multifunctional poly (disulfide) hydrogels with extremely fast self-healing ability and degradability. Chemical Engineering Journal, 2020. 394: p. 124941.
15. Zhang, Q., J. Duan, Q. Guo, J. Zhang, D. Zheng, F. Yi, X. Yang, Y. Duan, and Q. Tang, Thermal‐Triggered Dynamic Disulfide Bond Self‐Heals Inorganic Perovskite Solar Cells. Angewandte Chemie International Edition, 2022. 61(8): p. e202116632.
16. Li, X., R. Yu, Y. He, Y. Zhang, X. Yang, X. Zhao, and W. Huang, Self-healing polyurethane elastomers based on a disulfide bond by digital light processing 3D printing. ACS Macro Letters, 2019. 8(11): p. 1511.
17. Mo, P., Z. Hu, Z. Mo, X. Chen, J. Yu, M.S. Selim, R. Sun, J. Xu, X. Zeng, and Z. Hao, Fast self-healing and self-cleaning anticorrosion coating based on dynamic reversible imine and multiple hydrogen bonds. ACS Applied Polymer Materials, 2022. 4(7): p. 4709.
18. Hu, J., R. Mo, X. Sheng, and X. Zhang, A self-healing polyurethane elastomer with excellent mechanical properties based on phase-locked dynamic imine bonds. Polymer Chemistry, 2020. 11(14): p. 2585.
19. Wang, P., L. Yang, B. Dai, Z. Yang, S. Guo, G. Gao, L. Xu, M. Sun, K. Yao, and J. Zhu, A self-healing transparent polydimethylsiloxane elastomer based on imine bonds. European Polymer Journal, 2020. 123: p. 109382.
20. Lyu, L., D. Li, Y. Chen, Y. Tian, and J. Pei, Dynamic chemistry based self-healing of asphalt modified by diselenide-crosslinked polyurethane elastomer. Construction and Building Materials, 2021. 293: p. 123480.
21. Irigoyen, M., A. Fernández, A. Ruiz, F. Ruipérez, and J.M. Matxain, Diselenide bonds as an alternative to outperform the efficiency of disulfides in self-healing materials. The Journal of Organic Chemistry, 2019. 84(7): p. 4200.
22. Liu, X., X. Song, B. Chen, J. Liu, Z. Feng, W. Zhang, J. Zeng, and L. Liang, Self-healing and shape-memory epoxy thermosets based on dynamic diselenide bonds. Reactive and Functional Polymers, 2022. 170: p. 105121.
23. Cao, S., X. Tong, K. Dai, and Q. Xu, A super-stretchable and tough functionalized boron nitride/PEDOT: PSS/poly (N-isopropylacrylamide) hydrogel with self-healing, adhesion, conductive and photothermal activity. Journal of Materials Chemistry A, 2019. 7(14): p. 8204.
24. Wu, Q., H. Xiong, Y. Zhu, X. Ren, L.-L. Chu, Y.-F. Yao, G. Huang, and J. Wu, Self-healing amorphous polymers with room-temperature phosphorescence enabled by boron-based dative bonds. ACS Applied Polymer Materials, 2019. 2(2): p. 699.
25. Cao, Y., J. Zhang, D. Zhang, Y. Lv, J. Li, Y. Xu, K. He, G. Chen, C. Yuan, and B. Zeng, A novel shape memory-assisted and thermo-induced self-healing boron nitride/epoxy composites based on Diels–Alder reaction. Journal of Materials Science, 2020. 55(25): p. 11325.
26. Li, Z., R. Yu, and B. Guo, Shape-Memory and Self-Healing Polymers Based on Dynamic Covalent Bonds and Dynamic Noncovalent Interactions: Synthesis, Mechanism, and Application. ACS Applied Bio Materials, 2021. 4(8): p. 5926.
27. Liu, Y., Z. Zhang, J. Wang, T. Xie, L. Sun, K. Yang, and Z. Li, Renewable tannic acid based self-healing polyurethane with dynamic phenol-carbamate network: Simultaneously showing robust mechanical properties, reprocessing ability and shape memory. Polymer, 2021. 228: p. 123860.
28. Yu, H.-C., Y.-T. Zhang, M.-J. Wang, and C.-C. Li, Dispersion of poly (urea-formaldehyde)-based microcapsules for self-healing and anticorrosion applications. Langmuir, 2019. 35(24): p. 7871.
29. Wang, H. and S.C. Heilshorn, Adaptable hydrogel networks with reversible linkages for tissue engineering. Advanced Materials, 2015. 27(25): p. 3717.
30. Ahmed, E.M., Hydrogel: Preparation, characterization, and applications: A review. Journal of advanced research, 2015. 6(2): p. 105.
31. Catoira, M.C., L. Fusaro, D. Di Francesco, M. Ramella, and F. Boccafoschi, Overview of natural hydrogels for regenerative medicine applications. Journal of Materials Science: Materials in Medicine, 2019. 30(10): p. 115.
32. George, J., C.-C. Hsu, L.T.B. Nguyen, H. Ye, and Z. Cui, Neural tissue engineering with structured hydrogels in CNS models and therapies. Biotechnology advances, 2019.
33. Hong, W., X. Zhao, J. Zhou, and Z. Suo, A theory of coupled diffusion and large deformation in polymeric gels. Journal of the Mechanics and Physics of Solids, 2008. 56(5): p. 1779.
34. Hoffman, A.S., Hydrogels for biomedical applications. Advanced drug delivery reviews, 2012. 64: p. 18.
35. Hoare, T.R. and D.S. Kohane, Hydrogels in drug delivery: Progress and challenges. Polymer, 2008. 49(8): p. 1993.
36. Lee, D., S. Cho, H.S. Park, and I. Kwon, Ocular drug delivery through pHEMA-Hydrogel contact lenses co-loaded with lipophilic vitamins. Scientific Reports, 2016. 6: p. 34194.
37. Parente, M., A. Ochoa Andrade, G. Ares, F. Russo, and Á. Jiménez‐Kairuz, Bioadhesive hydrogels for cosmetic applications. International journal of cosmetic science, 2015. 37(5): p. 511.
38. Ali, F., I. Khan, J. Chen, K. Akhtar, E.M. Bakhsh, and S.B. Khan, Emerging Fabrication Strategies of Hydrogels and Its Applications. Gels, 2022. 8(4): p. 205.
