博碩士論文 87344007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:51 、訪客IP:3.138.122.162
姓名 湯文斌(Wen-Bin Tang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 InGaP HBT元件的特性與模型分析
(Characterization and modeling of InGaP HBT)
相關論文
★ 電子式基因序列偵測晶片之原型★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用
★ 使用覆晶技術之微波與毫米波積體電路★ 注入增強型與電場終止型之絕緣閘雙極性電晶體佈局設計與分析
★ 以標準CMOS製程實現之850 nm矽光檢測器★ 600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計
★ 具有低摻雜P型緩衝層與穿透型P+射源結構之600V穿透式絕緣閘雙極性電晶體★ 雙閘極金氧半場效電晶體與電路應用
★ 空乏型功率金屬氧化物半導體場效電晶體 設計、模擬與特性分析★ 高頻氮化鋁鎵/氮化鎵高速電子遷移率電晶體佈局設計及特性分析
★ 氮化鎵電晶體 SPICE 模型建立 與反向導通特性分析★ 加強型氮化鎵電晶體之閘極電流與電容研究和長時間測量分析
★ 新型加強型氮化鎵高電子遷移率電晶體之電性探討★ 氮化鎵蕭特基二極體與高電子遷移率電晶體之設計與製作
★ 整合蕭特基p型氮化鎵閘極二極體與加強型p型氮化鎵閘極高電子遷移率電晶體之新型電晶體★ 垂直型氧化鎵蕭特基二極體於氧化鎵基板之製作與特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在此論文中,主要研究以砷化鎵為基礎的異質接面雙載子電晶體的小訊號等效電路模型、 雜訊特性、溫度特性、功率特性與元件佈局效應對其特性的影響。第二章主要討論此電晶體的小訊號等效電路模型的建構及其等效電路模型參數的擷取方法。小訊號等效電路模型加入了兩項電容,其中一個電容用來描述介於基極接觸電極與基極磊晶層之間的介面層(interfacial layer)所產生的電容效應,另一個電容用來描述因為高頻交流訊號所產生的射極交流電流密集化效應(ac emitter current crowing effect)。由於加入了兩項電容,新的等效電路模型參數的擷取方法將於第二章討論。此新發展的小訊號等效電路模型所模擬出的S參數不但與量測結果吻合,更可說明在較高頻率時,元件的單向功率增益(unilateral power gain)並非依照 -20dB/decade的斜率下降的原因。
第三章主要研究元件的雜訊特性。雜訊特性的研究分成低頻雜訊、高頻雜訊及雜訊等效電路三方面。低頻雜訊被考慮成1/f 雜訊;高頻雜訊的討論則著眼於高頻雜訊參數對偏壓與元件佈局效應的影響。同時藉由已知的內在雜訊源及小訊號等效電路模型,雜訊等效電路模型可被建立。
元件尺寸不但影響雜訊特性,也影響射頻與功率特性。尤其是基極接觸電極面積大小直接影響基極電阻及基集極間的電容大小,因此對最大振盪頻率、輸出功率及線性度等有顯著影響。元件尺寸效應將於第四章中討論。此外,利用新的元件佈局及離子佈植方式來降低基集極間的電容大小的方法也被應用於射極在上(Emitter-up)及集極在上(Collector-up )之異質接面雙載子電晶體上,其特性亦於第四章中討論。
藉由變溫系統量測結果,異質接面雙載子電晶體的溫度特性將於第五章中討論,其中包括了直流與交流特性討論。利用不同迴火(annealing)條件,元件溫度特性會被改變的現象也於此章節討論。同時利用 Kirk-effect及分析電子遷移暫態時間(transit time),電子飽和速度及電子遷移暫態時間各項組成對溫度的變化亦於第五章中討論。
第六章為本文總結及未來研究方向之討論。
摘要(英) In this study, the characteristics of GaAs based HBTs are studied by using small-signal equivalent and DC measurement which includes the dc current gain, the electron saturation velocity, and the temperature dependence effect. The new small-signal equivalent circuit model and the new extraction techniques are proposed to include the base impedance effects which describe the base contact impedance and the ac emitter current crowding. Although these base impedance effects (capacitance elements) are usually neglected for typical HBTs, they must be considered in some situations such as higher base resistance and higher frequency. It will be described in the Chapter 2 that the high frequency performance of HBTs can not be predicted well without incorporating these capacitance into small-signal equivalent circuit.
