博碩士論文 109826002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:52.15.63.145
姓名 林哲宇(Che-Yu Lin)  查詢紙本館藏   畢業系所 系統生物與生物資訊研究所
論文名稱 探討黑色素瘤條件培養基對於繼發性腫瘤的產生之研究
(Study of the conditioned medium from the melanoma cells in secondary tumor formation)
相關論文
★ 探討牛樟芝CCM111對細胞訊息傳遞之影響★ Tyloxapol 在大腸癌細胞中的特異性及作用機制之研究
★ MAPK傳導路徑相關微型RNA在黑色素瘤細胞中功能之研究★ 利用MAPK訊息傳導路徑相關的miRNAs來治療BRAF抑制劑的抗藥性在黑色素瘤細胞中之研究
★ 探討miR-567在黑色素細胞瘤中的調控機制★ 探索微型核糖核酸與慢性腎臟病及血液透析病人泌尿道上皮癌生物標記的相關性
★ 以miRNA為基礎開發偵測放射線治療抗性及預後的生物標記★ 偵測微型核糖核酸 miR-524-5p表現量利用原位雜交染色法來作為輔助診斷惡性黑色素瘤的生物標記之研究
★ 研究牛樟芝萃取物 CCM111 的作用機制★ 探討黑色素腫瘤中p53調控miR-524-5p及miR-596表現之機制
★ 泌尿道上皮癌相關的miRNAs在膀胱癌之研究★ 探討BRAF抑制劑透過細胞間訊息誘導腫瘤形成之研究
★ 微型核糖核酸成為放射線治療的預後生物標記之研究★ 發展以血中微型 RNA 作為冠心症(CAD)的非侵入性疾病指標
★ microRNAs作為放射治療預後之生物標誌物與miR-148a-3p於頭頸癌放射敏感度之研究★ 研究miR-524-5p和miR-567治療在黑色素瘤與BRAF抑製劑的抗藥性黑色素瘤
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-10-19以後開放)
摘要(中) Vemurafenib (PLX4032) 是一種小分子的抑制劑用來治療由 BRAF 基因突變 (BRAFV600E)的黑色素瘤。在臨床上發現到黑色素瘤患者使用 BRAFV600E抑制劑治療後會產生抗藥性以及皮膚相關的不良反應發生,在這些不良反應事件當中包括繼發性腫瘤的產生,目前 BRAFV600E 抑制劑誘導繼發性腫瘤發展的機制尚未完全確定。有文獻提到,在不良反應當中所產生的繼發性腫瘤有 21%-60% 是 RAS 突變,這增強了 BRAF-CRAF 異二聚體的形成,從而激活了 MEK/ERK 通路。我們假設在腫瘤微環境當中,細胞之間的溝通會傳遞某些因子而造成影響有,可能是經由 BRAFV600E 抑制劑治療黑色素瘤細胞所釋放的因子並且有助於正常角質形成細胞和表皮細胞形成繼發性腫瘤。在這項研究中,我們利用BRAFV600E 抑制劑 PLX4032 或 PLX8394(一種新型 BRAFV600E 抑制劑)處理黑色素瘤細胞收集的條件培養基 (CM)來驗證我們研究的假設,看是否條件培養基當中存在某些因子而誘導繼發性腫瘤的產生。通過傷口癒合和軟瓊脂測定法來檢測使用 CM 培養的表皮細胞的遷移和不依賴性貼壁的生長。結果表明,用黑色素瘤細胞的 CM 培養正常角質形成細胞和上皮細胞將顯著增強它們的遷移和不依賴性貼壁的生長。在腫瘤微環境中由於細胞外囊泡 (EVs)可能作為在細胞間溝通的重要介質,因此我們分離出黑色素瘤細胞所釋放的 EVs 觀察是否會影響角質細胞的遷移。在實驗中,我們從條件培養基中分離 EVs,利用西方墨點法與免疫標記後經由穿透式電子顯微鏡觀察其結構與特性,確認純化出的 EVs 綜合上述結論我們猜測,用黑色素瘤細胞所釋放的 EVs 可能會促進角質細胞或上皮細胞的腫瘤發生。
摘要(英) Vemurafenib (PLX4032) is a small molecule inhibitor of the mutant form of BRAF gene (BRAFV600E) for the treatment of melanoma. The resistance of BRAF inhibitor produced the secondary tumors in patients. Until now, the mechanisms of BRAFV600E inhibitor-induced secondary tumor development is not fully defined. It has been reported that most of the second tumors have 21%-60% RAS mutations, which enhances the BRAF-CRAF heterodimer formation to activate the MEK/ERK pathway. However, we hypothesize that the intercellular communication especially factors released from melanoma treated with BRAFV600E inhibitors may contribute to the
formation of secondary tumors which are originated from normal keratinocytes and epidermal cells. In this study, we utilized the conditioned medium (CM) collected from melanoma cells treated with BRAFV600E inhibitor, PLX4032, or PLX8394, a novel BRAFV600E inhibitor, to investigate our hypothesis. The migrative, and tumorigenic abilities of epidermal cells cultured with CM were detected by wound healing, and soft
agar assays. The results showed that normal keratinocytes and epithelial cells cultured with CM from melanoma cells treated with PLX4032 would enhance their migration,
and anchorage-independent growth as compared to the control group significantly. Since extracellular vehicles (EVs) as the important mediators that may act as cell-tocell communication in the tumor microenvironment, we investigated whether the EVs released from melanoma can affect tumorigenesis of keratinocytes or epithelial cells. Therefore, we isolated EVs from the conditioned medium, and confirmed the structure and characterization by Western blotting and TEM image. Taken together, our results
suggest that melanoma cells may release EVs to promote tumorigenesis in keratinocytes or the normal epithelial cells.