39. Gong, J.P., Y. Katsuyama, T. Kurokawa, and Y. Osada, Double‐network hydrogels with extremely high mechanical strength. Advanced materials, 2003. 15(14): p. 1155.
40. Perera, M.M. and N. Ayres, Dynamic covalent bonds in self-healing, shape memory, and controllable stiffness hydrogels. Polymer Chemistry, 2020. 11(8): p. 1410.
41. Tsou, Y.-H., J. Khoneisser, P.-C. Huang, and X. Xu, Hydrogel as a bioactive material to regulate stem cell fate. Bioactive Materials, 2016. 1(1): p. 39.
42. Kim, S. and K.E. Healy, Synthesis and characterization of injectable poly (N-isopropylacrylamide-co-acrylic acid) hydrogels with proteolytically degradable cross-links. Biomacromolecules, 2003. 4(5): p. 1214.
43. Ko, H.-F., C. Sfeir, and P.N. Kumta, Novel synthesis strategies for natural polymer and composite biomaterials as potential scaffolds for tissue engineering. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010. 368(1917): p. 1981.
44. Liang, Y., W. Liu, B. Han, C. Yang, Q. Ma, W. Zhao, M. Rong, and H. Li, Fabrication and characters of a corneal endothelial cells scaffold based on chitosan. Journal of Materials Science: Materials in Medicine, 2011. 22(1): p. 175.
45. Lu, D., C. Xiao, and S. Xu, Starch-based completely biodegradable polymer materials. Express polymer letters, 2009. 3(6): p. 366.
46. Sadr, N., B.E. Pippenger, A. Scherberich, D. Wendt, S. Mantero, I. Martin, and A. Papadimitropoulos, Enhancing the biological performance of synthetic polymeric materials by decoration with engineered, decellularized extracellular matrix. Biomaterials, 2012. 33(20): p. 5085.
47. Billiet, T., M. Vandenhaute, J. Schelfhout, S. Van Vlierberghe, and P. Dubruel, A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials, 2012. 33(26): p. 6020.
48. Koetting, M.C., J.F. Guido, M. Gupta, A. Zhang, and N.A. Peppas, pH-responsive and enzymatically-responsive hydrogel microparticles for the oral delivery of therapeutic proteins: Effects of protein size, crosslinking density, and hydrogel degradation on protein delivery. Journal of Controlled Release, 2016. 221: p. 18.
49. Yu, X., X. Cao, X. Chen, N. Ayres, and P. Zhang, Triplet–triplet annihilation upconversion from rationally designed polymeric emitters with tunable inter-chromophore distances. Chemical Communications, 2015. 51(3): p. 588.
50. Zhu, Z., Z. Guan, S. Jia, Z. Lei, S. Lin, H. Zhang, Y. Ma, Z.Q. Tian, and C.J. Yang, Au@ Pt nanoparticle encapsulated target‐responsive hydrogel with volumetric bar‐chart chip readout for quantitative point‐of‐care testing. Angewandte Chemie International Edition, 2014. 53(46): p. 12503.
51. Bailon, P. and W. Berthold, Polyethylene glycol-conjugated pharmaceutical proteins. Pharmaceutical Science & Technology Today, 1998. 1(8): p. 352.
52. Ronda, L., S. Bruno, S. Abbruzzetti, C. Viappiani, and S. Bettati, Ligand reactivity and allosteric regulation of hemoglobin-based oxygen carriers. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2008. 1784(10): p. 1365.
53. Talebian, S., M. Mehrali, N. Taebnia, C.P. Pennisi, F.B. Kadumudi, J. Foroughi, M. Hasany, M. Nikkhah, M. Akbari, and G. Orive, Self‐Healing Hydrogels: The Next Paradigm Shift in Tissue Engineering? Advanced Science, 2019. 6(16): p. 1801664.
54. Drobny, J.G., Handbook of thermoplastic elastomers. 2014: Elsevier.
55. Wang, Z., X. Lu, S. Sun, C. Yu, and H. Xia, Preparation, characterization and properties of intrinsic self-healing elastomers. Journal of Materials Chemistry B, 2019. 7(32): p. 4876.
56. Shanks, R.A. and I. Kong, General purpose elastomers: structure, chemistry, physics and performance. Advances in Elastomers I, 2013: p. 11.
57. Yu, C.-T., C.-C. Lai, F.-M. Wang, L.-C. Liu, W.-C. Liang, C.-L. Wu, J.-C. Chiu, H.-C. Liu, H.-T. Hsiao, and C.-M. Chen, Fabrication of thermoplastic polyurethane (TPU)/thermoplastic amide elastomer (TPAE) composite foams with supercritical carbon dioxide and their mechanical properties. Journal of Manufacturing Processes, 2019. 48: p. 127.
58. Zhang, Y., C. Ellingford, R. Zhang, J. Roscow, M. Hopkins, P. Keogh, T. McNally, C. Bowen, and C. Wan, Electrical and mechanical self‐healing in high‐performance dielectric elastomer actuator materials. Advanced Functional Materials, 2019. 29(15): p. 1808431.
59. Jaumaux, P., Q. Liu, D. Zhou, X. Xu, T. Wang, Y. Wang, F. Kang, B. Li, and G. Wang, Deep‐eutectic‐solvent‐based self‐healing polymer electrolyte for safe and long‐life lithium‐metal batteries. Angewandte Chemie International Edition, 2020. 59(23): p. 9134.
60. Jakobsen, L., S.B. Auganæs, A.F. Buene, I.M. Sivebaek, and A. Klein-Paste, Dynamic and Static Friction Measurements of Elastomer Footwear Blocks on Ice Surface. Tribology International, 2022: p. 108064.
61. Sastri, V.R., Plastics in medical devices: properties, requirements, and applications. 2021: William Andrew.
62. Hu, W., Z. Wang, Y. Xiao, S. Zhang, and J. Wang, Advances in crosslinking strategies of biomedical hydrogels. Biomaterials science, 2019. 7(3): p. 843.
63. Sung, H.-W., R.-N. Huang, L.L. Huang, and C.-C. Tsai, In vitro evaluation of cytotoxicity of a naturally occurring cross-linking reagent for biological tissue fixation. Journal of Biomaterials Science, Polymer Edition, 1999. 10(1): p. 63.