The noise behavior of InGaP/GaAs HBTs is discussed in Chapter 3 by using a RF noise model and the general linear noisy two-port theory. Low frequencies are usually considered as 1/f noise; and high frequency (HF) noise parameters are in terms of four noise parameters. These HF noise parameters can be predicted by using the noisy two-port circuit if the small-signal equivalent circuits are known. The analytical procedure of HF noise by using the small-signal equivalent circuit as well as the intrinsic noise model is presented.
However, the design issues and tradeoffs associated with geometrical layout of a given HBT technology have not been investigated in detail. Therefore, we attempt to study this geometrical layout in a specific InGaP/GaAs HBT technology by addressing how the device geometry optimizes a given RF performance metric. In Chapter 4, we focus on the frequency response and power performance on the base contact width dependence.
In addition, the CBC has a direct impact on the RF performance and should be minimized. Reducing the CBC to improve the performance of emitter-up HBT by ion implantation process and novel layout will be presented. Compared with the emitter-up HBT, the performance of collector-up HBTs is also presented.
Three issues about temperature dependence are studied: base-emitter turn on voltage, current gains stabilization and RF performances. With the study on temperature dependence effect of the parameters of HBTs, the effective saturation velocity can also be obtained which is discussed in Chapter 5. It is found that the trend of dc current gain versus temperature is different from the annealing conditions, and this is also described in Chapter 5.
Finally, a conclusion and future work are presented in Chapter 6.
關鍵字(中) ★ 小訊號等效電路模型
★ 雜訊
★ 溫度
★ 砷化鎵
★ 電晶體
關鍵字(英) ★ small signal equivalent circuit model
★ temperature
★ noise
★ GaAs
★ HBT
論文目次 Chapter 1 Introduction --------------------------------------------------------------- 1
1-1 Basic concept of HBT ------------------------------------------------- 1
1-2 Transmission line model of base contact impedance -------------- 3
1-3 Ac emitter current crowding ------------------------------------------ 4
1-4 Kirk effect -------------------------------------------------------------- 5
Reference ------------------------------------------------------------------------------- 9
Chapter 2 Small-signal equivalent circuit model of HBTs------------------ 10
2-1 Small-signal equivalent circuit model ------------------------------- 13
2-2 Cutoff mode for the parasitic capacitance CpB, CpC and Cf extraction ----------------------------------------------------------------
14
2-3 Open-collector bias condition for LE, LC and RE, RC extraction- 20
2-4 Active mode for the circuit parameters extraction ---------------- 26
2-4-1 Base-collector capacitance Cbci and Cbcx determination ---- 26
2-4-2 Base resistance RB and Rbi extraction ------------------------- 28
2-4-3 Intrinsic base capacitance Cbi , base inductor LB , and
Base contact capacitance CB extraction ----------------------
31
2-4-4 Base-collector resistance RBCi extraction --------------------- 33
2-4-5 Base-emitter dynamic resistance Rbe and capacitance
extraction Cbe ----------------------------------------------------
34
2-4-6 Base transport factor ?(?) elements extraction -------------- 35
2-5 Fitting results and discussion ---------------------------------------- 38
Reference ------------------------------------------------------------------------------- 47
Chapter 3 Noise characteristics of HBTs -------------------------------------- 49
3-1 Low frequency noise --------------------------------------------------- 50
3-1-1 Concept of low frequency noise ------------------------------- 50
3-1-2 Measured results of low frequency noise -------------------- 51
3-2 High frequency noise -------------------------------------------------- 54
3-2-1 Noisy circuit analysis procedure ------------------------------ 55
3-2-2 Measured and calculated results of high frequency noise - 58
Reference -------------------------------------------------------------------------------- 72
