博碩士論文 109826003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:18.225.209.95
姓名 吳柏儒(Po-Ju Wu)  查詢紙本館藏   畢業系所 系統生物與生物資訊研究所
論文名稱 包覆性腹膜硬化症相關miRNAs在腹膜纖維化之研究
(Study of Encapsulating peritoneal sclerosis related miRNAs in peritoneal fibrosis)
相關論文
★ 探討牛樟芝CCM111對細胞訊息傳遞之影響★ Tyloxapol 在大腸癌細胞中的特異性及作用機制之研究
★ MAPK傳導路徑相關微型RNA在黑色素瘤細胞中功能之研究★ 利用MAPK訊息傳導路徑相關的miRNAs來治療BRAF抑制劑的抗藥性在黑色素瘤細胞中之研究
★ 探討miR-567在黑色素細胞瘤中的調控機制★ 探索微型核糖核酸與慢性腎臟病及血液透析病人泌尿道上皮癌生物標記的相關性
★ 以miRNA為基礎開發偵測放射線治療抗性及預後的生物標記★ 偵測微型核糖核酸 miR-524-5p表現量利用原位雜交染色法來作為輔助診斷惡性黑色素瘤的生物標記之研究
★ 研究牛樟芝萃取物 CCM111 的作用機制★ 探討黑色素腫瘤中p53調控miR-524-5p及miR-596表現之機制
★ 泌尿道上皮癌相關的miRNAs在膀胱癌之研究★ 探討BRAF抑制劑透過細胞間訊息誘導腫瘤形成之研究
★ 微型核糖核酸成為放射線治療的預後生物標記之研究★ 發展以血中微型 RNA 作為冠心症(CAD)的非侵入性疾病指標
★ microRNAs作為放射治療預後之生物標誌物與miR-148a-3p於頭頸癌放射敏感度之研究★ 研究miR-524-5p和miR-567治療在黑色素瘤與BRAF抑製劑的抗藥性黑色素瘤
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-10-6以後開放)
摘要(中) 腹膜透析(Peritoneal dialysis, PD)是終末期腎功能衰竭患者的一種治療選擇。 目前,全球約有 11%的腎衰竭患者使用腹膜透析作為治療,長期進行腹膜透析可 能導致腹膜形態學改變和功能惡化。長期腹膜透析可能引起腹膜炎症和腹膜間皮 -間質轉化(Mesothelial-to-Mesenchymal Transition, MMT),更嚴重則會轉變為包 覆性腹膜硬化(EPS)。根據先前研究指出,長時間進行腹膜透析治療、透析液 中的葡萄糖濃度與腹膜炎都會是引起 MMT 的主要原因。在臨床上他莫昔芬 (Tamoxifen)已經被用於一些纖維化疾病的治療且能有效減緩病徵,例如由腹 膜透析所產生的包膜性腹膜硬化症。目前,由葡萄糖透析液引起 MMT 的發病機 制仍未完全闡明。為了解決這些問題,先前實驗室的研究結果顯示,有五個候選 miRNA 在 EPS 和非 EPS 患者之間具有顯著的倍數變化。因此,我們使用人類肋 膜間皮細胞(MeT-5A),在體外環境下檢測這些候選 miRNA 對腹膜纖維化的影 響。
首先,我們觀察到透析液在長時間作用於細胞中會對細胞產生毒性,因此我 們使用 TGF-β1 加入間皮細胞中,誘導促纖維化型態發生。在細胞加入 TGF-β1 處理後,使用 CMFDA 染劑觀察細胞形態的變化和纖維化活性的膠原凝膠收縮 測試。此外,TGF-β1 處理 MeT-5A 細胞後,間充質相關標誌物(mesenchymal marker)如:N-鈣粘蛋白(N-cadherin)和波形蛋白(Vimentin)的表現增加。接 著,我們為了研究候選 miRNA 對腹膜纖維化的影響,因此將候選 miRNA 轉染 至 MeT-5A 並同時加入 TGF-β1 進行共同處理,結果發現當過度表達 miR-17-5p、 miR-202-3p 與 miR-483-5p 時,能改變 TGF-β1 誘導的細胞形態。此外,當過度 表現 miR-483-5p 時,能減弱 TGF-β1 誘導含有間皮細胞的凝膠收縮。在西方墨 點法結果顯示,當過度表達 miR-17-5p 時,能增加 E-cadherin 的表現的同時也能減少 vimentin 的表現。當過表達 miR-202-3p 時,能抑制 TGFβ 上游信號路徑的 p-Smad2/3 的蛋白表現,結果表明候選 miRNA 可能參與抑制間皮細胞-間質轉化 的作用,我們將進一步探討這些候選 miRNA 對腹膜纖維化發展的潛在機制。
