博碩士論文 109232003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.133.156.156
姓名 黃威豪(Wei-Hao Huang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 利用傳統光學微影和i-line紫外光微影製作氮化矽微共振腔
(Silicon nitride microresonators fabrication using conventional optical lithography and i-line UV lithography)
相關論文
★ 電子束曝光製程氮化矽微環型共振腔之研究分析★ 以Groove-first 製程步驟製作U型槽與波導
★ 可重構SU-8之波導製程與量測研究★ 氮化矽微環形共振腔模擬與傳統紫外光製程之研究
★ 微環形共振腔非線性效應與壓縮光之研究★ 以可重構之SU-8聚合物披覆層對氮化矽微環形共振腔進行色散調製
★ 錐形波導設計對氮化矽微環形共振腔耦合效應研究★ 耦合共振腔光波導頻寬優化研究
★ 高功率脈衝磁控濺鍍氮化鎵環形共振腔製程之研究★ 以原子層沉積披覆層及飛秒雷射退火對氮化矽微環形共振腔進行表面改質研究
★ 低限制氮化矽波導之高品質因子微環形共振腔製程研究★ 氮化矽微環型干涉儀製程與穿透頻譜調製
★ 6 吋晶圓製程整合 奈米光學應用和均勻性分析研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在過去半個世紀,矽積體光路上有巨大的發展,可利用成熟的CMOS技術進行製作低成本、大規模的積體光路。在應用上除了電信通信產業還擴及感測、非線性光學、量子光學、光機械甚至神經科學。而矽積體光路中,微共振腔主要作用為調變器、感測器、濾波器和高泵功率的腔體。微共振腔的耦合強度通常由輸入波導和微共振腔間的間距決定,間距則受曝光解析度的限制。儘管電子束微影可實現高消光比(extinction ratio)的共振,但這是昂貴且費時的方法。本論文第一部分展示在傳統的接觸式曝光機使用雙重曝光技術在微共振腔上達到次微米的耦合間距,並實現耦合其消光比為8 dB和間距< 1 μm。此方式成本低且可達到需i-line UV 步進機、電子束微影等高解析曝光技術才能實現的次微米耦合間距。製程所使用的光阻是AZ-5214E光阻,它圖案反轉的特性由於側壁的傾斜角度可使用剝離(lift-off)製程,除此之外還有較好的解析度其優勢。AZ-5214E光阻在製程中仍有一些問題需要解決,其中對於溫度的敏感性會嚴重影響間距。我們將討論軟烤、曝後烤和後續等待時間溫度變化的影響,並得到相對穩定的結果。尤其是空曝時間的調整對耦合間距相當關鍵,且透過雙重曝光技術與傳統的一次曝光比較可看出解析度明顯地改善。
相較於第一部分利用製程整合方式達到微共振腔耦合。第二部分將討論使用先進i-line UV 步進機製作的微共振腔,並與接觸式曝光機比較,其最大的差別是比它有更好的解析度(~400 nm)。步進機常用於微共振腔製作,光罩可長時間使用、結果可重複性、高產量、可曝光較大的圖案為其優勢,尤其高產量在商業化的路上是吸引人的相比於電子束微影製作微共振腔。這裡會製作不同尺寸的波導觀察固有品質因子Qi的變化,其中的Qi最大可達2*105,且發現在輸入波導寬度1 μm時,受背景干擾小以至於有分析分便的傳輸頻譜,而在製作完成的波導(輸入波導寬2 μm)所觀察到的傳輸損耗上達到0.08 dB/mm。透過改善退火方式,由之前的實驗包埋層二氧化矽的波導進行退火,改為包埋層為空氣進行退火觀察到Qi明顯的改變,其Qi從原本8.1*104到退火後1.3105。相比於第一部分的結果,使用i-line UV 步進機製作的微共振腔其消光比> 10 dB、高Q值、結果可重複性。
摘要(英) In the past half-century, there has been tremendous growth in the area of silicon integrated circuits. Utilizing standard CMOS manufacturing processes, integrated, large-scale photonic circuits are available with low-cost fabrication. In addition to the mature of telecommunication industry, silicon photonic applications have now expanded into sensing, nonlinear optics, quantum optics, opto-mechanics, and even neuroscience. Among all the photonic functions, microresonators are mostly applied as modulators, sensors, filters, and cavities for enhancing pump power. The coupling strength of microresonator is typically determined by the available gap between the bus- and resonator-waveguide and limited by the lithography resolution for patterning. Although resonance with high extinction ratio can be achieved by advanced electron-beam lithography (EBL), it is time-consuming and costly. For the first part of this work, the author shows the capability to achieve sub-micron coupling gap between the bus- and microresonator-waveguides with the conventional contact UV lithography. Using the proposed double exposure technology, effective coupling can be achieved in which an extinction ratio 8 dB and gap size < 1 μm is demonstrated. This method exhibits low-cost lithography and yields a sub-micron gap which can be only previously