Chapter 4 Geometry study of HBTs -------------------------------------------- 75
4-1 DC and RF characteristic of HBTs with different base contact sizes ----------------------------------------------------------------------
76
4-1-1 DC results -------------------------------------------------------- 76
4-1-2 RF performances ------------------------------------------------ 84
4-1-3 Base contact width (WB) effects on fT and fmax --------------- 89
4-2 Power performance of HBTs with different base contact sizes -- 94
4-2-1 Gain and power added efficiency ----------------------------- 94
4-2-2 Linearity ---------------------------------------------------------- 99
4-3 Novel HBTs layout with ion implantation -------------------------- 102
4-3-1 Device structure and process ---------------------------------- 105
4-3-2 Ion implantation simulation ------------------------------------ 105
4-3-3 Experimental result --------------------------------------------- 106
Reference ------------------------------------------------------------------------------- 115
Chapter 5 Temperature dependent study of HBTs -------------------------- 119
5-1 DC and RF characteristics of InGaP/GaAs HBTs ----------------- 120
5-1-1 Temperature dependence of current gain--------------------- 120
5-1-2 Temperature dependence and ft -------------------------------- 129
5-2 Current gain of InGaP/InGaAsN HBTs ----------------------------- 130
5-2-1 Devices fabrication and experiments ------------------------- 131
5-2-2 Theory analysis of temperature dependence of dc current gain ----------------------------------------------------------------
139
5-3 Electron saturation velocity of InGaP/GaAs HBTs --------------- 141
5-3-1 Electron saturation velocity extracted by Kirk effect ------- 144
5-3-2 Electron saturation velocity extracted by cutoff frequency 146
Reference ------------------------------------------------------------------------------- 157
Chapter 6 Conclusion and future work --------------------------------------- 161
6-1 Conclusion ------------------------------------------------------------ 161
6-2 Future works ----------------------------------------------------------- 163
6-2-1 Improvement of small-signal equivalent circuit model extraction ---------------------------------------------------------
163
6-2-2 Noise characterization of high speed transistors ------------ 163
6-2-3 Nonlinear model of HBTs -------------------------------------- 164
6-2-4 RF circuit design ------------------------------------------------ 164
Reference ------------------------------------------------------------------------------- 165
參考文獻 [1] W. Shockly, U. S. Patent NO. 2569347, 1951.
[2] H. Kroemer, “Theory of a Wide-Gap Emitter for Transistors,” proc. IRE, vol. 45, pp.1535, 1957.
[3] H. H. Berger, “Models for contacts to planar devices, “Solid-State Electron., vol. 15, pp.145-147, June. 1972.
[4] D. Costa, W. Liu, and J. S. Harris, Jr., “Direct extraction of the AlGaAs/GaAs heterojunction bipolar transistor small-signal equivalent circuit, “IEEE Trans. Electron Devices, vol. 38, pp. 2018–2024, Sept. 1991.
[5] W. Liu, Handbook of III-V heterojunction bipolar transistors. New York: Wiley, 1998.
[6] R. L. Pritchard, Electrical Characteristics of Transistors. New York: McGraw-Hill, 1967.
[7] C. T. Kirk, “A Theory of Transistor Cutoff Frequency (Ft) Falloff at High Current Densities, “IRE Trans. Electron Devices, pp.164. March 1962.
[1] R.L. Pritchard, “Transistor equivalent circuits,” Proceedings of the IEEE vol. 86, pp.150-162, Jan. 1998.
[2] E. A. Guillemin, Communication Networks, vol. II. New York: Wiley, 1935, ch. IV.
[3] H.H. Berger, “Models for contacts to planar devices,” Solid-State Electron., vol. 15, pp.145-147, June. 1972.
[4] D. Costa, W. Liu, and J.S. Harris, Jr., “Direct extraction of the AlGaAs/GaAs heterojunction bipolar transistor small-signal equivalent circuit,” IEEE Trans. Electron Devices, vol. 38, pp. 2018–2024, Sept. 1991.
[5] J.M.M. Rios, “A self-consistent method for complete small-signal parameter extraction of InP-based heterojunction bipolar transistors,” IEEE Trans. Microwave Theory Tech., vol. 45, pp.39- 45, Jan. 1997.