64. Lee, J.H., Injectable hydrogels delivering therapeutic agents for disease treatment and tissue engineering. Biomaterials research, 2018. 22(1): p. 1.
65. Chung, H.J., Y. Lee, and T.G. Park, Thermo-sensitive and biodegradable hydrogels based on stereocomplexed Pluronic multi-block copolymers for controlled protein delivery. Journal of controlled release, 2008. 127(1): p. 22.
66. Xu, J., X. Liu, X. Ren, and G. Gao, The role of chemical and physical crosslinking in different deformation stages of hybrid hydrogels. European Polymer Journal, 2018. 100: p. 86.
67. Dahlke, J., S. Zechel, M.D. Hager, and U.S. Schubert, How to design a self‐healing polymer: general concepts of dynamic covalent bonds and their application for intrinsic healable materials. Advanced Materials Interfaces, 2018. 5(17): p. 1800051.
68. Zhang, Z.P., M.Z. Rong, and M.Q. Zhang, Polymer engineering based on reversible covalent chemistry: A promising innovative pathway towards new materials and new functionalities. Progress in Polymer Science, 2018. 80: p. 39.
69. Yang, Y., X. Ding, and M.W. Urban, Chemical and physical aspects of self-healing materials. Progress in Polymer Science, 2015. 49: p. 34.
70. Lehn, J.-M., Supramolecular polymer chemistry—scope and perspectives, in Supramolecular polymers. 2005, CRC Press. p. 17.
71. Utrera-Barrios, S., R. Verdejo, M.A. López-Manchado, and M.H. Santana, Evolution of self-healing elastomers, from extrinsic to combined intrinsic mechanisms: A review. Materials Horizons, 2020. 7(11): p. 2882.
72. Tian, K. and M. Bilal, Research progress of biodegradable materials in reducing environmental pollution. Abatement of Environmental Pollutants, 2020: p. 313.
73. Bioplastics, E., Bioplastics market data 2017. European Bioplastics, Berlin, 2018.
74. Reddy, K.R., A. El-Zein, D.W. Airey, F. Alonso-Marroquin, P. Schubel, and A. Manalo, Self-healing polymers: Synthesis methods and applications. Nano-Structures & Nano-Objects, 2020. 23: p. 100500.
75. Ekeocha, J., C. Ellingford, M. Pan, A.M. Wemyss, C. Bowen, and C. Wan, Challenges and Opportunities of Self‐Healing Polymers and Devices for Extreme and Hostile Environments. Advanced Materials, 2021. 33(33): p. 2008052.
76. An, S., M.W. Lee, A.L. Yarin, and S.S. Yoon, A review on corrosion-protective extrinsic self-healing: Comparison of microcapsule-based systems and those based on core-shell vascular networks. Chemical Engineering Journal, 2018. 344: p. 206.
77. Willocq, B., J. Odent, P. Dubois, and J.-M. Raquez, Advances in intrinsic self-healing polyurethanes and related composites. RSC advances, 2020. 10(23): p. 13766.
78. Romero-Sabat, G., E. Gago-Benedí, J.J.R. Rovira, D. González-Gálvez, A. Mateo, S. Medel, and A.T. Chivite, Development of a highly efficient extrinsic and autonomous self-healing polymeric system at low and ultra-low temperatures for high-performance applications. Composites Part A: Applied Science and Manufacturing, 2021. 145: p. 106335.
79. Malekkhouyan, R., R.E. Neisiany, S.N. Khorasani, O. Das, F. Berto, and S. Ramakrishna, The influence of size and healing content on the performance of extrinsic self‐healing coatings. Journal of Applied Polymer Science, 2021. 138(10): p. 49964.
80. Zheng, N., J. Liu, and W. Li, TO/TMMP-TMTGE double-healing composite containing a transesterification reversible matrix and tung oil-loaded microcapsules for active self-healing. Polymers, 2019. 11(7): p. 1127.
81. Zhang, L., T. Qiu, X. Sun, L. Guo, L. He, J. Ye, and X. Li, Achievement of both mechanical properties and intrinsic self-healing under body temperature in polyurethane elastomers: a synthesis strategy from waterborne polymers. Polymers, 2020. 12(4): p. 989.
82. Liu, Z., P. Hong, Z. Huang, T. Zhang, R. Xu, L. Chen, H. Xiang, and X. Liu, Self-healing, reprocessing and 3D printing of transparent and hydrolysis-resistant silicone elastomers. Chemical Engineering Journal, 2020. 387: p. 124142.
83. Wang, Y., H. Xu, X. Chen, H. Jin, and J. Wang, Novel constructive self-healing binder for silicon anodes with high mass loading in lithium-ion batteries. Energy Storage Materials, 2021. 38: p. 121.
84. Thajudin, N.L.N., M.H. Zainol, and R.K. Shuib, Intrinsic room temperature self-healing natural rubber based on metal thiolate ionic network. Polymer Testing, 2021. 93: p. 106975.
85. Cao, L., Z. Gong, C. Liu, J. Fan, and Y. Chen, Design and fabrication of mechanically strong and self-healing rubbers via metal-ligand coordination bonds as dynamic crosslinks. Composites Science and Technology, 2021. 207: p. 108750.
86. Wang, S. and M.W. Urban, Self-healing polymers. Nature Reviews Materials, 2020. 5(8): p. 562.
87. Park, I., S.S. Sheiko, A. Nese, and K. Matyjaszewski, Molecular Tensile Testing Machines: Breaking a Specific Covalent Bond by Adsorption-Induced Tension in Brushlike Macromolecules. Macromolecules, 2009. 42(6): p. 1805.
88. Garcia, S.J., Effect of polymer architecture on the intrinsic self-healing character of polymers. European Polymer Journal, 2014. 53: p. 118.
89. Huang, S., X. Kong, Y. Xiong, X. Zhang, H. Chen, W. Jiang, Y. Niu, W. Xu, and C. Ren, An overview of dynamic covalent bonds in polymer material and their applications. European Polymer Journal, 2020. 141: p. 110094.
90. Nevejans, S., N. Ballard, J.I. Miranda, B. Reck, and J.M. Asua, The underlying mechanisms for self-healing of poly (disulfide) s. Physical Chemistry Chemical Physics, 2016. 18(39): p. 27577.
