博碩士論文 109226040 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:60 、訪客IP:3.236.64.8
姓名 林煒翔(Lin-Wei-Xiang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 單光子放射顯微鏡之針孔穿隧模擬與系統矩陣建立
相關論文
★ 以GATE模型及系統矩陣演算法重建SPECT螺旋影像★ LED檯燈視覺舒適度研究
★ 表面電漿共振系統之相位擷取與分析★ 人眼眼球模型與視覺表現之模擬分析研究
★ 白光LED之視覺生理效應評估★ 不同色溫螢光燈用於辦公室照明之視覺效應研究
★ 表面電漿共振儀之動態相位偵測技術 與微量生物分子檢測應用★ 二次通過成像架構量測人眼的光學系統品質
★ 週期性奈米金屬結構對拉曼散射訊號增強之研究★ 日眩光要因分析研究
★ 非球面檢測之迭代相移干涉與子孔徑相位接合演算法開發★ 應用可容忍隨機位移之相移干涉術於相位式表面電漿共振系統之穩定度增進
★ 以偵測任務及系統效能評估找尋多針孔微單光子放射電腦斷層掃描系統之最佳化配置★ 結合表面電漿共振及溫度控制於免疫球蛋白鍵結之檢測分析
★ 以二次通過成像量測架構及降低誤差迭代演算法重建人眼之點擴散函數★ 多陽極光電倍增管閃爍相機之訊號讀出系統與高效最大可能性位置估算演算法開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-1-31以後開放)
摘要(中) 本論文模擬單光子放射顯微鏡系統之針孔穿隧效應,並以模擬所得之點響應函數建立影像系統矩陣。單光子放射顯微鏡系統架構包含針孔式準直儀、碘化銫閃爍晶體、電子增益電荷耦合元件、高質量光影像縮倍管(DM tube)等,在模擬針孔穿隧效應前需要先建立針孔表面方程式,用來辨別伽瑪射線射入針孔平面時是否會產生針孔穿隧效應,並透過三點共線模型確認物空間、針孔平面、偵測器平面三者間的關係,最後進行點射源的正向投影,從投影影像中的模糊函數進行高斯參數化和建立成像模型。
此成像模型包括通量模型、寬度模型和主軸角度模型,透過成像模型的建立和三點共線投影模型,即可建立影像系統矩陣。而建立針孔穿隧模型,可用於驗證針孔的取樣性,幫助我們設計出最佳的針孔圖像。最後將不同投影角度之目標投影影像和影像系統矩陣代入序列子集之期望值最大化演算法進行迭代演算,重建出三維物體影像和投影影像,驗證所建立之針孔穿隧模型與影像系統矩陣。
摘要(英) This study simulates the pinhole tunneling effect of the single-photon emission microscope (SPEM) and establishes the imaging system matrix from the simulated point response functions. The system configuration of SPEM includes a pinhole collimator, a thallium-doped cesium iodide crystal (CsI(Tl)), an electron multiplying charge-coupled device (EMCCD), and an electrostatic de-magnifier tube (DM tube). In simulation of pinhole tunneling effect, we have to first establish the pinhole surface equation to identify whether the pinhole tunneling effect will occur when a gamma ray is incident onto the pinhole plane. We also use the three-point collinear model to establish the relationship between the object space, the pinhole plane, and the detector plane. Then, we perform the forward projections of point sources, apply Gaussian parameterization to the projected blur functions and establish the imaging model.
The imaging model includes the flux model, width model and principal angle model. By using the established imaging model and the three-point collinear model, we can build the imaging system matrix. Finally, we use the ordered subset expectation maximization (OSEM) to reconstruct 3D object images with target forward projection images and the system matrix. The image reconstruction results validate the established pinhole tunneling model and imaging system matrix. We anticipate this modeling procedure along with the sampling completeness analysis can aid in pinhole pattern design.
論文目次 摘要 v
Abstract vi
目錄 vii
圖目錄 ix
表目錄 xvi
第一章 緒論 1
1.1 研究背景 1
1.2 研究目的 2
1.3 論文架構 2
第二章 研究背景與基本原理 4
2.1 核子醫學影像 4
2.1.1 正子放射斷層掃描系統(PET) 5
2.1.2 單光子放射電腦斷層掃描系統(SPECT) 8
2.1.3 單光子放射顯微鏡系統(SPEM) 11
2.2 準直儀(Collimator) 13
2.3 閃爍晶體偵測器(Scintillation Detector) 15
第三章 針孔穿隧效應和影像系統矩陣 20
3.1 針孔穿隧效應 20
3.1.1 正向投影針孔穿隧效應 20
3.1.2 針孔傾斜和位移 23
3.1.3 模擬正向投影模型方法 25
3.2 影像系統矩陣與高斯參數結合幾何參數法 29
3.2.1 格點掃描實驗(Grid-scan Experiment) 31
3.2.2 正向投影高斯函數參數化 33
3.2.3 成像模型(Imaging Model) 35
3.3 影像重建演算法 41
3.3.1 最大可能性之期望值最大化演算法(Maximum-Likelihood Expectation Maximization, MLEM) 42
3.3.2 序列子集之期望值最大化演算法(Ordered-Subset Expectation Maximization, OSEM) 44
第四章 實驗和影像重建結果 46
4.1 正向投影模擬結果 46
4.1.1 正向投影模擬實驗結果 46
4.1.2 簡化格點掃描實驗 55
4.2 建立成像模型 57
4.2.1 通量模型 57
4.2.2 寬度模型 63
4.2.3 主軸角度模型 79
4.2.4 影像系統矩陣的建立 89
4.3 影像重建結果 90
4.3.1 三點假體影像重建 90
4.3.2 一點兩桿假體影像重建 102
4.3.3 解析度假體影像重建 114
第五章 結論與未來展望 158
5.1 結論 158
5.2 未來展望 159
參考文獻 161

參考文獻 [1] S. R. Cherry and S. S. Gambhir, “Use of positron emission tomography in animal research,”ILAR Journal, vol. 42, no. 3, pp. 219-232, 2001.
