博碩士論文 109226035 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:3.143.168.172
姓名 方振豪(ZHEN-HAO Fang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以雙光子螢光超光譜顯微術進行克里蒙納提琴及中國古琴木材之特性研究
(Analysis of Cremonese violins and Chinese guqin wood properties by using two-photon fluorescence hyperspectral microscopy)
相關論文
★ 非反掃描式平行接收之雙光子螢光超光譜顯微術★ 以二次通過成像量測架構及降低誤差迭代演算法重建人眼之點擴散函數
★ LASER光源暨LED在老鼠毛生長的低能量光治療比較分析★ 應用線狀結構照明提升雙光子顯微鏡解析度
★ 以同調結構照明顯微術進行散射樣本解析度之提升★ 掃描式二倍頻結構照明顯微術
★ 小貓自泵相位共軛鏡於數位光學相位共軛與時間微分之研究★ 鏡像輔助斷層掃描相位顯微鏡
★ 以數位全像術重建多波長環狀光束之研究★ 相位共軛反射鏡用於散射介質中光學聚焦之研究
★ 雙光子螢光超光譜顯微術於多螢光生物樣本之研究★ 倍頻非螢光基態耗損超解析之顯微成像方法
★ 葉綠素雙光子螢光超光譜影像於光合作用研究之應用★ 雙光子掃描結構照明顯微術
★ 微投影光學切片超光譜顯微術★ 使用結構照明顯微術觀察活體小鼠毛囊生長週期之變化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-10-18以後開放)
摘要(中) 克里蒙納名琴及中國古琴的特殊音色一直以來都是科學家想要了解的問題,過去的研究中曾經提到克里蒙納名琴上的塗漆或許是提琴音色的關鍵,但是在最近的研究中卻發現到塗漆似乎不是決定音色的主要因素,因此漸漸地認為製作名琴的木材所使用的化學處理或許才是特殊音色的關鍵。從中國古琴的研究中也發現古代的中國製琴師,常以特殊的方式對木材進行加速老化,以此來改變木材中的震動性質使製作出來的古琴音色更加優美。
本實驗的研究中,為了能夠了解克里蒙納名琴與化學處理過的雲杉樣本有何差異,以及年代更加久遠的中國古琴和現代木材有何差異,因此本實驗利用雙光子螢光超光譜顯微術獲得樣本的一維光譜資訊與二維的空間資訊,以此來分析在相同結構下各組樣本光譜基底的含量比例,從而了解各組樣本木質素的螢光有何變化;同時,藉由線性分離法將二倍頻訊號分離,以二倍頻訊號分析木材中纖維素的含量及分布情形。最後我們從各組樣本間的分析中發現克里蒙納名琴可能受到類似鹼性的化學影響,而中國古琴則是發現受到溫度影響的可能性非常高。
摘要(英) The unique timbre of the famous Cremona and Chinese guqin has always been a problem that scientists want to solve. In past research, it has been mentioned that the varnish on the famous Cremona may be the key to the unique timbre of the violin. But, recently In research, found that varnish does not seem to be the main factor in determining the tone, so it was gradually believed that the chemical treatment of the wood used to make the famous violin may be the key to the unique timbre. From the study of the Chinese guqin, it is also found that ancient Chinese luthiers often uniquely accelerated the aging of wood, to change the vibration properties in the wood to make the guqin sound more beautiful.
In the research of this experiment, to understand the difference between the famous Cremona and the chemically treated spruce samples, as well as the difference between the ancient Chinese guqin and modern wood, this experiment uses two-photon fluorescence Spectral microscopy to obtain the one-dimensional spectral information and two-dimensional spatial information of the samples, to analyze the content ratio of the spectral bases of each group of samples under the same structure, so as to understand the changes in the fluorescence of lignin in each group of samples, The second harmonic generation is separated by the linear separation method, and second harmonic generation analyzes the content and distribution of cellulose in wood. Finally, from the analysis of each group of samples, we found that the Cremona may be affected by chemical effects similar to alkaline, while the Chinese Guqin is very likely to be affected by temperature.