91. Kamada, J., K. Koynov, C. Corten, A. Juhari, J.A. Yoon, M.W. Urban, A.C. Balazs, and K. Matyjaszewski, Redox responsive behavior of thiol/disulfide-functionalized star polymers synthesized via atom transfer radical polymerization. Macromolecules, 2010. 43(9): p. 4133.
92. Peng, L., F. Su, J. Lin, Y. Zhang, Z. Huang, Z. Li, and Q. Fu. Mechanism study and performance analysis of self-healing room temperature silicone rubber. in 2022 IEEE International Conference on High Voltage Engineering and Applications (ICHVE). 2022. IEEE.
93. Lafont, U., H. Van Zeijl, and S. Van Der Zwaag, Influence of cross-linkers on the cohesive and adhesive self-healing ability of polysulfide-based thermosets. ACS applied materials & interfaces, 2012. 4(11): p. 6280.
94. Michal, B.T., C.A. Jaye, E.J. Spencer, and S.J. Rowan, Inherently photohealable and thermal shape-memory polydisulfide networks. ACS Macro Letters, 2013. 2(8): p. 694.
95. Amamoto, Y., H. Otsuka, A. Takahara, and K. Matyjaszewski, Self‐healing of covalently cross‐linked polymers by reshuffling thiuram disulfide moieties in air under visible light. Advanced Materials, 2012. 24(29): p. 3975.
96. Deng, G., F. Li, H. Yu, F. Liu, C. Liu, W. Sun, H. Jiang, and Y. Chen, Dynamic hydrogels with an environmental adaptive self-healing ability and dual responsive sol–gel transitions. ACS Macro Letters, 2012. 1(2): p. 275.
97. Tsai, Y.-L., Y.-C. Tseng, Y.-M. Chen, T.-C. Wen, and J.-S. Jan, Zwitterionic polypeptides bearing carboxybetaine and sulfobetaine: synthesis, self-assembly, and their interactions with proteins. Polym. Chem., 2018. 9(10): p. 1178.
98. Huang, K.-T., P.-S. Hsieh, L.-G. Dai, and C.-J. Huang, Complete zwitterionic double network hydrogels with great toughness and resistance against foreign body reaction and thrombus. J. Mater. Chem. B, 2020. 8(33): p. 7390.
99. Huang, B., J. Marchand, S. Thiriet-Rupert, G. Carrier, B. Saint-Jean, E. Lukomska, B. Moreau, A. Morant-Manceau, G. Bougaran, and V. Mimouni, Betaine lipid and neutral lipid production under nitrogen or phosphorus limitation in the marine microalga Tisochrysis lutea (Haptophyta). Algal Res., 2019. 40: p. 101506.
100. Tanaka, M., S. Kawai, and Y. Iwasaki, Well-defined protein immobilization on photo-responsive phosphorylcholine polymer surfaces. J. Biomater. Sci. Polym. Ed, 2017. 28(17): p. 2021.
101. Jain, P., H.-C. Hung, B. Li, J. Ma, D. Dong, X. Lin, A. Sinclair, P. Zhang, M.B. O’Kelly, and L. Niu, Zwitterionic hydrogels based on a degradable disulfide carboxybetaine cross-linker. Langmuir, 2018. 35(5): p. 1864.
102. Blackman, L.D., P.A. Gunatillake, P. Cass, and K.E. Locock, An introduction to zwitterionic polymer behavior and applications in solution and at surfaces. Chem. Soc. Rev., 2019. 48(3): p. 757.
103. Zhang, Y., Y. Liu, B. Ren, D. Zhang, S. Xie, Y. Chang, J. Yang, J. Wu, L. Xu, and J. Zheng, Fundamentals and applications of zwitterionic antifouling polymers. J. Phys. D: Appl. Phys., 2019. 52(40): p. 403001.
104. Huang, K.-T., Y.-L. Fang, P.-S. Hsieh, C.-C. Li, N.-T. Dai, and C.-J. Huang, Zwitterionic nanocomposite hydrogels as effective wound dressings. Journal of Materials Chemistry B, 2016. 4(23): p. 4206.
105. Dou, J., Q. Wu, Y. Li, J. Du, X. Wan, X. Han, J. Yuan, X. Meng, and J. Shen, Keratin–Poly (2-methacryloxyethyl phosphatidylcholine) Conjugate-Based Micelles as a Tumor Micro-Environment-Responsive Drug-Delivery System with Long Blood Circulation. Langmuir, 2020. 36(13): p. 3540.
106. ElZorkany, H.E., H.A. Elshoky, A. Omar, and M. Ibrahim, Potential Binding Sites of Toluidine Blue O in Gram-Positive Bacterial Membrane Wall Teichoic Acid: Modeling Approach. Biointerface Res. Appl. Chem., 2020. 11(4): p. 12312.
107. Tanaka, M. and Y. Iwasaki, Photo-assisted generation of phospholipid polymer substrates for regiospecific protein conjugation and control of cell adhesion. Acta Biomater., 2016. 40: p. 54.
108. Ji, Y.L., B.X. Gu, Q.F. An, and C.J. Gao, Recent Advances in the Fabrication of Membranes Containing "Ion Pairs" for Nanofiltration Processes. Polymers (Basel), 2017. 9(12).
109. Nguyen, H.N., M. Ezzat, and C.-J. Huang, Lysolipid-Inspired Amphiphilic Polymer Nanostructures: Implications for Drug Delivery. ACS Appl. Nano Mater., 2022. 5(1): p. 107.
110. Liu, S., J. Ma, L. Xu, W. Lin, W. Xue, M. Huang, and S. Chen, An electrospun polyurethane scaffold-reinforced zwitterionic hydrogel as a biocompatible device. J. Mater. Chem. B, 2020. 8(12): p. 2443.
111. Zhou, L.-Y., Y.-H. Zhu, X.-Y. Wang, C. Shen, X.-W. Wei, T. Xu, and Z.-Y. He, Novel zwitterionic vectors: Multi-functional delivery systems for therapeutic genes and drugs. Comput. Struct. Biotechnol. J., 2020. 18: p. 1980.
112. Ishihara, K., Revolutionary advances in 2‐methacryloyloxyethyl phosphorylcholine polymers as biomaterials. Journal of Biomedical Materials Research Part A, 2019. 107(5): p. 933.
113. Chien, H.-W., J. Yu, S.T. Li, H.-Y. Chen, and W.-B. Tsai, An in situ poly (carboxybetaine) hydrogel for tissue engineering applications. Biomater. Sci., 2017. 5(2): p. 322.