關鍵字(中) ★ 黑色素瘤
★ 條件培養基
關鍵字(英) ★ melanoma
★ conditioned medium
論文目次 探討黑色素瘤條件培養基對於繼發性腫瘤的產生之研究摘要 i
Abstract ii
致謝 iii
圖目錄 vii
Abbreviation list viii
一、 介紹Introduction 1
1.黑色素瘤 (Melanoma) 1
1-1皮膚癌 (Skin cancer) 1
1-2.黑色素瘤的基因突變 (the mutations of melanoma) 2
1-3黑色素瘤的治療 (the treatment of melanoma) 3
2.BRAF抑制劑 4
2-1 BRAF抑制劑所影響的機制 (Mechanisms of BRAF Inhibitors) 4
2-2 BRAF抑制劑所造成的副作用 (Side Effects of BRAF Inhibitors) 4
2-3繼發性腫瘤的機制 (Mechanisms of Secondary Tumors) 5
3.細胞訊息傳遞 (Signal transduction) 5
3-1細胞間的溝通 5
3-2腫瘤微環境 (The tumor microenvironment) 6
4.研究目的及動機 7
二、 實驗材料與方法 8
1.實驗材料(Material): 8
1.1細胞株(Cell lines) 8
1.2藥物(Drugs) 8
1.3抗體(Antibodies) 8
2實驗方法(Methods): 8
2-1蛋白質提取物的製備(Preparation of protein extraction) 8
2-2西方墨點法(Western Blot analysis) 9
2-3條件培養基製備(Preparation of conditioned medium) 9
2-4製備耗盡外泌體的培養基 (Preparation of EV-Depleted BSA Culture Medium) 10
2-5細胞不依賴性生長 (Anchorage-independent growth) 10
2-6細胞生長偵測實驗(Cell proliferation assay) 10
2-7細胞爬行實驗 (Cell migration assay) 10
2-8細胞外泌體的純化及分析 (Isolation and analysis of EVs) 11
2-8-1細胞外泌體的蛋白質分析(Analysis proteins of EVs) 11
2-8-2免疫金標記(Immunogold labeling) 11
2-9統計(Statistics) 12
三、 實驗結果 13
1. 用黑素瘤細胞條件培養基誘導表皮細胞不依賴貼壁生長。 13
2. 用黑素瘤細胞條件培養基誘導角質細胞不依賴貼壁生長。 13
3. 用黑素瘤細胞條件培養基誘導角質細胞的爬行能力增加。 14
4. 從黑色素瘤的條件培養基中分離出外泌體。 16
5. 從黑色素瘤分泌出的外泌體對角質細胞爬行能力的影響。 16
四、 結論 18
五、 討論 19
1. 角質細胞經由PLX4032治療的條件培養基對於野生型BRAF的影 響。 19
2. 黑色素瘤經由PLX8394 與PLX4032治療的條件培養基對於表皮細胞 的能力影響。 19
3. 黑色素癌細胞所分泌出來的外泌體是否會影響表皮細胞。 19
4. 黑色素癌細胞經由PLX4032的治療所釋放的外泌體是否有差異。 20
5. 外泌體的應用及發展 20
六、 參考文獻 22
參考文獻 1. S. Jane Henley, et al., Annual report to the nation on the status of cancer, Part 1: National cancer statistics . Cancer. 2020 May 15; 126(10): 2225–2249.
2. Howlader N., et al., SEER Cancer Statistics Review, 1975–2017. National Cancer Institute; Bethesda, MD, USA: 2020. [(accessed on 23 July 2020)].
