博碩士論文 108222006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:154 、訪客IP:3.133.160.156
姓名 林宏霖(Hong-lin Lin)  查詢紙本館藏   畢業系所 物理學系
論文名稱 使用最大相似法以改進校正之誤差分析
(Improvement of error estimation of calibration by maximum likelihood method)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 重力波的觀測是本世紀以來最重要的發現之一,從 1974 年 Hulse 跟 Taylor 發現了雙星運動會散發能量開始,直到 2015 年美國重力播觀測天文台 LIGO 直 接的觀測到重力波的訊號;近十年來從當初的雙黑洞融合訊號,到最新的觀測 紀錄總共已經觀測到了高達 90 個事件。
重力波的觀測是利用探測公里級的雷射干涉儀上的反射鏡之位移求得,因 為重力波大小只有10公尺,所以需要用上最先進的科技才有辦法達到相對應 的敏感度,也因為重力波的訊號與其他天文觀測息息相關,所以觀測到的數值 精確度也是一個大課題,這也為什麼是校正工作之所以必要。
KAGRA 是一個座落在日本的公里級重力波觀測天文台,在 2020 年加入了 重力波觀測網路,他有著兩大特點,分別是位在地底與低溫系統,位在地底可 以有效的減少地震造成的噪音,而低溫系統可以有效的減少熱擾動的噪音
本篇論文將以模擬的校正測量資料作為研究對象,使用最大相似法建立一
個分析程式,並將其結果與原先有的貝氏統計法做比較,要驗證兩個方法的結
果可以一致,並且最大相似法擁有比原先方法更快速的計算速度,藉由這個交
互比對的分析程式,我們可以獲得更可靠的分析結果與更快的分析程式
摘要(英) The observation of Gravitational Waves(GW) is one of the most exciting dis- coveries of this century. Since 1974, Hulse and Taylor discovered the binary star system emits energies, people realized the prediction of GW from general rela- tivity is possible. In 2015, an advanced Laser Interferometer Gravitational wave Observatory called aLIGO succeed in directly detecting the GW signals from a binary black hole merger. During this decade, with advanced Virgo and KA- GRA’s joining, the sensitivity dramatically increases, and the events discovered increased from that binary black hole system to 90 events in the latest catalog. The observation of GW is detecting the displacement of test masses in the km- scale observatory, with the most frontier technologies applied, the requirements of detecting the GW strain is can be satisfied. As the GW becomes one of the important cosmological resources, the accuracy of the sources is required to reach with other astronomy research. This is why the calibration of the response of the interferometer is crucial, the error estimation of calibration is a crucial part of the parameter estimation of the GW source.
KAGRA, the third km-scale GW observatory located in Japan, Gifu, joined the observation network in April 2020 and features two unique technologies - underground and cryogenic. KAGRA is the first observatory built on the under- ground site, in order to reduce the seismic noise, and the cryogenic system is to reduce the thermal noise.
In this thesis, we discuss the error estimation analysis based on the simu- lated frequency domain calibration data of KAGRA during the period O3GK in April 2020. We develop a calibration pipeline based on the maximum likelihood method to crosscheck with the previous pipeline based on the Bayesian method. The maximum likelihood method provides a faster pipeline for crosscheck in the ratio around. By crosscheck between these two method, and the results proves that these two are consistence, so that we can improve the accuracy of GW observation with more reliable parameters and faster pipeline.