[6] R.L. Pritchard, Electrical Characteristics of Transistors. New York: McGraw-Hill, 1967.
[7] W. Liu, Handbook of III-V heterojunction bipolar transistors. New York: Wiley, 1998.
[8] Information About the Most Recent Model Descriptions, Source Code, and Documentation. [Online]. Available: http://www.semiconductors. Philips.com / Philips_Models
[9] H.S. Rhee, S. Lee, and B. R. Kim, “DC and AC current crowding effects model analysis in bipolar junction transistors using a new extraction method,” Solid State Electron., vol. 38, no. 1, pp. 31–35, 1995
[10] M. Ida, K. Kurishima, and N. Watanabe.,” Over 300 GHz fT and fmax InP/InGaAs double heterojunction bipolar transistors with a thin pseudomorphic base,”IEEE Trans. Electron Devices, vol. 23, pp. 694 – 696, Dec. 2002
[11] K. Washio, E. Ohue, R. Hayami, A. Kodama, H. Shimamoto, M. Miura, K. Oda, I. Suzumura, T. Tominari, and T. Hashimoto, “High-speed scaled-down self-aligned SEG SiGe HBTs,” IEEE Trans. Electron Devices, vol. 50, pp.2417 – 2424 , Dec. 2003.
[12] D. R. Pehlke and D. Pavlidis, “Evaluation of the factors determining HBT high-frequency performance by direct analysis of S-parameter data,” IEEE Trans. Microwave Theory Tech., vol. 40, pp. 2367–2373, Dec. 1992.
[13] Y. Gobert, P. J. Tasker, and K. H. Bachem, “A physical, yet simple, small-signal equivalent circuit for the heterojunction bipolar transistor,” IEEE Trns. Microwave Theory Tech., vol. 45, pp.149-153, Jan. 1997.
[14] S. Bousnina, P. Mandeville, A. B. Kouki, R. Surridge, and F. M. Ghannouchi, “Direct parameters-extraction method for HBT small-signal model,” IEEE Trns. Microwave Theory Tech., vol. 50, pp.529- 536, Feb. 2002.
[15] C. J. Wei and J. C. M. Huang, “Direct extraction of equivalent circuit parameters for heterojunction bipolar transistors,” IEEE Trans. Microwave Theory Tech., vol. 43, pp. 2035–2039, Sept. 1995.
[16] A. Samelis and D. Pavlidis, “DC to high-frequency HBT-model parameter evaluation using impedance block conditioned optimization,” IEEE Trans. Microwave Theory Tech., vol.45, pp.886–897, Jun. 1997
[17] M. S. Gupta,”Power gain in feedback amplifiers, a classic revisited ,” IEEE Trans. Microwave Theory Tech., vol. 40, pp.864–879, May. 1992
[1] P. J. Fish, Electronic Noise and Low Noise Design. New York McGraw-Hill, 1994.
[2] J.J. Liou, T.J. Jenkins, L.L. Liou, R. Neidhard, D.W. Barlage, R. Fitch, J.P. Barrette, M. Mack, C.A. Bozada, R.H.Y. Lee, R.W. Dettmer, and J.S. Sewell,” Bias, frequency, and area dependencies of high frequency noise in AlGaAs/GaAs HBT's, “ IEEE Trans. Electron Devices, vol. 43, pp.116-122, Jan.1996.
[3] M. Rudolph, R. Doerner, L. Klapproth, and P. Heymann, “An HBT noise model valid up to transit frequency, “ IEEE Trans. Electron Devices, vol. 20, pp.24-26 Jan. 1999,
[4] U. Basaran, N. Wieser, G. Feiler, and M. Berroth,” Small-signal and high-frequency noise modeling of SiGe HBTs,” IEEE Trans. Microwave Theory Tech., vol. 53, no. 3, pp. 919- 928, March 2005.
[5] L. Escotte, J.-P. Roux, R. Plana, J. Graffeuil, and A. Gruhle, “Noise modeling of microwave heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 42, no. 5, pp.883-889, May 1995.