3. Jonathan B. Heistein; Utkarsh Acharya., Malignant Melanoma. Treasure Island (FL): StatPearls Publishing; 2022 Jan.
4. Achkar, T. and A.A.Tarhini, The use of immunotherapy in the treatment of melanoma. J Hematol Oncol. 2017; 10: 88.
5. Paul B. Chapman, M.D., et al., Improved Survival with Vemurafenib in Melanoma with BRAF V600E Mutation. N Engl J Med. 2011 Jun 30; 364(26): 2507–2516.
6.Bollag G., et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature. 2010;467:596–599.
7. Tsai J., et al. Discovery of a selective inhibitor of oncogenic B-RAF kinase with potent antimelanoma activity. Proc. Natl. Acad. Sci. USA. 2008;105:3041–3046.
8. Chapman P.B., et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 2011;364:2507–2516.
9. Antoni Xavier Torres-Collado., et al. Reversal of Resistance in Targeted Therapy of Metastatic Melanoma: Lessons Learned from Vemurafenib (BRAFV600E-Specific Inhibitor). Cancers (Basel). 2018 Jun; 10(6): 157.
10. Zhang C, et al. RAF inhibitors that evade paradoxical MAPK pathway activation. Nature 526, 583–586 (2015).
11. Poulikakos PI, Zhang C, Bollag G, Shokat KM & Rosen N. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464, 427–430 (2010).
12. Lee H.J., Zhuang G., Cao Y., Du P., Kim H.J., Settleman J. Drug resistance via feedback activation of Stat3 in oncogene-addicted cancer cells. Cancer Cell. 2014;26:207–221.
13. Obenauf A.C., Zou Y., Ji A.L., Vanharanta S., Shu W., Shi H., Kong X., Bosenberg M.C., Wiesner T., Rosen N., et al. Therapy-induced tumour secretomes promote resistance and tumour progression. Nature. 2015;520:368–372.
14. Raposo G., Stoorvogel W. Extracellular vesicles: Exosomes, microvesicles, and friends. J. Cell Biol. 2013;200:373–383.
15.Zhang H., Freitas D., Kim H.S., Fabijanic K., Li Z., Chen H., Mark M.T., Molina H., Martin A.B., Bojmar L., et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat. Cell Biol. 2018;20:332–343.
16. Thery C., Zitvogel L., Amigorena S. Exosomes: Composition, biogenesis and function. Nat. Rev. Immunol. 2002;2:569–579
17. Abhimanyu Thakur, Diana Carolina Parra, Pedram Motallebnejad, Marcelo Brocchi and Huanhuan Joyce Chen. Exosomes: Small vesicles with big roles in cancer, vaccine development, and therapeutics. Bioact Mater. 2022 Apr; 10: 281–294.
18. Allison L. Isola, Kevinn Eddy, and Suzie Chen. Biology, Therapy and Implications of Tumor Exosomes in the Progression of Melanoma. Cancers (Basel). 2016 Dec; 8(12): 110.
19. Hatzivassiliou G, Song K, Yen I, Brandhuber BJ, Anderson DJ, Alvarado R, et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 2010;464:431–5.
20. Pushkar Aggarwal, Peter Knabel, and Alan B Fleischer Jr. United States burden of melanoma and non-melanoma skin cancer from 1990 to 2019. J Am Acad Dermatol. 2021 Aug;85(2):388-395.
21. Su Yin Lim, Alexander M Menzies, Helen Rizos. Mechanisms and strategies to overcome resistance to molecularly targeted therapy for melanoma. Cancer. 2017 Jun 1;123(S11):2118-2129.
22. Liang Cheng, Antonio Lopez-Beltran, Francesco Massari, Gregory T MacLennan, and Rodolfo Montironi. Molecular testing for BRAF mutations to inform melanoma treatment decisions: a move toward precision medicine. Mod Pathol. 2018 Jan;31(1):24-38.
23. U Keilholz, et al. ESMO consensus conference recommendations on the management of metastatic melanoma: under the auspices of the ESMO Guidelines Committee. Ann Oncol. 2020 Nov;31(11):1435-1448.
24. Rahul Seth, et al. Systemic Therapy for Melanoma: ASCO Guideline. J Clin Oncol. 2020 Nov 20;38(33):3947-3970.
25. Signe Caksa, Usman Baqai, Andrew E Aplin. The future of targeted kinase inhibitors in melanoma. Pharmacol Ther. 2022 May 2;239:108200.
26. Sandra Huynh, et al. Combined Therapy with Anti-PD1 and BRAF and/or MEK Inhibitor for Advanced Melanoma: A Multicenter Cohort Study. Cancers (Basel). 2020 Jun 23;12(6):1666.
27. Lise Boussemart, et al. Secondary Tumors Arising in Patients Undergoing BRAF Inhibitor Therapy Exhibit Increased BRAF-CRAF Heterodimerization. Cancer Res. 2016 Mar 15;76(6):1476-84.