關鍵字(中) ★ 校正 關鍵字(英) ★ Calibration
論文目次 1 Introduction 1
2 Science 3
2.1 EinsteinequationandGravitationalwave . . . . . . . . . . . . . . 3
2.2 Sources.................................. 9
2.2.1 CompactBinaryCoalescence(CBC) . . . . . . . . . . . . . 9
2.2.2 ContinuousWave........................ 13
2.2.3 Burst............................... 14
2.2.4 StochasticGravitationalWaves................ 15
2.3 PreviousObservation.......................... 16
2.3.1 WorldwideObservation.................... 16
2.3.2 O3GK .............................. 17
2.4 Discussion................................ 18
2.4.1 ExpectedscienceinO4..................... 18
2.4.2 BNSandHubbleconstant................... 18 2.4.3 2ndpeakofBNS ........................ 20
2.4.4 Intermediatemassblackhole................. 21
2.4.5 KAGRA’sadvantage...................... 21
3 Gravitational Wave detectors 25
3.1 Introduction ............................... 25
3.2 PrincipleofGWobservation...................... 25
3.3 Worldwideobservatory ........................ 31
3.3.1 LIGO............................... 31
3.3.2 KAGRA ............................. 32
3.3.3 Virgo............................... 32
3.4 InstrumentofKAGRA ......................... 32
3.5 Discussion................................ 33
4 Calibration 37
4.1 IntroductionofCalibration....................... 37
4.2 DARMmodel .............................. 39
4.3 Calibrationinstruments ........................ 40
4.4 Reconstructionpipeline ........................ 44
4.5 Errorestimation............................. 46
4.6 Discussion................................ 48
4.6.1 ComparisonofPCALamongLVK .............. 48
4.6.2 PcalabsoluteerrorandHubbleconstant. . . . . . . . . . . 49
4.6.3 GcalandNcal.......................... 49
4.6.4 KAGRA’scontrolmodel.................... 50
4.7 Goalofthisthesis............................ 50
5 DARM modeling 53
5.1 Introduction ............................... 53
5.2 Actuationfunction ........................... 55
5.2.1 Suspensioninstruments .................... 56
5.2.2 DAC ............................... 56
5.2.3 Coildriver............................ 57
5.2.4 AnalogAA/AIfilter ...................... 59
5.2.5 Anti-Dewhiteningfilter .................... 60
5.2.6 DigitalAA/AIfilter ...................... 62
5.2.7 Timedelay............................ 63
5.3 Coilmatrix................................ 64
5.4 CoilVA .................................. 65
5.5 Sensingfunction............................. 66
5.5.1 ADC ............................... 66
5.5.2 Whiteningfilter......................... 67
5.5.3 Whiteningfilterforinnerdetector . . . . . . . . . . . . . . 69
5.5.4 Anti-Whitening......................... 71
5.5.5 AA/AIfilter........................... 73
5.5.6 DigitalAA/AIfilter ...................... 73
5.5.7 Timedelay............................ 75
5.6 Trans ................................... 77
5.7 Pcalmodeling .............................. 78
5.7.1 OpticalFollowerServo..................... 78
5.8 Stackedresidualfiltermodel...................... 79
5.8.1 ResidualAfunction ...................... 80
5.8.2 ResidualCfunction ...................... 81
5.8.3 ResidualPcalfunction..................... 82
5.9 Discussion................................ 83
6 Parameter estimation of interferometer 85
6.1 Introduction ............................... 85
6.2 Simulationdataset ........................... 85
6.3 Maximumlikelihoodmethod ..................... 90
6.4 Parameterestimation.......................... 92
6.5 ComparisonwithMCMC ....................... 95
6.5.1 Responsefunction ....................... 98
6.6 Discussion................................ 99
6.6.1 Results of the maximum likelihood method . . . . . . . . . 99
6.6.2 ComparisonwithpyDARM.................. 99
7 Discussion 101
7.1 ComparisonbetweenLIGOandKAGRA . . . . . . . . . . . . . . 101
7.2 Crosscheckresult ............................ 102
7.3 Futurework ............................... 103
8 Conclusion 105
A AAAI measurement 107
A.1 IntroductionofAA/AI......................... 107
A.2 Motivation................................ 107
A.3 Overviewofmeasurement....................... 108
A.4 DigitalMeasurement.......................... 108
A.4.1 Overview ............................ 108
A.4.2 Hardware ............................ 109
A.4.3 measurementdetails...................... 110
A.4.4 Circuitandmodel ....................... 111
A.4.5 AnalysisProcess ........................ 111
A.4.6 FittingResult .......................... 112
A.4.7 Result .............................. 114
A.5 Modelcalculations ........................... 115
A.5.1 Overview ............................ 115
A.5.2 Notchfiter............................ 116
A.5.3 Lowpassfilter ......................... 118
A.5.4 Simultaneously(Notch+Low pass) filter . . . . . . . . . . . 119 A.5.5 Comparison........................... 123
A.5.6 FittingResult .......................... 124
A.6 Analogmeasurement.......................... 125
A.6.1 Overview ............................ 125
A.6.2 Hardwaresetup......................... 125
A.6.3 Fittingresult........................... 126
A.7 Re-measurement ............................ 128
A.8 Summary................................. 130
Bibliography 131
參考文獻 [1] B. P. Abbott et al. “Observation of Gravitational Waves from a Binary Black Hole Merger”. In: Physical Review Letters 116.6 (2016). DOI: 10 . 1103/physrevlett.116.061102. URL: https://doi.org/10. 1103%2Fphysrevlett.116.061102.
