共_8_頁第_1_頁

第一大題 單選題,每題3分,答錯不倒扣,共30分。

Multiple choice (single answer) questions (3 points per question)

Let A be an array of n distinct numbers. If i <j a[i]="" and="">A[j], then the pair (i, j) is called</j>
an inversion of A. What is the expected number of inversions in any permutation on n
elements?

- (A) n(n-1)/2
- (B) n(n-1)/4
- (C) n(n+1)/4
- (D) 2n(logn)
- (E) n

2.	Five people A, B, C, D, and E are standing in a queue. A is standing behind C. B is not
	standing next to D. D and E are standing next to each other. Who is not possibly standing
	third in the queue?

- (A) A
- (B) B
- (C)C
- (D) D
- (E) E

3. Which sorting algorithm listed below possesses the highest worst-case time complexity?

- (A) Merge Sort
- (B) Quick Sort
- (C) Heap Sort
- (D) Radix Sort

4. Which sorting algorithm typically requires the most amount of additional memory space (i.e., has the highest space complexity)?

- (A) Insertion Sort
- (B) Selection Sort
- (C) Merge Sort
- (D) Heap Sort

共_8_頁 第_2_頁

5. What should be added to the blank so that the following function can correctly reverse a singly linked list.

```
struct node {
    int data;
    struct node * next;
};
static void reverse(struct node ** head) {
    struct node * prev = NULL;
    struct node * current = *head;
    struct node * next;
    while (current != NULL) {
        next = current->next;
        current->next = prev;
        prev = current;
        current = next;
}
```

- (A) *head = prev;
- (B) *head = current;
- (C) *head = next;
- (D) *head = NULL;
- (E) None of the above
- 6. After partitioning in a Quick Sort, the array (20, 7, 12, 15, 6, 11, 9) becomes (7, 6, 9, 20,
 - 12, 15, 11). Which following statement is correct?
 - (A) The pivot could be 6.
 - (B) The pivot could be 9.
 - (C) The pivot could be 12.
 - (D) The pivot could be 20.
- 7. A sorting algorithm is considered stable if:
 - (A) It requires $O(n^2)$ extra space for sorting.
 - (B) It employs a divide and conquer strategy for sorting.
 - (C) It maintains the relative order of equal elements as they appeared in the original array.
 - (D) It sorts the elements in O(log n) time complexity.

共 8 頁 第 3 頁

8. Consider the following Python codes, which traversal order will the codes produce when starting from node 'A' in the given graph?

```
def search(graph, start, visited=None):
          if visited is None:
                visited = set()
          visited.add(start)
          print(start, end=' ')
          for neighbor in graph[start]:
                if neighbor not in visited:
                    search(graph, neighbor, visited)
      graph = {
          'A': ['B', 'C'],
          'B': ['D', 'E'],
          'C': ['F'],
          'D': [],
          'E': ['F'],
          'F': []
      }
(A) ABDEFC
(B) A C F B D E
(C) ABEFCD
(D) ABDECF
(E) ADFCBE
```

- 9. Which search concept is the code in question 10 implemented for?
 - (A) Breadth-first search
 - (B) Depth-first search
 - (C) Binary search
 - (D) Linear search
 - (E) None of the above
- 10. What is the minimum number of edges in an undirected tree with 10 vertices that contains a vertex with a degree of 4?
 - (A)7
 - (B) 8
 - (C) 9
 - (D) 10
 - (E) 11