28. Jennifer Gantchev, Amelia Martinez Villarreal, Brandon Ramchatesingh, Ivan V. Litvinov. Abstract 98: The role of HORMAD1 in transformation of keratinocytes following vemurafenib treatment. Cancer Res (2022) 82 (12_Supplement): 98.
29. National Cancer Institute Common Terminology Criteria for Adverse Events v4.0. NCI,NIH, DHHS; 2009. NIH publication # 09–7473.
30. Sanlorenzo M., Choudhry A., Vujic I., et al. Comparative profile of cutaneous adverse events: BRAF/MEK inhibitor combination therapy versus BRAF monotherapy in melanoma. Journal of the American Academy of Dermatology. 2014;71(6):1102–1109.
31. Mattei P. L., Alora-Palli M. B., Kraft S., Lawrence D. P., Flaherty K. T., Kimball A. B. Cutaneous effects of BRAF inhibitor therapy: a case series. Annals of Oncology. 2013;24(2):530–537.
32. Xiao D., Ohlendorf J., Chen Y., Taylor D.D., Rai S.N., Waigel S., Zacharias W., Hao H., McMasters K.M. Identifying MRNA, MicroRNA and Protein Profiles of Melanoma Exosomes. PLoS ONE. 2012:7.
33. Dressel R., Johnson J.P., Günther E. Heterogeneous Patterns of Constitutive and Heat Shock Induced Expression of HLA-Linked HSP70–1 and HSP70–2 Heat Shock Genes in Human Melanoma Cell Lines. Melanoma Res. 1998;8:482–492.
34. Bridgette Mkhobongo , Rahul Chandran , Heidi Abrahamse. The Role of Melanoma Cell-Derived Exosomes (MTEX) and Photodynamic Therapy (PDT) within a Tumor Microenvironment. Int J Mol Sci. 2021 Sep 8;22(18):9726.
35. Mi Ryung Roh, et al. Low-concentration vemurafenib induces the proliferation and invasion of human HaCaT keratinocytes through mitogen-activated protein kinase pathway activation . J Dermatol. 2015 Sep;42(9):881-8.
36. Eszter Doma, et al. Skin tumorigenesis stimulated by Raf inhibitors relies upon Raf functions that are dependent and independent of ERK. Cancer Res
. 2013 Dec 1;73(23):6926-37.
37. Jean Philippe Arnault , et al. Skin tumors induced by sorafenib; paradoxic RAS-RAF pathway activation and oncogenic mutations of HRAS, TP53, and TGFBR1. Clin Cancer Res. 2012 Jan 1;18(1):263-72.
38. Jingyu Wang, et al. Exosomes Released from Rabies Virus-Infected Cells May be Involved in the Infection Process. Virol Sin. 2019 Feb; 34(1): 59–65.
39. Kasper Bendix Johnsen, et al. Evaluation of electroporation-induced adverse effects on adipose-derived stem cell exosomes. Cytotechnology. 2016 Oct; 68(5): 2125–2138.
40. Bald T., Quast T., et al. Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma. Nature. 2014;507:109–113.
41. Pfeffer SR, Grossmann KF, et al. Detection of Exosomal miRNAs in the Plasma of Melanoma Patients. J Clin Med. 2015;4:2012–27.
42. Lunavat TR, Cheng L, et al. BRAF(V600) inhibition alters the microRNA cargo in the vesicular secretome of malignant melanoma cells. Proc Natl Acad Sci U S A. 2017;114:E5930–9.
43. Zitvogel L, Regnault A, et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med. 1998;4:594–600.
44. Escudier B, Dorval T, Chaput N, et al. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of the first phase I clinical trial. J Transl Med. 2005;3:10.
45. Gowda R., Robertson B.M., et al.The role of exosomes in metastasis and progression of melanoma. Cancer Treat. Rev. 2020;85:101975.
46. Escudier B., Dorval T., et al. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: Results of the first phase 1 clinical trial. J. Transl. Med. 2005;3:1–13.
47. Marco Tucci, Francesco Mannavola, Anna Passarelli, Luigia Stefania Stucci, Mauro Cives, and Franco Silvestris. Exosomes in melanoma: a role in tumor progression, metastasis and impaired immune system activity. Oncotarget. 2018 Apr 17; 9(29): 20826–20837.
48. Aleksandra Simiczyjew, Ewelina Dratkiewicz, Justyna Mazurkiewicz, et al .The Influence of Tumor Microenvironment on Immune Escape of Melanoma. Int J Mol Sci. 2020 Nov; 21(21): 8359.
指導教授 馬念涵((Nian-Han Ma) 審核日期 2022-10-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明