achieved by high-resolution exposure techniques, such as i-line UV stepper lithography or EBL. The patterning of photoresist is based on image reversal process, providing negative slope of the patterning sidewall in the lift off process. In addition, this process gives better resolution, comparing to the direct image projection. However, this process is sensitivity to the fabrication parameters. For instance, temperature of processes will strongly affect the fabricated gap. We will discuss the effect on the temperature change of soft bake, postexposure bake, and the subsequent waiting time, and obtain the relatively stable fabrication process. We show that the adjustment of flood exposure time is especially critical to the coupling gap, and the resolution can be significantly improved by the proposed double exposure technique.
In the second part, we study the capability to fabricate microresonators by i-line UV stepper lithography, which has better resolution (~400 nm) than the contact lithography. I-line Steppers are commonly used in fabrication of microresonator, due to its longer mask lifetime, the repeatability, high productivity, and large-scale manufacturing. In particular, the productivity paves the way for integrated photonics and shows comparable performance with the EBL for microresonator fabrication. Here, we will discuss different waveguide dimensions and investigate the highest available intrinsic quality factor Qi. In this work, the maximum Qi is demonstrated at 2105. Furthermore, it is found that, when the input waveguide width is set at 1 μm, the background interference can be suppressed in comparing to the 2 μm bus. Also, the observed transmission loss at 2 μm is 0.08 dB/mm. To improve the quality of the fabricated waveguides, we performed annealing with oxide cladding in the previous experiment, and then performed annealing with air cladding, and observed a significant change in Qi from 8.1*104 to 1.3*105. Comparing to the results in the first part, a high extinction ratio > 10 dB, high Q, repeatability can be achieved by the i-line UV stepper lithography.
關鍵字(中) ★ 氮化矽微共振腔
★ 傳統接觸UV曝光
★ 雙重曝光技術
★ i-line UV 步進機
關鍵字(英) ★ Silicon nitride microresonators
★ Conventional contact UV lithography
★ Double exposure technology
★ i-line UV stepper lithography
論文目次 中文摘要 i
ABSTRACT iii
誌謝 v
目錄 vi
圖目錄 viii
表目錄 xii
第一章 緒論 1
1.1 矽積體光路 1
1.2 微共振腔 2
1.3 論文概要 6
第二章 接觸式曝光使用雙重曝光技術與微共振腔量測 8
2.1 波導製作前的流程 9
2.1.1 清洗製程 9
2.1.2 氧化製程 9
2.1.3 氮化矽沉積 10
2.2 光罩設計 11
2.3 微影和蝕刻製程 14
2.3.1 微影製程 15
2.3.2 蝕刻製程 23
2.4 結果討論 24
2.4.1 雙重曝光製程受光罩的影響 25
2.4.2 雙重曝光製程參數的影響 26
2.4.3 傳統的一次曝光與雙重曝光技術的比較 28
2.4.4 溫度對AZ-5214E光阻的影響 28
2.5 量測架構 30
2.6 分析模型 31
2.7 量測結果 34
2.7.1 傳統的一次曝光與雙重曝光技術的比較 34
2.7.2 耦合間距模糊的量測分析 37
第三章 使用i-line UV 步進機與微共振腔量測 39
3.1 光罩設計 41
3.2 微影和蝕刻製程 44
3.3 結果討論 47
3.4 光學量測 50
3.4.1 沉積二氧化矽包埋層的影響 57
3.4.2 氮化矽波導高溫退火的影響 60
第四章 結論 64
參考資料 66
參考文獻 [1] Xiaochen Sun et al., "Optical bleaching of thin film Ge on Si," ECS Trans. 16, 881 (2008).