[6] D. Costa and J. S. Harris Jr., “Low-frequency noise properties of N-p-n AlGaAs/GaAs heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 39, p. 2383, 1992.
[7] G. Niu, ”Noise in SiGe HBT RF technology: physics, modeling, and circuit implications,” Proceedings of the IEEE, vol. 93, no. 9, pp.1583-1597, Sept. 2005.
[8] W.H. Fonger, “Noise in transistor”, in Noise in Electron Devices, Smullin and Hans, eds., New York: John Wiley and Sons, pp. 365-381,1959.
[9] A. McWhorter, “1/f noise and germanium surface properties,” in Semiconductor Surface Physics. Philadelphia, PA: Univ. of Pennsylvania Press, pp. 207–208. 1957.
[10] Yan Cui; Guofu Nui; Harame, D.L.;” An examination of bipolar transistor noise modelling and noise physics using microscopic noise simulation,” Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting, Sept. 2003 pp.225-228, 2003.
[11] A. Van der Ziel, “Proposed discrimination between 1/ f noise sources in transistors,” Solid State Electronics, vol. 25, no. 2, pp. 141-143, 1982.
[12] J.-H. Shin, J. Kim, Y. Chung, J. Lee, Y. Suh, K.H. Ahn, and B. Kim,” Low-frequency noise characterization of self-aligned AlGaAs-GaAs heterojunction bipolar transistors with a noise corner frequency below 3 kHz,” IEEE Trans. Microwave Theory Tech., vol.46, no.11, pp.1604-1613, Nov. 1998.
[13] G. Niu, J.D. Cressler, Z. Shiming, W.E. Ansley, C.S. Webster, and D.L Harame, “ An unified approach to RF and microwave noise parameter modeling in bipolar transistors,” IEEE Trans. Electron Devices, vol. 48, no.11, pp. 2568-2574, Nov. 2001.
[14] A. van der Ziel, “Theory of shot noise in junction diodes and junction transistors,” Proc. IRE, vol. 43, pp. 1639-1646, Nov. 1955.
[15] H. A. Haus and R. B. Adler, “Circuit Theory of Linear noisy Networks.” New York: Wiley, 1959.
[16] H. Hillbrand, and P. Russer,” An efficient method for computer aided noise analysis of linear amplifier networks,” IEEE Trans. Circuits and Systems, vol.23, no.4, pp.235-238, Apr. 1976.
[17] R.A. Pucel, and U.L. Rohde, “An exact expression for the noise resistance Rn for the Hawkins bipolar noise model,” IEEE Microwave and Guided Wave Letters, vol. 3, no.2, pp.35-37, Feb. 1993.
[18] G. Jianjun, L. Xiuping, W. Hong, and G. Boeck, ”Microwave noise modeling for InP-InGaAs HBTs,” IEEE Trans. Microwave Theory Tech., vol 52,no. 4, pp.1264-1272, Apr. 2004.
[19] C. Giuseppe, and M. Sannino, ” Computer-Aided Determination of Microwave Two-Port Noise Parameters,” IEEE Trans. Microwave Theory Tech., vol. 26, no.9, pp. 639-642, Sep. 1978.
[20] R. Plana, and L. Escotte,” Noise properties of micro-wave heterojunction bipolar transistors,” 1997 21st International Conference on Microelectronic Proceedings., vol. 1, pp.215-222 ,Sept. 1997
[21] H. Rothe , and W. Dahlke, ”Theory of noisy fourpoles,” Proc. IRE, vol.44, pp.811-818, June. 1956.
[22] H. Fukui,”The noise performance of microwave transistors,” IEEE Trans. Electron Devices, vol.13, no.3, pp.329-341, Mar. 1966.
[1] M.E. Kim, A.K. Oki, G.M. Gorman, D.K. Umemoto, and J.B. Camou,” GaAs heterojunction bipolar transistor device and IC technology for high-performance analog and microwave applications,” IEEE Trans. Microwave Theory Tech., vol. 37, no. 9, pp.1286 – 1303, Sept. 1989
[2] M.-C. Ho, R.A. Johnson, W.J. Ho, M.F. Chang, and P.M. Asbeck,” High-performance low-base-collector capacitance AlGaAs/GaAs heterojunction bipolar transistors fabricated by deep ion implantation,” IEEE Trans. Electron Lett. vol. 16, no.11, pp.512- 514, Nov. 1995.