[2] R. A. Hulse and J. H. Taylor. “Discovery of a pulsar in a binary system.” In: 195 (Jan. 1975), pp. L51–L53. DOI: 10.1086/181708.
[3] The LIGO Scientific Collaboration et al. GWTC-3: Compact Binary Coales- cences Observed by LIGO and Virgo During the Second Part of the Third Ob- serving Run. 2021. DOI: 10.48550/ARXIV.2111.03606. URL: https: //arxiv.org/abs/2111.03606.
[4] Bernard Schutz. A First Course in General Relativity. 2nd ed. Cambridge University Press, 2009. DOI: 10.1017/CBO9780511984181.
[5] Yizen Chu. Physics in Curved Spacetimes. URL: http : / / www . stargazing.net/yizen/PhysicsInCurvedSpacetimes.html.
[6] Alexandre Le Tiec and Jérôme Novak. “Theory of Gravitational Waves”. In: An Overview of Gravitational Waves. WORLD SCIENTIFIC, 2017, pp. 1– 41. DOI: 10.1142/9789813141766_0001. URL: https://doi.org/ 10.1142%2F9789813141766_0001.
[7] LIGO. URL: https://www.ligo.caltech.edu/.
[8] Peter R Saulson. Fundamentals of Interferometric Gravitational Wave Detec- tors. 2nd. WORLD SCIENTIFIC, 1994. DOI: 10 . 1142 / 2410. eprint: https://www.worldscientific.com/doi/pdf/10.1142/2410. URL: https://www.worldscientific.com/doi/abs/10.1142/ 2410.
[9] SOUNDS OF SPACETIME. URL: https://www.soundsofspacetime. org/the-basics-of-binary-coalescence.html.
[10] B. P. Abbott et al. “The basic physics of the binary black hole merger GW150914”. In: Annalen der Physik 529.1-2 (2016), p. 1600209. DOI: 10. 1002/andp.201600209. URL: https://doi.org/10.1002% 2Fandp.201600209.
131
[11] Eric Chassande-Mottin et al. “Multimessenger astronomy with the Ein- stein Telescope”. In: General Relativity and Gravitation 43.2 (2010), pp. 437– 464. DOI: 10.1007/s10714-010-1019-z. URL: https://doi.org/ 10.1007%2Fs10714-010-1019-z.
[12] Patrick J. Sutton. A Rule of Thumb for the Detectability of Gravitational-Wave Bursts. 2013. DOI: 10.48550/ARXIV.1304.0210. URL: https:// arxiv.org/abs/1304.0210.
[13] The Event Horizon Telescope Collaboration et al. “First M87 Event Hori- zon Telescope Results. I. The Shadow of the Supermassive Black Hole”. In: The Astrophysical Journal Letters 875.1 (2019), p. L1. DOI: 10.3847/2041- 8213/ab0ec7. URL: https://dx.doi.org/10.3847/2041-8213/ ab0ec7.
[14] R. Abbott et al. “GW190521: A Binary Black Hole Merger with a To- tal Mass of”. In: Physical Review Letters 125.10 (2020). DOI: 10.1103/ physrevlett.125.101102. URL: https://doi.org/10.1103% 2Fphysrevlett.125.101102.
[15] Shichao Wu, Zhoujian Cao, and Zong-Hong Zhu. “Measuring the eccen- tricity of binary black holes in GWTC-1 by using the inspiral-only wave- form”. In: Monthly Notices of the Royal Astronomical Society 495 (Feb. 2020). DOI: 10.1093/mnras/staa1176.
[16] Richard C. Tolman. “Static Solutions of Einstein’s Field Equations for Spheres of Fluid”. In: Phys. Rev. 55 (4 1939), pp. 364–373. DOI: 10.1103/ PhysRev.55.364. URL: https://link.aps.org/doi/10.1103/ PhysRev.55.364.
[17] J. R. Oppenheimer and G. M. Volkoff. “On Massive Neutron Cores”. In: Phys. Rev. 55 (4 1939), pp. 374–381. DOI: 10.1103/PhysRev.55.374. URL: https://link.aps.org/doi/10.1103/PhysRev.55.374.
[18] B. P. Abbott et al. “GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral”. In: Phys. Rev. Lett. 119 (16 2017), p. 161101. DOI: 10.1103/PhysRevLett.119.161101. URL: https://link. aps.org/doi/10.1103/PhysRevLett.119.161101.