[2] https://iodl-dop.nsysu.edu.tw/p/405-1222 190861,c17814.php?Lang=zh-tw
[3] Wei Shi et al., "Scaling capacity of fiber-optic transmission systems via silicon photonics," Nanophotonics, (9), 4629-4633, (2020).
[4] [Online]. Available: https://refractiveindex.info/.
[5] Jiawei Wang et al., "Low loss, low power, silicon nitride PZT stress-optic microresonator modulator for control functions," Frontiers in Optics pp. FW6B.2, (2021).
[6] Subrata Das et al., "SiN-microring-resonator-based optical biosensor for neuropeptide Y detection," IEEE Photon. Technol. Lett. 33(16), 888-891 (2021).
[7] Boris Desiatov et al., "Ultra-low-loss integrated visible photonics using thin-film lithium niobate," Optica 6(3), 380-384 (2019).
[8] Patrik Rath et al., "Diamond as a material for monolithically integrated optical and optomechanical devices," Phys. Status Solidi 212, 2385-2399 (2015).
[9] Jennifer T. Choy et al., "Integrated ???? resonators for visible photonics," Opt. Lett. 37(4), 539-541 (2012).
[10] Y. Deki et al., "Wide-wavelength tunable lasers with 100 GHz FSR ring resonators," Electron. Lett. 43(4), 225-226 (2007).
[11] Jiamin Chen et al., "Filtering effect of SiO2 optical waveguide ring resonator applied to optoelectronic oscillator," Opt. Express 26(10), 12638-12647 (2018).
[12] Mengjie Yu et al., "Mode-locked mid-infrared frequency combs in a silicon microresonator," Optica 3(8), 854-560 (2016).
[13] Xiaoping Liu et al., "Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides," Nature Photonics 4, 557–560 (2010).
[14] Siddiqi SA et al., "Materials chemistry and physics," 2:157-160 (1994).
[15] Xingchen Ji et al., "Methods to achieve ultra-high quality factor silicon nitride resonators," APL Photonics 6, (2021).
[16] K. Jain et al., "Ultrafast high-resolution contact lithography with excimer lasers," IBM J. Res. Dev. 26(2), 151-159 (1982).
[17] Michael Paulus et al., "Contrast mechanisms in high-resolution contact lithography: A comparative study," Microelectron. 57-58, 109-116 (2001).
[18] T. Weichelt et al., "Resolution enhancement for advanced mask aligner lithography using phase-shifting photomasks," Opt. Express 22(13), 16310-16321 (2014).
[19] Brian Tyrrell et al., "Investigation of the physical and practical limits of dense-only phase shift lithography for circuit feature definition," Proc. SPIE 4692, (2002).
[20] Martin Hubert Peter Pfeiffer et al., "Photonic damascene process for low-loss, high-confinement silicon nitride waveguides," IEEE J. Sel. Top. Quantum Electron.24(4), (2018).
[21] Martin H. P. Pfeiffer et al., "Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: fabrication and loss origins," Optica 5(7), 884-892 (2018).
[22] Kaiyi Wu et al., "Integrated Si3N4 microresonator-based quantum light sources with high brightness using a subtractive wafer-scale platform," Opt. Express 29(16), 24750-24764 (2021).
[23] Kaiyi Wu et al., "Stress-released Si3N4 fabrication process for dispersion-engineered integrated silicon photonics," Opt. Express 28(12), 17708-17722 (2020).
[24] Jeffrey M. Shainline et al., "Room-temperature-deposited dielectrics and superconductors for integrated photonics," Opt. Express 25(9), 10322-10334 (2017).
[25] Khadijeh Miarabbas Kiani et al., "Four-wave mixing in high-Q tellurium-oxide-coated silicon nitride microring resonators," OSA Continuum 3(12), 3497-3507 (2020).
[26] B.E. Little et al., "Ultra-compact Si-SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10(4), 549-551 (1998).
