博碩士論文 109226602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:56 、訪客IP:44.199.225.221
姓名 趙胡托(Trieu Huu Tho)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 多原子層鋁膜中電子與聲子間之散射研究
(Theoretical Investigations of Electron-Phonon Scattering in Multi-Atomic-Layer Aluminum Films)
相關論文
★ 以金屬與多層介電質組態實現可運用於矽基奈米光路之波導90度轉折結構★ 發展半解析法以設計高次模態合成之三維波導電漿子布拉格光柵
★ 以非對稱金屬與多層介電質組態實現可運用於奈米光路之方向性耦合器極化分離器★ 以金屬與多層介電質組態為基礎之新型波導布拉格光柵
★ 以保角映射結合傳輸線網路法設計與分析表面電漿轉折波導: 理論計算與數值模擬之比較★ 以模擬退火演算法及考慮太陽光譜權重對具金屬背電極之太陽能電池設計寬頻與全向位抗反射層
★ 有損中間層引介之光學效應於實現最大光穿透率至薄膜太陽能電池吸收層之研究★ 探討包含金屬之非對稱、單一位能障壁系統中輻射模態致發之共振光學穿隧
★ 橫電極化光波入射非對稱「金屬-介電質」多層結構之共振耦合研究★ 光波至混合電漿波導極化模態轉換器
★ 基於模態漸變之嵌入式矽波導至混合電漿波導極化模態轉換器★ 理論探討以金屬內部光輻射為基礎之太陽能光電轉換
★ 以具全極化二維週期奈米結構之「金屬-介電質-金屬」吸收體實現電漿子增強之光電轉換★ 具耦合電漿子增強之可見光波段電漿子光偵測器
★ 適用於覆晶封裝、厚度薄型化矽基光電二極體之一維光柵: 設計與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-12-31以後開放)
摘要(中) 本研究基於費米黃金法則(Fermi’s golden rule)理論探討奈米鋁薄膜中電子於聲子作用下之帶内(intraband)散射率(scattering rate)。我們以變形散射(Deformation scattering)機制描述電子與聲子之間的交互作用。首先以原子軌域線性組合(linear combination of atomic orbitals)法求取數個原子層厚之鋁薄膜的真實能帶結構與電子的實際波函數。在這項工作中,用於展開電子波函數的基底是九個原子軌域,包括一個 $3s$ 軌域、三個 $3p$ 軌域和五個 $3d$ 軌域。通過在第一布里淵區 (FBZ) 的高對稱點處將LCAO計算之特徵能量與密度泛函理論 (DFT) 之結果進行擬合,以獲得用於決定奈米鋁(001)薄膜的能帶結構所需之各能量積分的加權係數及表面位能。為了獲得所需之精確度共需54個加權係數與9個表面位能項。與 DFT 相比,本研究提出的改進型LCAO 方法消耗極少的計算資源。
以上述改進型LCAO 方法計算在具有五層原子層的鋁(001) 奈米薄膜中的費米能量(Fermi energy) $E_{F}$得$E_{F} = 10.8380$ eV,此結果較 DFT之計算數值約高0.1 eV,尚屬合理。此外,随著奈米鋁薄膜之原子層層數增加,費米能量逐步上升並接近塊材鋁之費米能量。奈米鋁薄膜中的電子-聲子 (e-p) 散射率是在固定的薄膜體積V中,以不同之聲子模態(phonon mode)$(E_s,  mathbf{q})$進行計算,其中 $E_s$ 是在聲子波向量 $mathbf{q}$處之聲子能量,$s$ 則表示聲子之分支(branch)。
對於具有七層的奈米鋁薄膜,由聲子模態$(20 mbox {meV}, overline{mbox{M}}$)造成初始能量$E_i$高於費米能階 0.3 eV之熱電子散射,其散射率為$1/ au(E_i) = 1.251 imes10^{16}$ s$^{-1}$。使用相同的聲子模態但對於處於較低初始能量 $E_{i} = 0.1 + E_{F}$ eV之電子,散射率為 $1/ au(E_i) = 3.498 imes10^{15}$ s$ ^{-1}$。另一方面,當納米Al薄膜的厚度增加到17層時,聲子模態$(20 mbox{meV}, overline{mbox{M}})$造成初始能量為 $E_{i} = 0.1 + E_{F}$ eV之電子散射率是$ 1/ au(E_i) = 2.513 imes10^16$ s$^{-1}$。電子散射率隨電子能量之變化則與電子之能態密度有緊密之關係,且奈米鋁薄膜中電子之能態密度分布與塊材鋁之情形有顯著差異。