114. Xue, X., Y. Hu, Y. Deng, and J. Su, Recent advances in design of functional biocompatible hydrogels for bone tissue engineering. Adv. Funct. Mater., 2021. 31(19): p. 2009432.
115. Li, Y., J. Rodrigues, and H. Tomas, Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem. Soc. Rev., 2012. 41(6): p. 2193.
116. Ozcelik, B., Degradable hydrogel systems for biomedical applications. Biosynthetic Polymers for Medical Applications. 2016: Elsevier. 173.
117. Oryan, A., A. Kamali, A. Moshiri, H. Baharvand, and H. Daemi, Chemical crosslinking of biopolymeric scaffolds: Current knowledge and future directions of crosslinked engineered bone scaffolds. Int. J. Biol. Macromol., 2018. 107(Pt A): p. 678.
118. Guo, R., Q. Su, J. Zhang, A. Dong, C. Lin, and J. Zhang, Facile access to multisensitive and self-healing hydrogels with reversible and dynamic boronic ester and disulfide linkages. Biomacromolecules, 2017. 18(4): p. 1356.
119. Yang, W.J., X. Tao, T. Zhao, L. Weng, E.-T. Kang, and L. Wang, Antifouling and antibacterial hydrogel coatings with self-healing properties based on a dynamic disulfide exchange reaction. Polym. Chem., 2015. 6(39): p. 7027.
120. Wang, L., W. Zhou, Q. Wang, C. Xu, Q. Tang, and H. Yang, An injectable, dual responsive, and self-healing hydrogel based on oxidized sodium alginate and hydrazide-modified poly (ethyleneglycol). Molecules, 2018. 23(3): p. 546.
121. Carr, L.R., H. Xue, and S. Jiang, Functionalizable and nonfouling zwitterionic carboxybetaine hydrogels with a carboxybetaine dimethacrylate crosslinker. Biomaterials, 2011. 32(4): p. 961.
122. Kasák, P., Z. Kroneková, I. Krupa, and I. Lacík, Zwitterionic hydrogels crosslinked with novel zwitterionic crosslinkers: Synthesis and characterization. Polymer, 2011. 52(14): p. 3011.
123. Collins, M.N. and C. Birkinshaw, Physical properties of crosslinked hyaluronic acid hydrogels. J. Mater. Sci.: Mater. Med, 2008. 19(11): p. 3335.
124. Skrzypczak, D., K. Mikula, N. Kossińska, B. Widera, J. Warchoł, K. Moustakas, K. Chojnacka, and A. Witek-Krowiak, Biodegradable hydrogel materials for water storage in agriculture-review of recent research. Desalination and Water Treatment, 2020. 194: p. 324.
125. Gyles, D.A., L.D. Castro, J.O.C. Silva Jr, and R.M. Ribeiro-Costa, A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations. Eur. Polym. J., 2017. 88: p. 373.
126. Klein, M. and E. Poverenov, Natural biopolymer‐based hydrogels for use in food and agriculture. J. Sci. Food Agric., 2020. 100(6): p. 2337.
127. Zhu, J. and R.E. Marchant, Design properties of hydrogel tissue-engineering scaffolds. Expert Rev. Med. Devices, 2011. 8(5): p. 607.
128. Hudson, R.L. and P.A. Gerakines, Infrared spectra and interstellar sulfur: New laboratory results for H2S and four malodorous thiol ices. Astrophys. J., 2018. 867(2): p. 138.
129. Giljanović, J. and A. Prkić, Determination of coenzyme A (CoASH) in the presence of different thiols by using flow-injection with a UV/Vis spectrophotometric detector and potentiometric determination of CoASH using an iodide ISE. Molecules, 2009. 15(1): p. 100.
130. Zhang, X., Z. Cui, Z. Cheng, Y. Li, and H. Xiao, Quantitative detection of H 2 S and CS 2 mixed gases based on UV absorption spectrometry. RSC advances, 2017. 7(80): p. 50889.
131. Zhou, Y., Y. Zhang, Z. Dai, F. Jiang, J. Tian, and W. Zhang, A super-stretchable, self-healing and injectable supramolecular hydrogel constructed by a host–guest crosslinker. Biomater. Sci., 2020. 8(12): p. 3359.
132. Yang, J., B. Medronho, B. Lindman, and M. Norgren, Simple one pot preparation of chemical hydrogels from cellulose dissolved in cold LiOH/Urea. Polymers, 2020. 12(2): p. 373.
133. Zhang, Z., M. Moxey, A. Alswieleh, A.J. Morse, A.L. Lewis, M. Geoghegan, and G.J. Leggett, Effect of salt on phosphorylcholine-based zwitterionic polymer brushes. Langmuir, 2016. 32(20): p. 5048.
134. Desai, E.S., M.Y. Tang, A.E. Ross, and R.A. Gemeinhart, Critical factors affecting cell encapsulation in superporous hydrogels. Biomedical Materials, 2012. 7(2): p. 024108.
135. Zhang, X.N., Y.J. Wang, S. Sun, L. Hou, P. Wu, Z.L. Wu, and Q. Zheng, A tough and stiff hydrogel with tunable water content and mechanical properties based on the synergistic effect of hydrogen bonding and hydrophobic interaction. Macromolecules, 2018. 51(20): p. 8136.
136. Masoumi, H., J. Horne, and W. Timms, Establishing empirical relationships for the effects of water content on the mechanical behavior of Gosford sandstone. Rock Mech. Rock Eng., 2017. 50(8): p. 2235.
137. Yu, X., Z. Liu, J. Janzen, I. Chafeeva, S. Horte, W. Chen, R.K. Kainthan, J.N. Kizhakkedathu, and D.E. Brooks, Polyvalent choline phosphate as a universal biomembrane adhesive. Nat. Mater., 2012. 11(5): p. 468.
138. Wickramasinhage, R.N., S. Goswami, C.J. McAdam, L.R. Hanton, and S.C. Moratti, Tough polymeric hydrogels using ion-pair comonomers. Soft Matter, 2020. 16(11): p. 2715.
139. Mantha, S., S. Pillai, P. Khayambashi, A. Upadhyay, Y. Zhang, O. Tao, H.M. Pham, and S.D. Tran, Smart hydrogels in tissue engineering and regenerative medicine. Materials, 2019. 12(20): p. 3323.