[2] M. V. Green, J. Seidel, J. J. Vaquero, E. Jagoda, I. Lee, and W.C. Eckelman, “High resolution PET, SPECT and projection imaging in small animals,” Computerized Medical Imaging and Graphics, vol. 25, no. 2, pp. 79-86, 2001.
[3] B. Y. Huang, System Calibration and Imaging Model Construction of Single Photon Emission Microscope, Master Thesis, National Central University, Taoyuan, Taiwan, 2017.
[4] M. N. Wernick and J. N. Aarsvold, Emission Tomography: The Fundamentals of PET and SPECT, Elsevier Academic Press, London, 2004.
[5] C. Y. Chen, Development of GPU-based Position Estimator and Image Reconstruction Algorithms for Micro-SPECT Systems, Master Thesis, National Central University, Taoyuan, Taiwan, 2014.
[6] M. A. D. Reis, J. Mejia, I. R. Batista, M. R. F. F. D. Barboza, and S. A. Nogueira, et al., “SPEM: A state-of-the-art instrument for high resolution molecular imaging of small animal organs,”SciELO Einstein (São Paulo), vol. 10, no. 2, pp. 209-215, 2012.
[7] J. Mejia, M. A. Reis, A. C. C. Miranda, I. R. Batista, and M. R. F. Barboza, et al.,“Performance assessment of the single photon emission microscope: high spatial resolution SPECT imaging of small animal organs, ” SciELOBrazilian Journal of Medical and Biological Research, vol. 46, no. 11, pp. 936-942, 2013.
[8] L. J. Meng, N. H. Clinthorne, S. Skinner, R. V. Hay, and M. Gross, “Design and feasibility study of a single photon emission microscope system for small animal I-125 imaging,”IEEE Transactions on Nuclear Science, vol. 53, no. 3, pp. 1168-1178, 2006.
[9] K. V. Audenhaege, R. van Holen, S. Vandenberghe, C. Vanhove, S. D. Metzler and S. C. Moore, “Review of SPECT collimator selection, optimization and fabrication for clinical and preclinical imaging,” Medical Physics, vol. 42, no. 8, pp. 4796-813, 2015.
[10] Y. R. Zheng, Performance Analysis of Signal Readout Methods for Tiled Gamma Cameras and Building of Pinhole Penetration Models, Master Thesis, National Central University, Taoyuan, Taiwan, 2014.
[11] A. P. Dhanasopon, C. S. Levin, A. M. K. Foudray, P. D. Olcott, J. A. Talcott, and F. Habte, “Scintillation crystal design features for a miniature gamma ray camera,”IEEE Nuclear Science Symposium Conference Record, vol. 5 pp. 1967-1971, 2003.
[12] M. A. Kupinski and H. H. Barrett, Small-Animal SPECT Imaging, Springer, New York, 2005.
[13] C. Fiorini, A. Longoni, F. Perotti, C. Labanti, P. Lechner, and L. Strüder, “Gamma ray spectroscopy with CsI(Tl) scintillator coupled to silicon drift chamber,”IEEE Transactions on Nuclear Science, vol. 44, no. 6, pp. 2553- 2560, 1997.
[14]Available:http://www.ysctech.com/digital-microscope-CCD-camerainfo.html
[15] L. J. Meng, “An intensified EMCCD camera for low energy gamma ray imaging applications,” IEEE Transactions on Nuclear Science, vol. 53, no. 4, pp. 2376-2384, August 2006.
[16] Available: https://www.teo.com.tw/products?product_id=1429
[17] M. F. Smith and R. J. Jaszczak, "An analytic model of pinhole aperture penetration for 3D pinhole SPECT image reconstruction," Physics in medicine and biology, vol. 43, no. 4, pp. 761-775, 1998.
[18] H. H. Barrett and K. J. Myers, Foundations of Image Science, Wiley Interscience, Hoboken, N. J., 2004.
[19] M. W. Lee and Y. C. Chen, “Rapid construction of pinhole SPECT system matrices by distance-weighted Gaussian interpolation method combined with geometric parameter estimations,” Elsevier Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 737, pp. 122-134, 2014.
[20] F. van der Have, B. Vastenhouw, M. Rentmeester, F. J. Beekman, “System calibration and statistical image reconstruction for ultra-high resolution stationary pinhole SPECT,” IEEE Transactions on Medical Imaging, vol. 27, no. 7, pp. 960-971, July 2008.
[21] C. C. Wu, Geometric Parameter Fitting and Imaging Model Improvement of Single Photon Emission Microscope, Master Thesis, National Central University, Taoyuan, Taiwan, 2021.
[22] L. A. Shepp and Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Transactions on Medical Imaging, vol. 1, no. 2, pp. 113-122, 1982.
[23] H. M. Hudson and R. S. Larkin, “Accelerated image reconstruction using ordered subsets of projection data,” IEEE Transactions on Medical Imaging, vol. 13, no. 4, pp. 601-609, 1994.
[24] D. S. Lalush and B. M. Tsui, “Performance of ordered-subset reconstruction algorithms under conditions of extreme attenuation and truncation in myocardial SPECT,” Journal of Nuclear Medicine, vol. 41, no. 4, pp. 737- 744, 2000.
[25] E. M. C. Revilla, System Calibration and Helical Reconstruction of Single Photon Emission Microscope, Master Thesis, National Central University, Taoyuan, Taiwan, 2018.
指導教授 陳怡君(Chen-Yi-Chun) 審核日期 2023-2-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明