[3] O. Berger,” GaAs HBTpower amplifier applications,” Bipolar/BiCMOS Circuits and Technology, 2004. Proceedings of the 2004 Meeting 13-14, pp.52-55, Sept. 2004.
[4] K. Kurishima” An analytic expression of fmax for HBTs,” IEEE Trans. Electron Devices, vol. 43, no. 12, pp.2074-2079, Dec. 1996.
[5] W. Liu, Handbook of III-V heterojunction bipolar transistors. New York: Wiley, 1998.
[6] K.W. Kobayashi, M. Nishimoto, L.T. Tran,W. Huei ,J.C. Cowles, T,R. Block,J.H. Elliott, B.R. Allen,A.K. Oki, and D.C. Streit,” A 44-GHz high IP3 InP-HBT amplifier with practical current reuse biasing,” IEEE Trans. Microwave Theory Tech. vol.46, no. 12, Part 2, pp.2541-2552, Dec. 1998.
[7] T. Iwai, S.Ohara, H. Yamada, Y. Yamaguchi, K. Imanishi, and K. Jeshin,” High efficiency and high linearity InGaP/GaAs HBT power amplifiers: matching techniques of source and load impedance to improve phase distortion and linearity,” IEEE Trans. Electron Devices, vol. 45, no. 6, pp.1196-1200, Jan. 1998.
[8] L.W. Nan, H.J. Wu, and J.A. Higgins,” AlGaAs/GaAs HBT linearity characteristics,” IEEE Trans. Microwave Theory Tech. vol. 42, no.10, pp.1845 – 1850, Oct. 1994.
[9] K. M. Chen; A. S. Peng, G. W. Huang, H.Y. Chen, S.Y. Huang, C.Y. Chang, H. C. Tseng, T.L. Hsu, and V. Liang,” Linearity and power characteristics of SiGe HBTs at high temperatures for RF applications,” IEEE Trans. Electron Devices, vol. 52, no.7, pp.1452-1458, Jul. 2005.
[10] K.W. Kobayashi, L.T. Tran, A.K. Oki, M.D. Lammert, and D.C. Streit, “Optimizing a GaAs HBT amplifier for maximum gain efficiency,” Electron. Letters, vol.32, no. 23, pp.2181 – 2183, Nov. 1996.
[11] S. Tanaka, Y. Amamiya, S. Murakami, H. Shimawaki, N. Goto, Y. Takayama, and K. Honjo,” Design considerations for millimeter-wave power HBTs based on gain performance analysis,” IEEE Trans. Electron Devices, vol. 45, no.1, pp.36-44, Jan. 1998.
[12] M. Iwamoto, C.P. Hutchinson, J.B. Scott, T.S. Low, M. Vaidyanathan, P.M. Asbeck, and D.C. D'Avanzo,” Optimum bias conditions for linear broad-band InGaP/GaAs HBT power amplifiers,” IEEE Trans. Microwave Theory Tech., vol. 50, no.12, pp.2954-2962, Dec. 2002.
[13] G.B. Gao, H. Morkoc, and M-C.F. Chang,” Heterojunction bipolar transistor design for power applications,” IEEE Trans. Electron Devices, vol.39, no.9, pp.987-1997, Sept. 1992.
[14] M. Iwamoto, P.M. Asbeck, T.S. Low, C.P. Hutchinson,J.B. Scott, A. Cognata, Q. Xiaohui , L.H. Camnitz,, and D.C. D'Avanzo,” Linearity characteristics of GaAs HBTs and the influence of collector design,” IEEE Trans. Microwave Theory Tech., vol.48, no. 12, pp.2377-2388, Dec. 2000.
[15] M. Iwamoto, T.S. Low, C.P. Hutchinson, J.B. Scott, A. Cognata, Q. Xiaohui, L.H. Camnitz, P.M. Asbeck,and D.C. D'Avanzo,” Influence of collector design on InGaP/GaAs HBT linearity,” IEEE MTT-S International Microwave Symposium Digest., vol.2, no.11, pp.757-760, June. 2000.