摘要(英) Peritoneal dialysis (PD) is a treatment option for patients with end-stage renal failure. Currently, approximately 11% of patients with renal failure worldwide are treated with PD, which causes peritoneal morphologic changes and functional deterioration. Long-term peritoneal dialysis may cause peritoneal inflammation and mesothelial-to-mesenchymal transition (MMT) of the peritoneum, and the worst case will cause encapsulated peritoneal sclerosis (EPS). It has been reported that the duration of PD treatment, the glucose concentration in the dialysate, and the occurrence of peritonitis are the major reasons cause MMT. Of note, tamoxifen has been clinically proven to be effective for a series of fibrotic diseases, such as PD-related encapsulated peritoneal sclerosis. At present, the pathogenesis of MMT caused by glucose dialysate is still not fully elucidated. From our previous study, the five candidate miRNAs showed significant fold changes between the EPS and non-EPS patients. Therefore, we dissected the functions of these candidate miRNA on peritoneal fibrosis by in vitro assays in human pleural mesothelial cells (MeT-5A).
In this study, we observed that dialysate caused time and dose-dependent toxicity in the cells, so we used TGF-β1 to induce a profibrotic phenotype in the mesothelial cells. The cellular morphology detected by cell-tracker green CMFDA dye and the fibrosis activity measured by contraction assay were changed after TGF-β1 treatments. Furthermore, the expressions of mesenchymal-related markers including N-cadherin, and vimentin were increased after TGF-β1 treatment in MeT-5A cells. Next, we investigated the effect of candidate miRNAs on peritoneal fibrosis, so we transfected candidate miRNAs into MeT-5A and added TGF-β1 for co-treatment, the results showed that TGF-β1-induced cell morphology and fibrotic phenotype could be suppressed by transfection of three individual miRNA mimics. Additionally, when miR-483-5p was overexpression, the TGF-β1-induced contraction of the gel containing mesothelial cells was attenuated. The western blot results showed that overexpression of miR-17-5p increased E-cadherin′s expression and decreased vimentin′s expression. When miR-202-3p was overexpressed, it inhibited the p-Smad2/3 protein of the TGF- β upstream signaling pathway. The results suggest that candidate miRNAs may be involved in the inhibition of mesothelial-to-mesenchymal transition, and we will further explore the potential mechanism of these candidate miRNAs in the development of peritoneal fibrosis.