共_8 頁 第_4 頁

第二大題 多選題

multiple choice questions with one or more answers (5 points

per question) 每題每一選項(ABCDE)單獨計分,每一選項個別分數為 1分, 答錯倒扣 1分,倒扣至本大題(即多選題)0分為止。

- 11. If there are two nodes such that their "next" pointers point to the same node in a singly linked list structure, what configurations are possible?
 - (A) There are two normal singly linked lists
 - (B) There is a loop in the linked list
 - (C) It is impossible that two nodes can point to the same node as their next node
 - (D) This is a cyclical list structure
 - (E) Two singly linked lists intersect.
- 12. Below is an algorithm in pseudocode that sorts a stack of integers. S1 is the input stack and S2 is an additional temporary stack for storing and moving items. The stack supports the following operations: push, pop, peek, and isEmpty.

```
void sort(S1){
    S2 = new Stack<integer>;//an empty stack for integers
    while(!S1.isEmpty()) {
        int tmp = S1.pop();
        while(!S2.isEmpty() && S2.peek() > tmp) {
            S1.push(S2.pop());
        }
        S2.push(tmp);
    }
    While (!S2.isEmpty()) {
        S1.push(S2.pop());
    }
}
```

Which of the following is correct?

- (A) The algorithm is O(nlogn) time-efficiency
- (B) The algorithm is O(n) space-efficiency
- (C) The algorithm sorts the stack in ascending order
- (D) The algorithm sorts the stack in descending order
- (E) The algorithm is O(n²) time-efficiency

台灣聯合大學系統113學年度碩士班招生考試試題

類組:電機類 科目:資料結構(3002)

共_8_頁第_5_頁

- 13. Which of the following statements are true about Merge Sort? (Select all that apply.)
 - (A) It has a worst-case time complexity of O(n log n).
 - (B) It is not a stable sorting algorithm.
 - (C) It is more efficient than Quick Sort in the worst-case scenario.
 - (D) It requires additional space proportional to the size of the input array.
 - (E) It uses O(n log n) extra space for its operations.
- 14. Consider the following statements about hashing. Which of these are correct? (Select all that apply.)
 - (A) Chaining as a collision resolution technique can degrade to O(n) in the worst case.
 - (B) Hash functions should ideally be dependent on the size of the input data.
 - (C) Reducing the size of a hash table will generally improve its performance.
 - (D) A hash table with a larger load factor is always more efficient.
 - (E) Hash functions should ideally distribute the data uniformly across the hash table.
- 15. In the context of graph theory and finding optimal paths or trees, which statements accurately describe features of Dijkstra's, Prim's, and Kruskal's algorithms? (Select all that apply)
 - (A) Dijkstra's Algorithm operates on graphs with non-negative edge weights only.
 - (B) Kruskal's Algorithm guarantees finding a minimum spanning tree for both directed and undirected graphs.
 - (C) Prim's Algorithm selects the next node based on the lowest edge weight.
 - (D) Dijkstra's Algorithm guarantees finding the longest path from a single source to all other vertices in a graph.
 - (E) Prim's Algorithm guarantees the creation of a minimum spanning tree starting from an arbitrary vertex.
- 16. In the context of Red-Black Trees, which of the following statements are false? (Select all that apply)
 - (A) Red-Black Trees ensure a maximum height difference of 2 between any two leaf nodes.
 - (B) They are a type of self-balancing binary search tree.
 - (C) Red-Black Trees can degenerate to a linked list during certain insertions.
 - (D) The root of a Red-Black Tree is always red.
 - (E) Red-Black Trees require additional memory compared to regular binary search trees due to color information stored with each node.

 注:背面有試題

共 8 頁 第 6 頁

第三大題 問答題

Short description question (10 points per question)

- (A) The minimum number of comparisons required to determine if an integer appears
 more than n/2 times in a sorted array of n integers is ______ (O(n), O(logn),
 O(n*logn), or O(1)). (2 points)
 - (B) Write a solution in C language as a function to find how many times an integer "key" appears in a sorted array A sized N. (8 points) (Code is graded based on correctness and computational efficiency)(A is sorted from lowest to highest).

int Func(const int *A, int N, int key);
//input: an integer array A sized N, key is the integer to be searched
//output: integer value "key" appearance times