摘要(英) In this research, the intraband scattering rate of electrons due to phonons based on the Fermi golden rule in nano-metallic aluminum (Al) films is theoretically investigated. First, the realistic energy band structure of an Al nanofilm of a few atomic layers in thickness and the actual wave function of an electron are resolved by the linear combination of atomic orbitals (LCAO) method. In this work, the basis for describing an electron wave function is composed of nine atomic orbitals, including one $3s$ orbital, three $3p$ orbitals, and five $3d$ orbitals. Surface potentials and weighting coefficients of energy integrals used to determine the energy band structure of nanofilm Al(001) are obtained by fitting the LCAO-based eigen-energies to those from the density functional theory (DFT) at high symmetry points in the first Brillouin zone (FBZ). A total of 54 weighting coefficients and nine surface potentials are obtained to achieve the desired accuracy. Compared to the DFT, the modified LCAO method proposed in this research consumes much less computational resources.

Using the modified LCAO approximation, the computed Fermi energy $E_F$ found in Al(001) nanofilm with five atomic layers is $E_F = 10.8380$ eV, which is about 0.1 eV above that from the DFT result. Moreover, as the number of atomic layers of the nano-Al film increases, the Fermi energy gradually increases and approaches that of bulk Al. The electron-phonon (e-p) scattering rate in a nano-Al film is carried out using a phonon mode $(E_s, mathbf{q})$ and a fixed volume $V$ of a film, where $E_s$ denotes the phonon energy at a phonon wave vector $mathbf{q}$ and $s$ represents a phonon branch.

For a nano-Al film with seven atomic layers, the scattering rate of hot electrons having an initial energy of 0.3 eV above the Fermi level due to a phonon mode $(20 mbox{meV}, overline{mbox{M}}$) is $1/ au(E_i) = 1.251 imes10^{16}$ s$^{-1}$. With the same phonon mode, electrons with a lower initial energy $E_i = 0.1 + E_{F}$ eV, the scattering rate is $1/ au(E_i) = 3.498 imes10^{15}$ s$ ^{-1}$. On the other hand, when the thickness of the nano-Al film increases up to 17 layers, the scattering rate of electrons at $E_{i} = 0.1$ eV above the Fermi level due to a phonon mode $ (20 mbox{meV}, overline{mbox{M}})$ is $ 1/ au(E_i) = 2.513 imes10^16$ s$^{-1}$. The scattering rate as a function of energy is found to follow quite closely the density of states of the electron that is very different from that in bulk Al.