關鍵字(中) ★ 包覆性腹膜硬化症
★ 小分子核糖核酸
★ 腹膜纖維化
關鍵字(英) ★ Encapsulating peritoneal sclerosis
★ MicroRNA
★ Peritoneal fibrosis
論文目次 目錄
中文摘要 ..................................................................................................................i
Abstract .................................................................................................................iii
誌謝 .........................................................................................................................v
圖目錄 ...............................................................................................................viii
表目錄 .................................................................................................................ix
符號說明 ..................................................................................................................x
ㄧ、介紹(Introduction)..........................................................................................1
1. 腹膜透析(Peritoneal dialysis)...........................................................................1
2. 包囊性腹膜硬化症(Encapsulating peritoneal sclerosis)....................................3
2-1 腹膜纖維化的發生(Development of peritoneal fibrosis)..................................3
2-2 包覆性腹膜硬化症的診斷與治療(Diagnosis and Treatment of Encapsulating peritoneal sclerosis) ..........................................................................................4
2-3 miRNA作為診斷EPS的生物標誌物(miRNA as a biomarker for diagnosis of EPS) .................................................................................................................4
3. 轉化生長因子信號通路(TGF-β signaling pathway) .....................................5
3-1 TGF-β透過活化典型Smad信號誘導EMT發生 ....................................................5
3-2 TGF-β透過活化非典型信號途徑誘導EMT發生 ....................................................6
4. 微型核糖核酸(microRNA) ...........................................................................8
4-1 微型RNA的生成(Genesis of miRNA) ............................................................8
4-2 微型RNA的調控機制(Regulatory mechanism of miRNA) ..............................8
4-3 微型RNA在疾病上的應用(miRNA application in disease) ............................10
5. 研究目的(Purpose of the study) ...........................................................11
5-1 候選miRNA在EMT或纖維化中的作用 ...........................................................11
5-2 探討候選miRNA在腹膜間皮-間質轉化中的作用 ...........................................13
二、實驗材料與方法(Materials and methods) ...................................................14
1. 實驗材料(Material) .................................................................................14
1-1.細胞株(Cell lines) .........................................................................................14
1-2. 藥物(Drugs) .........................................................................................14
1-3. 螢光染色試劑(Fluorescent reagent) ...........................................................14
1-4. 核糖核酸模擬物(miRNA mimics) ..................................................................14
1-5. 膠原凝膠收縮試劑(Type I Collagen Solution) ...........................................15
1-6. 抗體(Antibodies) .........................................................................................15
2.實驗方法(Method) .........................................................................................15
2-1.細胞增殖檢測實驗 (Cell proliferation assay) ...........................................15
2-2. miRNA模擬物轉染 (miRNA mimic transfection) ...................................15
2-3. 螢光染色(Fluorescent staining) ..................................................................16
2-4. 蛋白質萃取製備(Preparation of protein extraction) ....................................16
2-5. 西方墨點法(Western blot) ..........................................................................17
2-6. 膠原凝膠收縮測定(Collagen gel contraction assay) ....................................17
2-7. 即時定量聚合酶連鎖反應(RT-qPCR) ...........................................................18
三、實驗結果(Results) .................................................................................19
1. 葡萄糖透析液對間皮細胞的生長影響 ...........................................................19
2. TGF-β1誘導MeT-5A細胞發生間皮-間質轉化 ...................................................19
3. 候選miRNA在MeT-5A細胞中的表現 ..........................................................20
4. 候選miRNA調控TGF-β1誘導的細胞形態變化 ...................................................21
5. 候選miRNA調控間皮細胞的收縮能力 ..........................................................22
6. miR-17-5p、miR-202-3p與miR-483-5p調控間皮細胞中TGF-β1/Smad2/3信號途徑與間皮-間質轉化 ................................................................................................23
四、結論與討論 ................................................................................................27
1. 探討葡萄糖透析液內容物對間皮細胞-間質轉化的影響 ...................................27
2. 探討候選miRNA對間皮細胞中TGF-β1/Smad2/3信號途徑與間皮-間質轉化的影響 ..............................................................................................................................28
3. 探討候選miRNA對TGF-β1誘導間皮細胞凝膠收縮的影響 ...................................28
4. 探討miR-17-5p在大鼠腹膜纖維化中的表現 ..................................................29
5. 探討候選miRNA在不同疾病中的表現與影響 ..................................................30
6. 未來展望 .......................................................................................................31
五、參考資料與文獻 ........................................................................................32
參考文獻 1. Liyanage T.,et al, Worldwide access to treatment for end-stage kidney disease: a systematic review. Lancet. 2015 May 16;385(9981):1975-82.
2. Morelle J, Devuyst O, Water and solute transport across the peritoneal membrane. Curr Opin Nephrol Hypertens. 2015 Sep;24(5):434-43.