- 2. Analyze the characteristics and functionalities of hash tables, where α is the load factor of the hash table.
 - (A) Which collision resolution technique can lead to primary clustering? (3 points)
 - (B) What is the average-case time complexity of search operations in a hash table using chaining for collision resolution, in Big-O notation, assuming a good hash function? (3 points)
 - (C) Consider a hash table using linear probing for collision resolution where n is the number of elements in the hash table. What happens to the average-case time complexity of search operations as the load factor α approaches 1? (4 points)
- 3. Given the following codes, please answer the three questions
 - (A) What is the algorithm that the codes are implemented for? (3 points)
 - (B) What does the graph look like? (3 points)
 - (C) What is the output of the codes? (4 points)

```
import java.util.*;
class process {
    private static final int V = 5;
    int minKey(int key[], Boolean mstSet[]) {
        int min = Integer.MAX_VALUE, min_index = -1;
        for (int v = 0; v < V; v++)
            if (!mstSet[v] && key[v] < min) {</pre>
```

```
共 8 頁 第 7 頁
類組:電機類 科目:資料結構(3002)
                            \min = \text{key}[v];
                            min index = v;
                  return min index;
             void print(int parent[], int graph[][]) {
                  System.out.println("Edge \tWeight");
                  for (int i = 1; i < V; i++)
                       System.out.println(parent[i] + " - " + i + "\t" + graph[i][parent[i]]);
             void dowork(int graph[][]) {
                  int parent[] = new int[V];
                  int key[] = new int[V];
                  Boolean mstSet[] = new Boolean[V];
                  for (int i = 0; i < V; i++) {
                       key[i] = Integer.MAX_VALUE;
                       mstSet[i] = false;
                  key[0] = 0;
                  parent[0] = -1;
                  for (int count = 0; count < V - 1; count++) {
                       int u = minKey(key, mstSet);
                       mstSet[u] = true;
                       for (int v = 0; v < V; v++)
                             if (graph[u][v] != 0 && !mstSet[v] && graph[u][v] < key[v]){
                                 parent[v] = u;
                                 key[v] = graph[u][v];
                  print(parent, graph);
             public static void main(String[] args) {
                  process p = new process();
                  int graph[][] = new int[][] {
                            \{0, 2, 0, 6, 0\},\
                            \{2, 0, 3, 8, 5\},\
                            \{0, 3, 0, 0, 7\},\
                            \{6, 8, 0, 0, 9\},\
                            \{0, 5, 7, 9, 0\};
                  p.dowork(graph);
        }
```

- 4. Given the following codes, please answer the three questions:
 - (A) What should be filled in Q1 and Q2 (4 points)
 - (B) Which traverse order does the codes implement for? (3 points.)
 - (C) What is the output of the codes? (3 points.)

```
共 8 頁 第 8 頁
類組:電機類 科目:資料結構(3002)
         class Node {
              int key;
              Node left, right;
              public Node(int item) {
                   key = item;
                   left = right = null;
         public class BinarySearchTree {
              Node root;
              BinarySearchTree() {
                   root = null;
              void insert(int key) {
                   root = insertRec(root, key);
              Node insertRec(Node root, int key) {
                   if (root == null) {
                        root = new Node(key);
                        return root;
                   if (<u>Q1</u>)
                        root.left = insertRec(root.left, key);
                   else if (Q2)
                        root.right = insertRec(root.right, key);
                   return root;
               void order() {
                   orderRec(root);
               void orderRec(Node root) {
                   if (root != null) {
                        orderRec(root.left);
                        System.out.print(root.key + " ");
                        orderRec(root.right);
                    }
               public static void main(String[] args) {
                    BinarySearchTree tree = new BinarySearchTree();
                    tree.insert(5);
                    tree.insert(3);
                    tree.insert(2);
                    tree.insert(4);
                    tree.insert(7);
                    tree.insert(6);
                    tree.insert(8);
                    tree.order();
          }
                                                                                注:背面有試題
```