關鍵字(中) ★ 电子-声子散射率
★ 能带结构
★ 平板能带结构
關鍵字(英) ★ electron-phonon scattering rate
★ energy band structure
★ slab energy band structure
★ Fermi golden rule
★ deformation potential
論文目次 中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Theoretical Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 The Linear Combination of Atomic Orbitals Method . . . . . . . 8
2.1.1 Tight-binding Model of Bulk Crystals . . . . . . . . . . . . . . . 9
2.1.2 Multi-Atomic-Layer Films . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Electron Density of States . . . . . . . . . . . . . . . . . . . . . . 21
2.1.4 Construction of the Wave Function . . . . . . . . . . . . . . . . . 23
2.2 Lattice Vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.1 The Harmonic Approximation . . . . . . . . . . . . . . . . . . . . 26
2.3 Electron-Phonon Interaction . . . . . . . . . . . . . . . . . . . . . 29
2.3.1 Transition Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.2 Matrix Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1 Bulk Metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.1 The Energy Band Structure . . . . . . . . . . . . . . . . . . . . . 33
3.1.2 The Density Of States . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1.3 The Wave Function in Bulk Metals . . . . . . . . . . . . . . . . . 36
3.2 Nano-Metallic Films . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.1 The Weighting Coefficients of Nano-Metallic Films . . . . . . . . 38
3.2.2 Fermi Energy of Nano-Metallic Films . . . . . . . . . . . . . . . 46
3.2.3 Normalization of the Wave Function in Nano-Metallic Films . . 50
3.3 Phonon Dispersion in Aluminum . . . . . . . . . . . . . . . . . . 52
3.4 Electron-Phonon Interaction in Ultrathin Aluminum Films . . . 54
3.4.1 Intraband Scattering in an Ultrathin Al(001) Film With Seven
Atomic Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4.2 Electron-Phonon Scattering Rate in a Slab Al(001) With 17
Atomic Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
參考文獻 [1] Y. J. Chang, K. H. Shih, and C. Y. Hsiao, “Photonic-plasmonic hot-electron-based photodetection with diffracted-order-resolved leaky plasmonic mechanisms.”, J. Nanophotonics., vol. 11, no.19, pp. 4439, Aug. 2022.
[2] A. J. Leenheer, P. Narang, N. S. Lewis, and H. A. Atwater, “Solar energy conversion via hot electron internal photoemission in metallic nanostructures: Efficiency estimates.”, J. Appl. Phys., vol. 115, no. 13, pp. 13401, Feb. 2014.
[3] V. L. Dalal, “Simple Model for Internal Photo emission.”, J. Appl. Phys., vol. 42, no. 6, pp. 2274-2279, Dec. 2003.
[4] P. W. M. Jacobs, Y. F. Zhukovskii, Y. Mastrikov, Y. N. Shunin, “Bulk And Surface Properties Of Metallic Aluminium: Dft Simulations.”, Computer Modeling and Simulation in Engineering., vol. 6, no. 1, pp. 7-28, Jun. 2002.
[5] K. S. Sohn, D. G. Dempsey, L. Kleinman, and E. Caruthers, “Energy bands of (100) copper thin films.”, Phys. Rev. B., vol. 13, no.4, pp. 1515-1522, Feb. 1976.
[6] K. S. Sohn, D. G. Dempsey, L. Kleinman, and E. Caruthers, “Energy bands of (111) copper thin films.”, Phys. Rev. B., vol. 14, no.8, pp. 3185-3192, Oct. 1976.
[7] K. S. Sohn, D. G. Dempsey, L. Kleinman, and E. Caruthers, “Energy bands of (110) copper thin films.”, Phys. Rev. B., vol. 14, no.8, pp. 3193-3200, Oct. 1976.
[8] D. G. Dempsey, L. Kleinman, and E. Caruthers, “Energy bands of (100) iron thin films.”, Phys. Rev. B., vol. 12, no. 8, pp. 2932-2942, Oct. 1975.
[9] D. G. Dempsey, L. Kleinman, and E. Caruthers, “Energy bands of a (110) iron thin film.”, Phys. Rev. B., vol. 13, no. 4, pp. 1489-1497, Feb. 1976.
[10] D. G. Dempsey, L. Kleinman, and E. Caruthers, “Energy bands of a (111) iron thin film.”, Phys. Rev. B., vol. 14, no. 2, pp. 279-287, Jul. 1976.
[11] G. A. Burdick, “Energy Band Structure of Copper.”, Phys. Rev. B., vol. 129, no. 1, pp. 138-150, Jan. 1963.