關鍵字(中) ★ 以雙光子螢光超光譜顯微術進行克里蒙納提琴及中國古琴木材之特性研究 關鍵字(英) ★ Analysis of Cremonese violins and Chinese guqin wood properties by using two-photon fluorescence hyperspectral microscopy
論文目次 中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 xi
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 2
1.2.1 克里蒙納名琴與古琴相關研究 2
1.2.2 螢光光譜相關研究 6
1.3 論文架構 9
第二章 實驗原理及木材結構 10
2.1 雙光子螢光顯微術 10
2.2 二倍頻訊號 13
2.3 雙光子超光譜顯微術(Two-photon hyperspectral microscopy) 14
2.4 線性分離法 16
2.5 木材的結構 18
2.6 木材的分子組成 23
2.6.1 纖維素 23
2.6.2 半纖維素 24
2.6.3 木質素 24
第三章 實驗架構和研究方法 26
3.1 實驗架構 26
3.2 光譜系統校正 28
3.3 系統解析度分析 30
3.3.1 空間解析度 30
3.3.2 光譜解析度 33
3.4 樣本配置 33
第四章 實驗結果與討論 36
4.1 雷射波長對於螢光及二倍頻訊號之影響 36
4.2 雲杉樣本化學處理之特性分析 38
4.2.1 雲杉樣本化學處理之超光譜影像 38
4.2.2 雲杉樣本化學處理之平均光譜分析 40
4.2.3 雲杉樣本化學處理之超光譜影像線性分離法結果 42
4.3 中國古琴樣本及現代樣本之特性分析 56
4.3.1 中國古琴樣本及現代樣本超光譜影像 56
4.3.2 中國古琴樣本及現代樣本平均光譜分析 57
4.3.3 中國古琴樣本及現代樣本超光譜影像線性分離法結果 61
第五章 結論 70
參考文獻 72
參考文獻 [1] J.-P. Echard, and B. Lavédrine, "Review on the characterisation of ancient stringed musical instruments varnishes and implementation of an analytical strategy," Journal of Cultural Heritage 9, 420-429 (2008).
[2] J. Nagyvary, R. N. Guillemette, and C. H. Spiegelman, "Mineral preservatives in the wood of Stradivari and Guarneri," PloS one 4, e4245 (2009).
[3] M. ALBANO, "Effects of alkaline and sizing treatments on wood in Cremonese violin making: chemical-physical characterization and new analytical approaches," (2022).
[4] C. E. Gough, "Violin acoustics," Acoust. Today 12, 22-30 (2016).
[5] B. C. Stoel, and T. M. Borman, "A comparison of wood density between classical Cremonese and modern violins," PLoS One 3, e2554 (2008).
[6] J. Nagyvary, J. A. DiVerdi, N. L. Owen, and H. D. Tolley, "Wood used by Stradivari and Guarneri," Nature 444, 565-565 (2006).
[7] 鍾任軒, "克里蒙納名琴木材的化學處理," in 化學研究所(國立臺灣大學, 2019), pp. 1-117.
[8] 李國乾, "史特拉底瓦里小提琴木材性質的化學研究," in 化學研究所(國立臺灣大學, 2018), pp. 1-119.
[9] W. Cai, Y.-K. Cheng, H.-H. Tseng, H.-C. Tai, and S.-F. Lo, "Identification and characterization of wood from antique Chinese guqin zithers," Journal of Cultural Heritage 53, 72-79 (2022).
[10] W. Cai, and H.-C. Tai, "Three millennia of tonewood knowledge in Chinese guqin tradition: science, culture, value, and relevance for Western lutherie," Savart J 1, 27 (2018).
[11] K. C. Wali, Cremona violins: A physicist′s quest for the secrets of Stradivari (World Scientific, 2010).
[12] J.-P. Echard, and B. Soulier, "Stradivari′s varnish: A chemical analysis," The Strad 121, 48-51 (2010).
[13] A. von Bohlen, and F. Meyer, "Microanalysis of old violin varnishes by total-reflection X-ray fluorescence," Spectrochimica Acta Part B: Atomic Spectroscopy 52, 1053-1056 (1997).
[14] 曾筱涵, "以紅外線與固態核磁共振光譜探索古代樂器木材特性," in 化學研究所(國立臺灣大學, 2020), pp. 1-113.
[15] T. Rovetta, C. Invernizzi, M. Licchelli, F. Cacciatori, and M. Malagodi, "The elemental composition of Stradivari′s musical instruments: new results through non‐invasive EDXRF analysis," X‐Ray Spectrometry 47, 159-170 (2018).
[16] L. Donaldson, "Softwood and hardwood lignin fluorescence spectra of wood cell walls in different mounting media," IAWA journal 34, 3-19 (2013).