3. Morelle J.,et al, Mechanisms of Crystalloid versus Colloid Osmosis across the Peritoneal Membrane. J Am Soc Nephrol. 2018 Jul;29(7):1875-1886.
4. Li PK., et al, Changes in the worldwide epidemiology of peritoneal dialysis. Nat Rev Nephrol. 2017 Feb;13(2):90-103.
5. Mehrotra R.,et al, The Current State of Peritoneal Dialysis. J Am Soc Nephrol. 2016 Nov;27(11):3238-3252.
6. Ron Pisoni., et al, Chapter 11: International Comparisons. American Journal of Kidney Diseases, 2019 Mar;71(3), S461–S500.
7. Davies SJ, Longitudinal relationship between solute transport and ultrafiltration capacity in peritoneal dialysis patients. Kidney Int. 2004 Dec;66(6):2437-45.
8. Aroeira LS., et al, Epithelial to mesenchymal transition and peritoneal membrane failure in peritoneal dialysis patients: pathologic significance and potential therapeutic interventions. J Am Soc Nephrol.2007 Jul;18(7):2004-13.
9. Wang Y., et al, Peritoneal fibrosis and epigenetic modulation. Perit Dial Int.2021 Mar;41(2):168-178.
10. De Vriese AS., et al, Inhibition of the interaction of AGE-RAGE prevents hyperglycemia-induced fibrosis of the peritoneal membrane. J Am Soc Nephro.2003 Aug;14(8):2109-2118.
11. Tomino Y, Mechanisms and interventions in peritoneal fibrosis. Clin Exp Nephrol. 2012 Feb;16(1):109-14.
12. Honda K., et.al, Peritoneal Dialysis: Impact of uremia, diabetes, and peritoneal dialysis itself on the pathogenesis of peritoneal sclerosis: a quantitative study of peritoneal membrane morphology. Clin J Am Soc Nephrol.2008 May;3(3):720-8.
13. Jagirdar RM., et.al, Encapsulating Peritoneal Sclerosis: Pathophysiology and Current Treatment Options. Int J Mol Sci. 2019 Nov; 20(22): 5765.
14. Devuyst O., et.al, The pathophysiology of the peritoneal membrane. J Am Soc Nephro.2010 Jul;21(7):1077-85.
15. Tseng CC., et.al, Incidence and outcomes of encapsulating peritoneal sclerosis (EPS) and factors associated with severe EPS. PLoS One.2018 Jan 2;13(1): e0190079.
16. Danford CJ, Lin SC, Smith MP, Wolf JL. Encapsulating peritoneal sclerosis. World J Gastroenterol. 2018 Jul 28;24(28):3101-3111.
17. Korte MR., et.al, Tamoxifen is associated with lower mortality of encapsulating peritoneal sclerosis: results of the Dutch Multicentre EPS Study. Nephrol Dial Transplant.2011 Feb;26(2):691-7.
18. Kawanishi H., et.al, Surgical techniques for prevention of recurrence after total enterolysis in encapsulating peritoneal sclerosis. Adv Perit Dial.2008;24:51-5.
19. Moinuddin Z., et. al, Encapsulating peritoneal sclerosis—a rare but devastating peritoneal disease. Front Physiol.2014; 5: 470.
20. Bracken CP, Scott HS, Goodall GJ. A network-biology perspective of microRNA function and dysfunction in cancer. Nat Rev Genet.2016;17:719–732.
21. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007 Jun;9(6):654-9.
22. Vanni I, Alama A, Grossi F, Dal Bello MG, Coco S. Exosomes: a new horizon in lung cancer. Drug Discov Today. 2017 Jun;22(6):927-936.