140. Mirończuk-Chodakowska, I., A.M. Witkowska, and M.E. Zujko, Endogenous non-enzymatic antioxidants in the human body. Adv. Med. Sci., 2018. 63(1): p. 68.
141. Bonino, C.A., J.E. Samorezov, O. Jeon, E. Alsberg, and S.A. Khan, Real-time in situ rheology of alginate hydrogel photocrosslinking. Soft Matter, 2011. 7(24): p. 11510.
142. Yeh, S.B., C.S. Chen, W.Y. Chen, and C.J. Huang, Modification of silicone elastomer with zwitterionic silane for durable antifouling properties. Langmuir, 2014. 30(38): p. 11386.
143. Su, Y., T. Feng, W. Feng, Y. Pei, Z. Li, J. Huo, C. Xie, X. Qu, P. Li, and W. Huang, Mussel-Inspired, Surface-Attachable Initiator for Grafting of Antimicrobial and Antifouling Hydrogels. Macromol. Rapid Commun., 2019. 40(17): p. e1900268.
144. Yang, W., T. Bai, L.R. Carr, A.J. Keefe, J. Xu, H. Xue, C.A. Irvin, S. Chen, J. Wang, and S. Jiang, The effect of lightly crosslinked poly(carboxybetaine) hydrogel coating on the performance of sensors in whole blood. Biomaterials, 2012. 33(32): p. 7945.
145. Skardal, A., D. Mack, A. Atala, and S. Soker, Substrate elasticity controls cell proliferation, surface marker expression and motile phenotype in amniotic fluid-derived stem cells. Journal of the mechanical behavior of biomedical materials, 2013. 17: p. 307.
146. Tummala, G.K., V.R. Lopes, A. Mihranyan, and N. Ferraz, Biocompatibility of nanocellulose-reinforced PVA hydrogel with human corneal epithelial cells for ophthalmic applications. Journal of Functional Biomaterials, 2019. 10(3): p. 35.
147. Kwon, D.H., H. Lee, C. Park, S.-H. Hong, S.H. Hong, G.-Y. Kim, H.-J. Cha, S. Kim, H.-S. Kim, and H.-J. Hwang, Glutathione induced immune-stimulatory activity by promoting M1-like macrophages polarization via potential ROS scavenging capacity. Antioxidants, 2019. 8(9): p. 413.
148. Kuo, Z.K., M.Y. Fang, T.Y. Wu, T. Yang, H.W. Tseng, C.C. Chen, and C.M. Cheng, Hydrophilic films: How hydrophilicity affects blood compatibility and cellular compatibility. Advances in Polymer Technology, 2018. 37(6): p. 1635.
149. Guo, X., B. Choi, A. Feng, and S.H. Thang, Polymer synthesis with more than one form of living polymerization method. Macromol. Rapid Commun., 2018. 39(20): p. 1800479.
150. Lin, C.C., A. Raza, and H. Shih, PEG hydrogels formed by thiol-ene photo-click chemistry and their effect on the formation and recovery of insulin-secreting cell spheroids. Biomaterials, 2011. 32(36): p. 9685.
151. Chien, H.-W., W.-B. Tsai, and S. Jiang, Direct cell encapsulation in biodegradable and functionalizable carboxybetaine hydrogels. Biomaterials, 2012. 33(23): p. 5706.
152. Rhee, S., Fibroblasts in three dimensional matrices: cell migration and matrix remodeling. Exp. Mol. Med., 2009. 41(12): p. 858.
153. Pinet, K. and K.A. McLaughlin, Mechanisms of physiological tissue remodeling in animals: Manipulating tissue, organ, and organism morphology. Dev. Biol., 2019. 451(2): p. 134.
154. Cha, C., J.H. Jeong, J. Shim, and H. Kong, Tuning the dependency between stiffness and permeability of a cell encapsulating hydrogel with hydrophilic pendant chains. Acta Biomater, 2011. 7(10): p. 3719.
155. Borrelle, S.B., J. Ringma, K.L. Law, C.C. Monnahan, L. Lebreton, A. McGivern, E. Murphy, J. Jambeck, G.H. Leonard, and M.A. Hilleary, Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science, 2020. 369(6510): p. 1515.
156. Ilyas, M., W. Ahmad, H. Khan, S. Yousaf, K. Khan, and S. Nazir, Plastic waste as a significant threat to environment–a systematic literature review. Reviews on environmental health, 2018. 33(4): p. 383.
157. Khatib, M., O. Zohar, and H. Haick, Self‐healing soft sensors: from material design to implementation. Advanced Materials, 2021. 33(11): p. 2004190.
158. Tan, Y.J., G.J. Susanto, H.P. Anwar Ali, and B.C. Tee, Progress and Roadmap for Intelligent Self‐Healing Materials in Autonomous Robotics. Advanced Materials, 2021. 33(19): p. 2002800.
159. Zheng, N., Y. Xu, Q. Zhao, and T. Xie, Dynamic covalent polymer networks: a molecular platform for designing functions beyond chemical recycling and self-healing. Chemical Reviews, 2021. 121(3): p. 1716.
160. Lai, Y., X. Kuang, P. Zhu, M. Huang, X. Dong, and D. Wang, Colorless, transparent, robust, and fast scratch‐self‐healing elastomers via a phase‐locked dynamic bonds design. Advanced Materials, 2018. 30(38): p. 1802556.
161. Lin, X., Q. Xie, C. Ma, and G. Zhang, Self-healing, highly elastic and amphiphilic silicone-based polyurethane for antifouling coatings. Journal of Materials Chemistry B, 2021. 9(5): p. 1384.
162. Zhou, B., C. Zuo, Z. Xiao, X. Zhou, D. He, X. Xie, and Z. Xue, Self‐Healing Polymer Electrolytes Formed via Dual‐Networks: A New Strategy for Flexible Lithium Metal Batteries. Chemistry–A European Journal, 2018. 24(72): p. 19200.
163. Sun, Z., J. Wu, H. Yuan, J. Lan, Y. Yu, Y. Zhu, and X. Yang, Self-healing polymer electrolyte for long-life and recyclable lithium-metal batteries. Materials Today Energy, 2022. 24: p. 100939.
164. Deng, P., L. Yao, J. Chen, Z. Tang, and J. Zhou, Chitosan-based hydrogels with injectable, self-healing and antibacterial properties for wound healing. Carbohydrate polymers, 2022. 276: p. 118718.