[19] R. Abbott et al. “Gravitational-wave Constraints on the Equatorial Elliptic- ity of Millisecond Pulsars”. In: The Astrophysical Journal Letters 902.1 (2020), p. L21. DOI: 10.3847/2041-8213/abb655. URL: https://doi.org/ 10.3847%2F2041-8213%2Fabb655.
132

[20] J. Aasi et al. “SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS”. In: The As- trophysical Journal 813.1 (2015), p. 39. DOI: 10.1088/0004-637x/813/ 1/39. URL: https://doi.org/10.1088%2F0004-637x%2F813% 2F1%2F39.
[21] LIGO. Example of continuous gravitational wave. URL: https : / / www . ligo.org/science/GW-Continuous.php.
[22] R. Abbott et al. “All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary sys- tems”. In: Physical Review D 103.6 (2021). DOI: 10.1103/physrevd. 103.064017. URL: https://doi.org/10.1103%2Fphysrevd.103. 064017.
[23] Ernazar Abdikamalov, Giulia Pagliaroli, and David Radice. “Gravitational Waves from Core-Collapse Supernovae”. In: Handbook of Gravitational Wave Astronomy. Springer Singapore, 2021, pp. 1–37. DOI: 10.1007/978- 981-15-4702-7_21-1. URL: https://doi.org/10.1007%2F978- 981-15-4702-7_21-1.
[24] Nelson Christensen. “Stochastic gravitational wave backgrounds”. In: Re- ports on Progress in Physics 82.1 (2018), p. 016903. DOI: 10.1088/1361- 6633/aae6b5. URL: https://doi.org/10.1088%2F1361-6633% 2Faae6b5.
[25] LIGO. Burst of gamma ray. URL: https://www.ligo.org/science/ GW-Burst.php.
[26] Sylvia Biscoveanu et al. “Measuring the Primordial Gravitational-Wave Background in the Presence of Astrophysical Foregrounds”. In: Physi- cal Review Letters 125.24 (2020). DOI: 10.1103/physrevlett.125. 241101. URL: https://doi.org/10.1103%2Fphysrevlett.125. 241101.
[27] Nelson Christensen. “Stochastic gravitational wave backgrounds”. In: Re- ports on Progress in Physics 82.1 (2018), p. 016903. DOI: 10.1088/1361- 6633/aae6b5. URL: https://doi.org/10.1088%2F1361-6633% 2Faae6b5.
[28] Federico De Lillo, Jishnu Suresh, and Andrew L Miller. “Stochastic gravitational-wave background searches and constraints on neutron-star ellipticity”. In: Monthly Notices of the Royal Astronomical Society 513.1 (2022), pp. 1105–1114. DOI: 10.1093/mnras/stac984. URL: https://doi. org/10.1093%2Fmnras%2Fstac984.
[29] ESA NASA. URL: https://www.centauri-dreams.org/2010/11/ 24/a-cosmic-gravitational-wave-background/.
133

[30] Shinji Miyoki David Shoemaker Alessio Rocchi. URL: https : / / dcc . ligo.org/LIGO-G2002127/public.
[31] B. P. Abbott et al. “GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs”. In: Phys. Rev. X 9 (3 2019), p. 031040. DOI: 10.1103/PhysRevX.9.031040. URL: https://link.aps.org/ doi/10.1103/PhysRevX.9.031040.
[32] R. Abbott et al. “GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run”. In: Phys. Rev. X 11 (2 2021), p. 021053. DOI: 10 . 1103 / PhysRevX . 11 . 021053. URL: https://link.aps.org/doi/10.1103/PhysRevX. 11.021053.
[33] LIGO Scientific Collaboration. URL: https : / / www . ligo . caltech . edu/MIT/image/ligo20211107a.
[34] and H Abe et al. “Performance of the KAGRA detector during the first joint observation with GEO 600 (O3GK)”. In: Progress of Theoretical and Ex- perimental Physics (2022). DOI: 10.1093/ptep/ptac093. URL: https: //doi.org/10.1093%2Fptep%2Fptac093.
[35] T. Akutsu et al. Overview of KAGRA: Detector design and construction history. 2020. DOI: 10.48550/ARXIV.2005.05574. URL: https://arxiv. org/abs/2005.05574.
[36] Patrick Brady. LSC Update at Northwestern University. URL: https : / / dcc.ligo.org/LIGO-G2300640.