[17] G. Latour, J.-P. Echard, M. Didier, and M.-C. Schanne-Klein, "In situ 3D characterization of historical coatings and wood using multimodal nonlinear optical microscopy," Optics Express 20, 24623-24635 (2012).
[18] C. Sant′Anna, L. T. Costa, Y. Abud, L. Biancatto, F. C. Miguens, and W. de Souza, "Sugarcane cell wall structure and lignin distribution investigated by confocal and electron microscopy," Microscopy research and technique 76, 829-834 (2013).
[19] F. Helmchen, and W. Denk, "Deep tissue two-photon microscopy," Nature methods 2, 932-940 (2005).
[20] J. W. Lichtman, and J.-A. Conchello, "Fluorescence microscopy," Nature methods 2, 910-919 (2005).
[21] F. M. Castelli, N. Lanconelli, R. Campanini, and M. Roffilli, "3D CNN Methods in Biomedical Image Segmentation," (2019).
[22] W. Denk, J. H. Strickler, and W. W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990).
[23] G. C. Ellis-Davies, "Two-photon microscopy for chemical neuroscience," ACS chemical neuroscience 2, 185-197 (2011).
[24] C. L. Smith, "Basic confocal microscopy," Current protocols in neuroscience 56, 2.2. 1-2.2. 18 (2011).
[25] P. T. So, C. Y. Dong, B. R. Masters, and K. M. Berland, "Two-photon excitation fluorescence microscopy," Annual review of biomedical engineering 2, 399-429 (2000).
[26] c. Wikipedia, "Two-photon excitation microscopy," in Wikipedia, The Free Encyclopedia.
[27] P. Pantazis, J. Maloney, D. Wu, and S. E. Fraser, "Second harmonic generating (SHG) nanoprobes for in vivo imaging," Proceedings of the National Academy of Sciences 107, 14535-14540 (2010).
[28] D. Jeong, "Second Harmonic Generation in Nonlinear Optical Crystal."
[29] Y. Wang, N. Reder, S. Kang, A. Glaser, and J. Liu, "Multiplexed Optical Imaging of Tumor-Directed Nanoparticles: A Review of Imaging Systems and Approaches," Nanotheranostics 1, 369-388 (2017).
[30] J. Amigo, I. Martí-Aluja, and A. Gowen, "Hyperspectral Imaging and Chemometrics: A Perfect Combination for the Analysis of Food Structure, Composition and Quality," (2013), pp. 343-370.
[31] C.-S. Lu, "非反掃描式平行接收之雙光子螢光超光譜顯微術," (National Central University, 2013).
[32] T. Zimmermann, "Spectral imaging and linear unmixing in light microscopy," Microscopy techniques, 245-265 (2005).
[33] L. Parra, C. Spence, P. Sajda, A. Ziehe, and K.-R. Müller, "Unmixing hyperspectral data," Advances in neural information processing systems 12 (1999).
[34] C. Richter, "The Anatomical Structure of Wood," in Wood Characteristics: Description, Causes, Prevention, Impact on Use and Technological Adaptation, C. Richter, ed. (Springer International Publishing, 2015), pp. 3-5.
[35] F. H. Schweingruber, Wood structure and environment (Springer Science & Business Media, 2007).
[36] H. Harada, and W. Côté, "Structure of wood," Biosynthesis and biodegradation of wood components 1, 1-42 (1985).
[37] C. E. Bessey, Botany for high schools and colleges (Henry Holt, 1885).
[38] N. J. Chaffey, J. R. Barnett, and P. W. Barlow, "Cortical microtubule involvement in bordered pit formation in secondary xylem vessel elements ofAesculus hippocastanum L.(Hippocastanaceae): A correlative study using electron microscopy and indirect immunofluorescence microscopy," Protoplasma 197, 64-75 (1997).
[39] J. Shi, Y. Lu, Y. Zhang, L. Cai, and S. Shi, "Effect of thermal treatment with water, H2SO4 and NaOH aqueous solution on color, cell wall and chemical structure of poplar wood," Scientific Reports 8 (2018).
[40] F. W. Jane, "The structure of wood," The structure of wood. (1970).
[41] S. Helmling, A. Olbrich, I. Heinz, and G. Koch, "ATLAS OF VESSEL ELEMENTS: Identification of Asian Timbers," IAWA Journal 39, 249-352 (2018).
[42] P. Bajpai, Biermann′s Handbook of Pulp and Paper: Volume 1: Raw Material and Pulp Making (Elsevier, 2018).
[43] I. Solala, "Mechanochemical reactions in lignocellulosic materials," (2015).