165. Yang, Y., K. Shi, K. Yu, F. Xing, H. Lai, Y. Zhou, and P. Xiao, Degradable Hydrogel Adhesives with Enhanced Tissue Adhesion, Superior Self‐Healing, Cytocompatibility, and Antibacterial Property. Advanced Healthcare Materials, 2022. 11(4): p. 2101504.
166. Zheng, Y., N. Tang, R. Omar, Z. Hu, T. Duong, J. Wang, W. Wu, and H. Haick, Smart materials enabled with artificial intelligence for healthcare wearables. Advanced Functional Materials, 2021. 31(51): p. 2105482.
167. An, Q., I.D. Wessely, Y. Matt, Z. Hassan, S. Bräse, and M. Tsotsalas, Recycling and self-healing of dynamic covalent polymer networks with a precisely tuneable crosslinking degree. Polymer Chemistry, 2019. 10(6): p. 672.
168. Memon, H. and Y. Wei, Welding and reprocessing of disulfide‐containing thermoset epoxy resin exhibiting behavior reminiscent of a thermoplastic. Journal of Applied Polymer Science, 2020. 137(47): p. 49541.
169. Yang, X., L. Guo, X. Xu, S. Shang, and H. Liu, A fully bio-based epoxy vitrimer: Self-healing, triple-shape memory and reprocessing triggered by dynamic covalent bond exchange. Materials & Design, 2020. 186: p. 108248.
170. Sarkar, S., S.L. Banerjee, and N.K. Singha, Dual‐Responsive Self‐Healable Carboxylated Acrylonitrile Butadiene Rubber Based on Dynamic Diels–Alder “Click Chemistry” and Disulfide Metathesis Reaction. Macromolecular Materials and Engineering, 2021. 306(3): p. 2000626.
171. Cordier, P., F. Tournilhac, C. Soulié-Ziakovic, and L. Leibler, Self-healing and thermoreversible rubber from supramolecular assembly. Nature, 2008. 451(7181): p. 977.
172. Fujisawa, Y., A. Asano, Y. Itoh, and T. Aida, Mechanically robust, self-healable polymers usable under high humidity: humidity-tolerant noncovalent cross-linking strategy. Journal of the American Chemical Society, 2021. 143(37): p. 15279.
173. Liu, J., C.S.Y. Tan, Z. Yu, N. Li, C. Abell, and O.A. Scherman, Tough supramolecular polymer networks with extreme stretchability and fast room‐temperature self‐healing. Advanced Materials, 2017. 29(22): p. 1605325.
174. Gotoh, H., C. Liu, A.B. Imran, M. Hara, T. Seki, K. Mayumi, K. Ito, and Y. Takeoka, Optically transparent, high-toughness elastomer using a polyrotaxane cross-linker as a molecular pulley. Science advances, 2018. 4(10): p. eaat7629.
175. Jian, X., Y. Hu, W. Zhou, and L. Xiao, Self‐healing polyurethane based on disulfide bond and hydrogen bond. Polymers for Advanced Technologies, 2018. 29(1): p. 463.
176. Du, R., Z. Xu, C. Zhu, Y. Jiang, H. Yan, H.C. Wu, O. Vardoulis, Y. Cai, X. Zhu, and Z. Bao, A highly stretchable and self‐healing supramolecular elastomer based on sliding crosslinks and hydrogen bonds. Advanced Functional Materials, 2020. 30(7): p. 1907139.
177. Yoshida, S., H. Ejima, and N. Yoshie, Tough elastomers with superior self‐recoverability induced by bioinspired multiphase design. Advanced Functional Materials, 2017. 27(30): p. 1701670.
178. Sinawang, G., M. Osaki, Y. Takashima, H. Yamaguchi, and A. Harada, Supramolecular self-healing materials from non-covalent cross-linking host–guest interactions. Chemical Communications, 2020. 56(32): p. 4381.
179. Hu, Z., D. Zhang, F. Lu, W. Yuan, X. Xu, Q. Zhang, H. Liu, Q. Shao, Z. Guo, and Y. Huang, Multistimuli-responsive intrinsic self-healing epoxy resin constructed by host–guest interactions. Macromolecules, 2018. 51(14): p. 5294.
180. Jin, J., L. Cai, Y.-G. Jia, S. Liu, Y. Chen, and L. Ren, Progress in self-healing hydrogels assembled by host–guest interactions: preparation and biomedical applications. Journal of Materials Chemistry B, 2019. 7(10): p. 1637.
181. Li, Z., Y. Shan, X. Wang, H. Li, K. Yang, and Y. Cui, Self-healing flexible sensor based on metal-ligand coordination. Chemical Engineering Journal, 2020. 394: p. 124932.
182. Shi, L., P. Ding, Y. Wang, Y. Zhang, D. Ossipov, and J. Hilborn, Self‐healing polymeric hydrogel formed by metal–ligand coordination assembly: design, fabrication, and biomedical applications. Macromolecular rapid communications, 2019. 40(7): p. 1800837.
183. Wu, P., H. Cheng, X. Wang, R. Shi, C. Zhang, M. Arai, and F. Zhao, A self-healing and recyclable polyurethane-urea Diels–Alder adduct synthesized from carbon dioxide and furfuryl amine. Green Chemistry, 2021. 23(1): p. 552.
184. Yang, S., X. Du, S. Deng, J. Qiu, Z. Du, X. Cheng, and H. Wang, Recyclable and self-healing polyurethane composites based on Diels-Alder reaction for efficient solar-to-thermal energy storage. Chemical Engineering Journal, 2020. 398: p. 125654.
185. Xu, Y., Y. Li, Q. Chen, L. Fu, L. Tao, and Y. Wei, Injectable and self-healing chitosan hydrogel based on imine bonds: design and therapeutic applications. International Journal of Molecular Sciences, 2018. 19(8): p. 2198.
186. Song, F., Z. Li, P. Jia, M. Zhang, C. Bo, G. Feng, L. Hu, and Y. Zhou, Tunable “soft and stiff”, self-healing, recyclable, thermadapt shape memory biomass polymers based on multiple hydrogen bonds and dynamic imine bonds. Journal of Materials Chemistry A, 2019. 7(21): p. 13400.