[27] Barry Koch et al., "Reflection-mode sensing using optical microresonators," Appl. Phys. Lett. 95, (2009).
[28] Yuexin Yin et al., "Low power consumption polymer/silica hybrid thermo-optic switch based on racetrack resonator" IEEE Photon. J. 14(4), (2022).
[29] Linghua Wang et al., "Nonlinear silicon nitride waveguides based on a PECVD deposition platform," Opt. Express 26(8), 9645-9654 (2018).
[30] Xiao H. "Introduction to semiconductor manufacturing technology," New Jersey: Prentice Hall; 2000.
[31] Ryohei Takei et al., "Ultranarrow silicon inverse taper waveguide fabricated with double-patterning photolithography for low-loss spot-size converter," Appl. Phys. Express 5(5), (2012).
[32] Coumba Ndoye et al., "Double and triple exposure with image reversal in a single photoresist layer, " Proc. SPIE 7970, (2011).
[33] Masanobu Hasegawa et al., "New approach for realizing k1=0.3 optical lithography," Proc. SPIE 3748, (1999).
[34] Vic Marriott et al., "A practical approach to submicron lithography," Proc. SPIE 0771, (1987).
[35] Patrick J. PANIEZ et al., "Towards a better understanding of positive chemically amplified systems," J. Photopolym. Sci. Technol. 8(4), 643-652 (1995).
[36] E.Tegou et al., "Thermal analysis of photoresists in aid of lithographic process development," Microelectro. Eng. 35, 141-144 (1997).
[37] D. R. Dunbobbin et al., "Single-step, positive-tone, lift-off process using AZ 5214-E resist," Proc. SPIE 0922, (1988).
[38] E. W. Balch et al., "Characterization of a submicron image reversal process," Proc. SPIE 0922, (1988).
[39] S. Xiao et al., "Modeling and measurement of losses in silicon-on-insulator resonators and bends," Opt. Express 15(17), 10553-10561 (2007).
[40] J.E. Heebner et al., "Optical transmission characteristics of fiber ring resonators," IEEE J. Quant. Electron. 40(6), 726–730 (2004).
[41] Ming-Chang M. Lee et al., "Tunable coupling regimes of silicon microdisk resonators using MEMS actuators," Opt. Express 14(11), 4703-4712 (2006).
[42] Yun Zhao et al., "Near-degenerate quadrature-squeezed vacuum generation on a silicon-nitride chip," Phys. Rev. Lett. 124, (2020).
[43] J. H. Jang et al., "Direct measurement of nanoscale sidewall roughness of optical waveguides using an atomic force microscope," Appl. Phys. Lett. 83, 4116 (2003).
[44] P. K. Tien, "Light waves in thin films and integrated optics," Appl. Opt. 10, 2395-2413 (1971).
[45] You-Yuan Chen, "The study and analysis of silicon nitride microring resonator by electron beam lithography," (2021).
[46] YI XUAN et al., "High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation," Optica 3(11), 1171-1180 (2016).
[47] CHAO XIANG et al., "Laser soliton microcombs heterogeneouslyintegrated on silicon," Science 376, 1269 (2021).
[48] Michael J. Shaw et al., "Fabrication techniques for low-loss silicon nitride waveguides," Proc. SPIE 5720, (2005).
[49] Y.-D. Kim et al., "Dehydration bake effects with UV/O3 treatment for 130-nm node PSM processing," Proc. SPIE 5256, 392-399 (2003).
[50] Chris A. Mack, "Understanding focus effects in submicron optical lithography," Proc. SPIE 0922, (1988).
[51] Wesley D. Sacher et al., "Visible-light silicon nitride waveguide devices and implantable neurophotonic probes on thinned 200 mm silicon wafers" Opt. Express 27(26), 37400-37418 (2019).
[52] C. H. Henry et al., "Low loss Si3N4–SiO2 optical waveguides on Si," Appl. Opt. 26, 2621-2624 (1987).
[53] Turgut Tut et al., "Silicon nitride light pipes for image sensors," Proc. SPIE, (2010).
指導教授 王培勳(Pei-Hsun Wang) 審核日期 2022-12-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明