[37] and N. Aghanim et al. “iPlanck/i2018 results”. In: Astronomy & Astro- physics 641 (2020), A6. DOI: 10.1051/0004-6361/201833910. URL: https://doi.org/10.1051%2F0004-6361%2F201833910.
[38] Adam G. Riess et al. “Large Magellanic Cloud Cepheid Standards Pro- vide a 1Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond CDM”. In: The Astrophysical Journal 876.1 (2019), p. 85. DOI: 10.3847/1538-4357/ab1422. URL: https: //dx.doi.org/10.3847/1538-4357/ab1422.
[39] Bernard F. Schutz. “Determining the Hubble constant from gravitational wave observations”. In: Nature (1986). DOI: 10.1038/323310a0. URL: https://doi.org/10.1038/323310a0.
[40] and B. P. Abbott et al. “A gravitational-wave standard siren measure- ment of the Hubble constant”. In: Nature 551.7678 (2017), pp. 85–88. DOI: 10.1038/nature24471. URL: https://doi.org/10.1038% 2Fnature24471.
134

[41] Daniel J. Mortlock et al. “Unbiased Hubble constant estimation from bi- nary neutron star mergers”. In: Physical Review D 100.10 (2019). DOI: 10. 1103/physrevd.100.103523. URL: https://doi.org/10.1103% 2Fphysrevd.100.103523.
[42] J A Clark et al. “Observing gravitational waves from the post-merger phase of binary neutron star coalescence”. In: Classical and Quantum Grav- ity 33.8 (2016), p. 085003. DOI: 10.1088/0264-9381/33/8/085003. URL: https://doi.org/10.1088%2F0264-9381%2F33%2F8% 2F085003.
[43] KAGRA Collaboration et al. Overview of KAGRA : KAGRA science. 2020. arXiv: 2008.02921 [gr-qc].
[44] S Biscans et al. “Control strategy to limit duty cycle impact of earth- quakes on the LIGO gravitational-wave detectors”. In: Classical and Quan- tum Gravity 35.5 (2018), p. 055004. DOI: 10.1088/1361-6382/aaa4aa. URL: https://dx.doi.org/10.1088/1361-6382/aaa4aa.
[45] F Matichard et al. “Seismic isolation of Advanced LIGO: Review of strat- egy, instrumentation and performance”. In: Classical and Quantum Gravity 32.18 (2015), p. 185003. DOI: 10.1088/0264-9381/32/18/185003. URL: https://doi.org/10.1088%2F0264-9381%2F32%2F18% 2F185003.
[46] Krishna Venkateswara et al. “A high-precision mechanical absolute- rotation sensor”. In: Review of Scientific Instruments 85.1 (2014), p. 015005. DOI: 10.1063/1.4862816. eprint: https://doi.org/10.1063/1. 4862816. URL: https://doi.org/10.1063/1.4862816.
[47] T. Akutsu et al. Overview of KAGRA: Calibration, detector characterization, physical environmental monitors, and the geophysics interferometer. 2020. DOI: 10.48550/ARXIV.2009.09305. URL: https://arxiv.org/abs/ 2009.09305.
[48] A. A. Michelson and E. W. Morley. “On the relative motion of the Earth and the luminiferous ether”. In: American Journal of Science s3-34.203 (1887), pp. 333–345. ISSN: 0002-9599. DOI: 10.2475/ajs.s3-34.203. 333. eprint: https://www.ajsonline.org/content/s3-34/203/ 333.full.pdf. URL: https://www.ajsonline.org/content/s3- 34/203/333.
[49] Donald R. Herriott and Harry J. Schulte. “Folded Optical Delay Lines”. In: Appl. Opt. 4.8 (1965), pp. 883–889. DOI: 10.1364/AO.4.000883. URL: https://opg.optica.org/ao/abstract.cfm?URI=ao-4-8-883.
[50] T. Sekiguchi. “Study of Low Frequency Vibration Isolation System for Large Scale Gravitational Wave Detectors”. PhD thesis. Tokyo U., 2016.
135

[51] LIGO. URL: https://www.ligo.caltech.edu/page/about- aligo.
[52] KAGRA. History of KAGRA. URL: https : / / gwcenter . icrr . u - tokyo.ac.jp/en/plan.
[53] B. P. Abbott et al. “GW170814: A Three-Detector Observation of Gravita- tional Waves from a Binary Black Hole Coalescence”. In: Physical Review Letters 119.14 (2017). DOI: 10.1103/physrevlett.119.141101. URL: https://doi.org/10.1103%2Fphysrevlett.119.141101.