[44] R. A. Savidge, "Cell biology of bordered-pit formation in balsam-fir trees," Botany 92, 495-511 (2014).
[45] N. Zhang, S. Li, L. Xiong, Y. Hong, and Y. Chen, "Cellulose-hemicellulose interaction in wood secondary cell-wall," Modelling and Simulation in Materials Science and Engineering 23, 085010 (2015).
[46] R. Rowell, R. Pettersen, J. Han, J. Rowell, and M. Tshabalala, "3 Cell Wall Chemistry," Handbook of Wood Chemistry and Wood Composites, Second Edition (2012).
[47] G. C. Cox, N. Moreno, and J. Feijo, "Second-harmonic imaging of plant polysaccharides," Journal of Biomedical Optics 10, 024013 (2005).
[48] R. M. Brown Jr, A. C. Millard, and P. J. Campagnola, "Macromolecular structure of cellulose studied by second-harmonic generation imaging microscopy," Optics letters 28, 2207-2209 (2003).
[49] P. Friedl, K. Wolf, G. Harms, and U. H. von Andrian, "Biological second and third harmonic generation microscopy," Current Protocols in Cell Biology 34, 4.15. 11-14.15. 21 (2007).
[50] D. A. Kleinman, "Theory of second harmonic generation of light," Physical Review 128, 1761 (1962).
[51] R. H. Atalla, and D. L. Vanderhart, "Native cellulose: a composite of two distinct crystalline forms," Science 223, 283-285 (1984).
[52] Y. Kataoka, and T. Kondo, "Changing cellulose crystalline structure in forming wood cell walls," Macromolecules 29, 6356-6358 (1996).
[53] B. Caballero, L. Trugo, and P. Finglas, "Encyclopedia of food sciences and nutrition: Volumes 1-10," Encyclopedia of food sciences and nutrition: Volumes 1-10. (2003).
[54] R. Sun, Cereal straw as a resource for sustainable biomaterials and biofuels: chemistry, extractives, lignins, hemicelluloses and cellulose (Elsevier, 2010).
[55] H. Yang, R. Yan, H. Chen, D. H. Lee, and C. Zheng, "Characteristics of hemicellulose, cellulose and lignin pyrolysis," Fuel 86, 1781-1788 (2007).
[56] C. E. Wyman, S. R. Decker, M. E. Himmel, J. W. Brady, C. E. Skopec, and L. Viikari, "Hydrolysis of cellulose and hemicellulose," Polysaccharides: Structural diversity and functional versatility 1, 1023-1062 (2005).
[57] A. Maceda, and T. Terrazas, "Fluorescence Microscopy Methods for the Analysis and Characterization of Lignin," Polymers 14, 961 (2022).
[58] B. Albinsson, S. Li, K. Lundquist, and R. Stomberg, "The origin of lignin fluorescence," Journal of Molecular Structure 508, 19-27 (1999).
[59] Y. Xue, X. Qiu, and X. Ouyang, "Insights into the effect of aggregation on lignin fluorescence and its application for microstructure analysis," International Journal of Biological Macromolecules 154, 981-988 (2020).
[60] G. Mizutani, Y. Sonoda, H. Sano, M. Sakamoto, T. Takahashi, and S. Ushioda, "Detection of starch granules in a living plant by optical second harmonic microscopy," Journal of Luminescence 87, 824-826 (2000).
[61] R. M. Williams, W. R. Zipfel, and W. W. Webb, "Interpreting second-harmonic generation images of collagen I fibrils," Biophysical journal 88, 1377-1386 (2005).
[62] S. Roth, and I. Freund, "Second harmonic generation in collagen," The Journal of chemical physics 70, 1637-1643 (1979).
[63] G. Cox, E. Kable, A. Jones, I. Fraser, F. Manconi, and M. D. Gorrell, "3-dimensional imaging of collagen using second harmonic generation," Journal of structural biology 141, 53-62 (2003).
[64] M. Poletto, A. J. Zattera, M. M. Forte, and R. M. Santana, "Thermal decomposition of wood: Influence of wood components and cellulose crystallite size," Bioresource Technology 109, 148-153 (2012).
[65] D. Xing, and J. Li, "Effects of heat treatment on thermal decomposition and combustion performance of Larix spp. wood," BioResources 9, 4274-4287 (2014).
[66] 黄律先, "木材热解工艺学," (1996).
指導教授 陳思妤(Szu-Yu Chen) 審核日期 2022-10-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明