187. Deng, K., S. Zhou, Z. Xu, M. Xiao, and Y. Meng, A high ion-conducting, self-healing and nonflammable polymer electrolyte with dynamic imine bonds for dendrite-free lithium metal batteries. Chemical Engineering Journal, 2022. 428: p. 131224.
188. Li, S., C. Zuo, Y. Zhang, J. Wang, H. Gan, S. Li, L. Yu, B. Zhou, and Z. Xue, Covalently cross-linked polymer stabilized electrolytes with self-healing performance via boronic ester bonds. Polymer Chemistry, 2020. 11(36): p. 5893.
189. Zhang, J., J. Zhang, Y. Ou, Y. Qin, H. Wen, W. Dong, R. Wang, S. Chen, and Z. Yu, Photonic Plasticines with Uniform Structural Colors, High Processability, and Self‐Healing Properties. Small, 2021. 17(8): p. 2007426.
190. Cho, S., S.Y. Hwang, D.X. Oh, and J. Park, Recent progress in self-healing polymers and hydrogels based on reversible dynamic B–O bonds: boronic/boronate esters, borax, and benzoxaborole. Journal of Materials Chemistry A, 2021. 9(26): p. 14630.
191. Wang, Z., S. Gangarapu, J. Escorihuela, G. Fei, H. Zuilhof, and H. Xia, Dynamic covalent urea bonds and their potential for development of self-healing polymer materials. Journal of Materials Chemistry A, 2019. 7(26): p. 15933.
192. Zhou, Z., S. Chen, X. Xu, Y. Chen, L. Xu, Y. Zeng, and F. Zhang, Room temperature self-healing crosslinked elastomer constructed by dynamic urea bond and hydrogen bond. Progress in Organic Coatings, 2021. 154: p. 106213.
193. Chen, B., X. Liu, J. Liu, Z. Feng, X. Zheng, X. Wu, C. Yang, and L. Liang, Intrinsically self-healing, reprocessable and recyclable epoxy thermosets based on dynamic reversible urea bonds. Reactive and Functional Polymers, 2022. 172: p. 105184.
194. Wu, H., X. Liu, D. Sheng, Y. Zhou, S. Xu, H. Xie, X. Tian, Y. Sun, B. Shi, and Y. Yang, High performance and near body temperature induced self-healing thermoplastic polyurethane based on dynamic disulfide and hydrogen bonds. Polymer, 2021. 214: p. 123261.
195. Li, W., L. Xiao, Y. Wang, J. Chen, and X. Nie, Self-healing silicon-containing eugenol-based epoxy resin based on disulfide bond exchange: Synthesis and structure-property relationships. Polymer, 2021. 229: p. 123967.
196. Li, Z.-J., J. Zhong, M.-C. Liu, J.-C. Rong, K. Yang, J.-Y. Zhou, L. Shen, F. Gao, and H.-F. He, Investigation on self-healing property of epoxy resins based on disulfide dynamic links. Chinese Journal of Polymer Science, 2020. 38(9): p. 932.
197. Kim, S.M., H. Jeon, S.H. Shin, S.A. Park, J. Jegal, S.Y. Hwang, D.X. Oh, and J. Park, Superior toughness and fast self‐healing at room temperature engineered by transparent elastomers. Advanced Materials, 2018. 30(1): p. 1705145.
198. Zhang, M., F. Zhao, W. Xin, and Y. Luo, Room‐Temperature Self‐Healing and Reprocessable Waterborne Polyurethane with Dynamically Exchangeable Disulfide Bonds. ChemistrySelect, 2020. 5(15): p. 4608.
199. Liu, Y., J. Zheng, X. Zhang, Y. Du, K. Li, G. Yu, Y. Jia, and Y. Zhang, Mussel-inspired and aromatic disulfide-mediated polyurea-urethane with rapid self-healing performance and water-resistance. Journal of Colloid and Interface Science, 2021. 593: p. 105.
200. Yang, Y.M., H.Z. Yu, X.H. Sun, and Z.M. Dang, Density functional theory calculations on S―S bond dissociation energies of disulfides. Journal of Physical Organic Chemistry, 2016. 29(1): p. 6.
201. Zhang, L.-L., L.-J. Zhang, J. Long, J. Ning, J.-X. Zhang, and S.-J. Na, Effects of titanium on grain boundary strength in molybdenum laser weld bead and formation and strengthening mechanisms of brazing layer. Materials & Design, 2019. 169: p. 107681.
202. Ghosh, T. and N. Karak, Silicone-containing biodegradable smart elastomeric thermoplastic hyperbranched polyurethane. ACS omega, 2018. 3(6): p. 6849.
203. Somdee, P., T. Lassú-Kuknyó, C. Kónya, T. Szabó, and K. Marossy, Thermal analysis of polyurethane elastomers matrix with different chain extender contents for thermal conductive application. Journal of Thermal Analysis and Calorimetry, 2019. 138(2): p. 1003.
204. Asmus, R.A., H.-S. Lee, and D.-W. Zhu, Conformable coating composition comprising fluorinated copolymer. 2020, Google Patents.
205. Wool, R.P., Self-healing materials: a review. Soft Matter, 2008. 4(3): p. 400.
206. Maruo, Y., K. Yoshihara, M. Irie, N. Nagaoka, T. Matsumoto, and S. Minagi, Does Multifunctional Acrylate’s Addition to Methacrylate Improve Its Flexural Properties and Bond Ability to CAD/CAM PMMA Block? Materials, 2022. 15(21): p. 7564.
207. Artyushkova, K., J. Mann, J. Newman, R. Inoue, K. Watanabe, H. Yamazui, A. Vanleenhove, C. Zborowski, and T. Conard. Application of a Laboratory-Based Scanning XPS/Haxpes Instrument for the Characterization of Buried Interfaces. in ECS Meeting Abstracts. 2020. IOP Publishing.
208. Mi, H.-Y., X. Jing, Y. Wang, X. Shi, H. Li, C. Liu, C. Shen, L.-S. Turng, and S. Gong, Poly [(Butyl acrylate)-co-(butyl methacrylate)] as Transparent Tribopositive Material for High-Performance Hydrogel-Based Triboelectric Nanogenerators. ACS Applied Polymer Materials, 2020. 2(11): p. 5219.

指導教授 李宇翔 黃俊仁(Yu-Hsiang Lee Chun-Jen Huang) 審核日期 2023-1-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明