[54] Virgo’s history. URL: https://www.virgo-gw.eu/about/virgo- history/.
[55] R Kumar et al. “Status of the cryogenic payload system for the KAGRA detector”. In: Journal of Physics: Conference Series 716.1 (2016), p. 012017. DOI: 10.1088/1742-6596/716/1/012017. URL: https://dx.doi. org/10.1088/1742-6596/716/1/012017.
[56] KAGRA. bKAGRA Sensitivity Curve. URL: https://gwcenter.icrr. u-tokyo.ac.jp/en/researcher/parameter.
[57] Craig Cahillane et al. “Calibration uncertainty for Advanced LIGO’s first and second observing runs”. In: Phys. Rev. D 96 (10 2017), p. 102001. DOI: 10.1103/PhysRevD.96.102001. URL: https://link.aps.org/ doi/10.1103/PhysRevD.96.102001.
[58] D Tuyenbayev et al. “Improving LIGO calibration accuracy by tracking and compensating for slow temporal variations”. In: Classical and Quan- tum Gravity 34.1 (2016), p. 015002. DOI: 10.1088/0264-9381/34/1/ 015002. URL: https://dx.doi.org/10.1088/0264-9381/34/1/ 015002.
[59] T Akutsu et al. “Overview of KAGRA: Calibration, detector characteri- zation, physical environmental monitors, and the geophysics interferom- eter”. In: Progress of Theoretical and Experimental Physics 2021 (Feb. 2021). DOI: 10.1093/ptep/ptab018.
[60] S. Karki et al. “The Advanced LIGO photon calibrators”. In: Review of Sci- entific Instruments 87.11 (2016), p. 114503. DOI: 10.1063/1.4967303. eprint: https://doi.org/10.1063/1.4967303. URL: https: //doi.org/10.1063/1.4967303.
[61] D Estevez et al. “The Advanced Virgo photon calibrators”. In: Classi- cal and Quantum Gravity 38.7 (2021), p. 075007. DOI: 10.1088/1361- 6382/abe2db. URL: https://doi.org/10.1088%2F1361-6382% 2Fabe2db.
136

[62] Yuki Inoue et al. “Improving the absolute accuracy of the gravitational wave detectors by combining the photon pressure and gravity field cal- ibrators”. In: Physical Review D 98.2 (2018). DOI: 10.1103/physrevd. 98.022005. URL: https://doi.org/10.1103%2Fphysrevd.98. 022005.
[63] Inoue Yuki. KAGRA subway map. URL: https : / / gwdoc . icrr . u - tokyo.ac.jp/cgi-bin/private/DocDB/ShowDocument?docid= 9550.
[64] “Preface”. In: Signals and Systems using MATLAB. Ed. by Luis F. Chaparro. Boston: Academic Press, 2011. ISBN: 978-0-12-374716-7. DOI: https:// doi.org/10.1016/B978-0-12-374716-7.00023-5. URL: https : / / www . sciencedirect . com / science / article / pii / B9780123747167000235.
[65] Masahiro Kamiizumi. High Power Coil Driver Board. URL: https : / / gwdoc . icrr . u - tokyo . ac . jp / cgi - bin / private / DocDB / ShowDocument?docid=3503.
[66] Allan G. Piersol Julius S. Bendat. “Random Data: Analysis and Mea- surement Procedures, Fourth Edition”. In: (2010). DOI: 10 . 1002 / 9781118032428. URL: https://onlinelibrary.wiley.com/doi/ book/10.1002/9781118032428.
[67] Gregorio Landi and Giovanni E. Landi. “The Cramer—Rao Inequality to Improve the Resolution of the Least-Squares Method in Track Fitting”. In: Instruments 4.1 (2020), p. 2. DOI: 10.3390/instruments4010002. URL: https://doi.org/10.3390%2Finstruments4010002.
[68] T. Editors of Encyclopaedia Britannica. “Student’s t-test”. In: Encyclopedia Britannica (2022). URL: https://www.britannica.com/science/ Students-t-test.
[69] S. Karki et al. “The Advanced LIGO photon calibrators”. In: Review of Sci- entific Instruments 87.11 (2016), p. 114503. DOI: 10.1063/1.4967303. URL: https://doi.org/10.1063%2F1.4967303.
[70] Twin tee filter complex transfer function. URL: https : / / www . millersville.edu/physics/experiments/111/.
指導教授 井上優貴(Yuki Inoue) 審核日期 2023-4-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明