23. Massagué J, TGFβ signalling in context. Nat Rev Mol Cell Biol. 2012 Oct;13(10):616-30.
24. Derynck R, Weinberg RA, EMT and Cancer: More Than Meets the Eye. Dev Cell. 2019 May 6;49(3):313-316.
25. Thiery JP, Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002 Jun;2(6):442-54.
26. Derynck R, Budi EH, Specificity, versatility, and control of TGF-β family signaling. Sci Signal. 2019 Feb 26;12(570): eaav5183.
27. Wrana JL, Attisano L, Wieser R, Ventura F, Massagué J, Mechanism of activation of the TGF-beta receptor. Nature. 1994 Aug 4;370(6488):341-7.
28. Tsubakihara Y, Moustakas A, Epithelial-Mesenchymal Transition and Metastasis under the Control of Transforming Growth Factor β. Int J Mol Sci. 2018 Nov 20;19(11):3672.
29. Hua W, Ten Dijke P, Kostidis S, Giera M, Hornsveld M, TGFβ-induced metabolic reprogramming during epithelial-to-mesenchymal transition in cancer. Cell Mol Life Sci. 2020 Jun;77(11):2103-2123.
30. Derynck R, Zhang YE, Smad-dependent and Smad-independent pathways in TGF-beta family signaling. Nature. 2003 Oct 9;425(6958):577-84.
31. Xu W, Yang Z, Lu N, A new role for the PI3K/Akt signaling pathway in the epithelial-mesenchymal transition. Cell Adh Migr. 2015;9(4):317-24.
32. Xue G., et.al, Akt/PKB-mediated phosphorylation of Twist1 promotes tumor metastasis via mediating crosstalk between PI3K/Akt and TGF-β signaling axes. Cancer Discov. 2012 Mar;2(3):248-59.
33. Ambros V, A hierarchy of regulatory genes controls a larva-to-adult developmental switch in C. elegans. Cell. 1989 Apr 7;57(1):49-57.
34. Lee RC, Feinbaum RL, Ambros V, The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993 Dec 3;75(5):843-54.
35. Ruvkun G, Giusto J, The Caenorhabditis elegans heterochronic gene lin-14 encodes a nuclear protein that forms a temporal developmental switch. Nature. 1989 Mar 23;338(6213):313-9.
36. Ambros V. The functions of animal microRNAs. Nature. 2004 Sep 16;431(7006):350-5.
37. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004 Jan 23;116(2):281-97.
38. Lee, Y., et.al, MicroRNA genes are transcribed by RNA polymerase II. EMBO J.2004 Oct 13;23(20):4051-60.
39. Han.J. et.al, The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev.2004 Dec 15;18(24):3016-27.
40. Yi, R., et.al, Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev.2003 Dec 15;17(24):3011-6.
41. Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001 Jan 18;409(6818):363-6.
42. Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet. 2011 Feb;12(2):99-110.
43. Doench JG, Sharp PA. Specificity of microRNA target selection in translational repression. Genes Dev. 2004 Mar 1;18(5):504-11.
44. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005 Jan 14;120(1):15-20.
45. Shivdasani RA. MicroRNAs: regulators of gene expression and cell differentiation. Blood. 2006 Dec 1;108(12):3646-53.
46. Stahlhut C, Slack FJ. MicroRNAs and the cancer phenotype: profiling, signatures and clinical implications. Genome Med. 2013 Dec 30;5(12):111.
47. Kosaka N, Iguchi H, Ochiya T. Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci. 2010 Oct;101(10):2087-92.
48. Wang Y, Shi Y, Tao M, Zhuang S, Liu N. Peritoneal fibrosis and epigenetic modulation. Perit Dial Int. 2021 Mar;41(2):168-178.
49. Li J., et al, HIF1A and VEGF regulate each other by competing endogenous RNA mechanism and involve in the pathogenesis of peritoneal fibrosis. Pathol Res Pract. 2019 Apr;215(4):644-652.
50. Wang W., et al, CircMTO1 inhibits liver fibrosis via regulation of miR‐17‐5p and Smad7. J Cell Mol Med.2019 Aug; 23(8): 5486–5496.