[12] U. R¨ossler, Solid State Theory, 1st ed., Springer, 2004.
[13] C. Barreteau, F. Raouafi, M. C. Desjonquères and D. Spanjaard, “Modelling of transition and noble metal vicinal surfaces: energetics, vibrations and stability.”, J. Phys.: Condens. Matter., vol. 15, no. 17, pp. S3171-S3196, Nov. 2003.
[14] V. Chis, B. Hellsing, G. Benedek, M. Bernasconi and J. P. Toennies, “Evidence of longitudinal resonance and optical subsurface phonons in Al(001).”, J. Phys.: Condens. Matter., vol. 19, no. 30, Jul. 2007.
[15] Y. Wang, Z. Lu, and X. Ruan, “First principles calculation of lattice thermal conductivity of metals considering phonon-phonon and phonon-electron scattering.”, J. Appl. Phys., vol. 119, pp. 225109, May. 2016.
[16] W. Zhang, C. Delerue, Y. M. Niquet, G. Allan, and E. Wang, “Atomistic modeling of electron-phonon coupling and transport properties in n-type [110] silicon nanowires.”, Phys. Rev. B., vol. 82, no. 11, pp. 115319, Sep. 2010.
[17] D. A. Papaconstantopoulos, Handbook of the Band Structure of Elemental Solids, From Z = 1 To Z = 112, 2nd., Springer, 2014.
[18] J. C. Slater, and G. F. Koster, “Simplified LCAO Method for the Periodic Potential Problem.”, Phys. Rev., vol. 94, no. 6, pp. 1498-1524, Jun. 1954.
[19] H. L¨uth, Solid Surfaces, Interfaces and Thin Films, 5th ed., Springer, 2010.
[20] G. D. Sanders, C. J. Stanton, and Y. C. Chang, “Theory of transport in silicon quantum wires.”, Phys. Rev. B., vol. 48, no. 15, pp. 11067-11076, Oct. 1993.
[21] E. A. Martínez, J. L. B. Fínez, F. Y. Bruno, “BinPo: An open-source code to compute the band structure of two dimensional electron systems.”, Comput. Phys. Commun., Mar. 2022.
[22] M. Heinrichsmeier, A. Fleszar, A. G. Eguiluz, “LDA calculation of the surface states on the (001), (110), and (111) surfaces of aluminum.”, Surf. Sci. vol. 285, no. 1-2, pp. 129-141, Apr. 1993.
[23] Y. J. Chang and K. H. Shih, “Solar energy conversion via internal photoemission in aluminum, copper, and silver: Band structure effects and theoretical efficiency estimates.”, J. Appl. Phys, vol. 119, pp. 183101, May. 2016.
[24] W. A. Harrison, Electronic Structure and the Properties of Solids, 1st ed., Dover, 1980.
[25] J. C. Slater, “Atomic Shielding Constants.”, Phys. Rev., vol. 36, no. 1, pp. 57-64, Jul. 1930.
[26] V. L. Moruzzi, J. F. Janak, A. R. Williams, Calculated electronic properties of metals, 1st ed., Elsevier, 1978.
[27] P. H. Dederichs, H. Schober and D. J. Sellmyer, “Phonon States of Elements. Electron States and Fermi Surfaces of Alloys - Al.”, Springer, 1981.
[28] J. A. Gaspar, A. G. Eguiluz, M. Gester, A. Lock, and J. P. Toennies, “Resonances in the surface-phonon spectrum of an sp-bonded metal.”, Phys. Rev. Lett., vol. 66, no. 3, pp. 337-340, Jan. 1991.
[29] L. Mouketo, N. Binggeli, and B. M'Passi-Mabiala1, “Quantum size effects on chemisorption properties: CO on ultrathin Cu films from first principles.”, Phys. Rev. B., vol. 84, no. 20, pp. 205452, Nov. 2011.
指導教授 張殷榮(Yin-Jung Chang) 審核日期 2023-2-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明