51. Yu F., et al, MicroRNA-17-5p-activated Wnt/β-catenin pathway contributes to the progression of liver fibrosis. Oncotarget. 2016 Jan 5;7(1):81-93.
52. Chen X., et al, MiR-17-5p downregulation alleviates apoptosis and fibrosis in high glucose-induced human mesangial cells through inactivation of Wnt/β-catenin signaling by targeting KIF23. Environ Toxicol. 2021 Aug;36(8):1702-1712.
53. Zhao X., et al, miR-17-5p promotes proliferation and epithelial-mesenchymal transition in human osteosarcoma cells by targeting SRC kinase signaling inhibitor 1. J Cell Biochem. 2019 Apr;120(4):5495-5504.
54. Bao C., et al, Shikonin inhibits migration and invasion of triple-negative breast cancer cells by suppressing epithelial-mesenchymal transition via miR-17-5p/PTEN/Akt pathway. J Cancer. 2021 Jan 1;12(1):76-88.
55. Zhou B., et al, MicroRNA-202-3p regulates scleroderma fibrosis by targeting matrix metalloproteinase 1. Biomed Pharmacother. 2017 Mar; 87:412-418.
56. Han X., et al, Long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1/microRNA-202-3p/periostin axis modulates invasion and epithelial-mesenchymal transition in human cervical cancer. J Cell Physiol. 2019 Aug;234(8):14170-14180.
57. Wu HY, Wu JL, Ni ZL. Overexpression of microRNA-202-3p protects against myocardial ischemia-reperfusion injury through activation of TGF-β1/Smads signaling pathway by targeting TRPM6. Cell Cycle. 2019 Mar;18(5):621-637.
58. Song Q., et al, miR-483-5p promotes invasion and metastasis of lung adenocarcinoma by targeting RhoGDI1 and ALCAM. Cancer Res. 2014 Jun 1;74(11):3031-42.
59. Li F., et al, Overexpression of miR-483-5p/3p cooperate to inhibit mouse liver fibrosis by suppressing the TGF-β stimulated HSCs in transgenic mice. J Cell Mol Med. 2014 Jun;18(6):966-74.
60. Chouri E., et al, Serum microRNA screening and functional studies reveal miR-483-5p as a potential driver of fibrosis in systemic sclerosis. J Autoimmun. 2018 May; 89:162-170.
61. Huang G., et al, Downregulation of miR 483 5p inhibits TGF β1 induced EMT by targeting RhoGDI1 in pulmonary fibrosis. Mol Med Rep. 2021 Jul;24(1):538.
62. Liu D., et al, HNRNPA1-mediated exosomal sorting of miR-483-5p out of renal tubular epithelial cells promotes the progression of diabetic nephropathy-induced renal interstitial fibrosis. Cell Death Dis. 2021 Mar 10;12(3):255.
63. Zhang Q, Wang P, Fang X, Lin F, Fang J, Xiong C, Collagen gel contraction assays: From modelling wound healing to quantifying cellular interactions with three-dimensional extracellular matrices. Eur J Cell Biol. 2022 Jun-Aug;101(3):151253.
64. Bonomini M., et al, How to Improve the Biocompatibility of Peritoneal Dialysis Solutions (without Jeopardizing the Patient′s Health). Int J Mol Sci. 2021 Jul 26;22(15):7955.
65. Li L., et al, Inhibiting core fucosylation attenuates glucose-induced peritoneal fibrosis in rats. Kidney Int. 2018 Jun;93(6):1384-1396.
66. Wang AY, et al, 2017 Kidney Disease: Improving Global Outcomes (KDIGO) Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD) Guideline Update Implementation: Asia Summit Conference Report. Kidney Int Rep. 2019 Sep 23;4(11):1523-1537.
67. Kim TW, et al, MicroRNA-17-5p regulates EMT by targeting vimentin in colorectal cancer. Br J Cancer. 2020 Sep;123(7):1123-1130.
指導教授 馬念涵(Nian-Han Ma) 審核日期 2022-10-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明