[16] M. Vaidyanathan, M. Iwamoto, L.E. Larson, P.S. Gudem, and P.M. Asbeck, P.M.;” A theory of high-frequency distortion in bipolar transistors,” IEEE Trans. Microwave Theory Tech., vol. 51, no.2, part 1, pp. 448-461, Feb. 2003.
[17] M.Y. Frankel, and D. Pavlidis,” Large-signal modeling and study of power saturation mechanisms in heterojunction bipolar transistors,” IEEE MTT-S International Microwave Symposium Digest, vol.1, pp. 127-130, June 1991.
[18] M.Y. Frankel, and D. Pavlidis,” An analysis of the large-signal characteristics of AlGaAs/GaAs heterojunction bipolar transistors,” IEEE Trans. Microwave Theory Tech., vol.40, no. 3, pp.465-474, Mar.1992 .
[19] M.C. Ho, and P.M. Asbeck , “Base-Collector Capacitance Reduction of AlGaAs/GaAs Heterojunction Bipolar Transistors by Deep Ion Implantation”, University of California, San Diego, 1995
[20] S.J. Pearton, “Ion Implantation for Isolation of Ⅲ-V Semiconductors, “Material Science Reports, Vol.4, p.315, 1982
[21] H. Kawai,T. Kobayashi, and K. Kaneko,”A collector-up AlGaAs/GaAs heterojunction bipolar transistor fabricated using three-stage MOCVD,” IEEE Trans. Electron Devices, vol. 9, no. 8 ,pp. 419-421, Aug. 1988 .
[22] A. Girardot, A. Henkel, S.L. Delage, M.A. DiForte-Poisson, E. Chartier, E. Floriot, S. Cassette, and P.A. Rolland, " High-performance collector-up InGaP/GaAs heterojunction bipolar transistor with Schottky contact," Electronics Letters ,vol. 35, no.8, pp. 670-672, Apr. 1999 .
[23] J. F.Zieglr, J.B. Biersack and U. Littmark, "The topping and Range of Ions in Solids, " Pergamon Press, New York, 1990
[24] S. Yamahata, Y. Matsuoka, and T. Ishibashi, "High fmax collector-up AlGaAs/GaAs heterojunction bipolar transistors with a heavily carbon-doped base fabricated using oxygen-ion implantation "IEEE Electron Device Letters , vol.14, no.4, pp.173-175, April 1993.
[1] N. Bovolon, R. Schultheis, J.E. Muller, and P. Zwicknagl,” Analysis of the short-term DC-current gain variation during high current density-low temperature stress of AlGaAs/GaAs heterojunction bipolar transistors,” IEEE Trans. Electron Devices ,vol. 47, no. 2, pp.274-281, Feb. 2000.
[2] Yang, Y.F.; Hsu, C.C.; Yang, E.S.,” Surface recombination current in InGaP/GaAs heterostructure-emitter bipolar transistors,” IEEE Trans. Electron Devices, vol. 41, no. 5, pp.643-647,May. 1994.
[3] S. Tiwari, D.J. Frank, and S.L. Wright, “Surface recombination current in GaAlAs/GaAs heterostructure bipolar transistors.” J. Appl. Phys. 64, pp.5009-5012, 1988.
[4] W. Liu, Handbook of III-V heterojunction bipolar transistors. New York: Wiley, 1998.
[5] J. Kruse, P.J. Mares,D. Scherrer, M. Feng, and G.E. Stillman,” Temperature dependent study of carbon-doped InP/InGaAs HBT's,” IEEE Electron Device Letters, vol.17, no.1, pp.10-12, Jan. 1996.
[6] S.Y. Chiu, A.F.M. Anwar, S. Wu,” Base transit time in abrupt GaN/InGaN/GaN HBT's,” IEEE Trans. Electron Devices, vol. 47, no. 4, pp.662-666, Apr. 2000.
[7] R.E. Welser, P.M. DeLuca, and N. Pan, ’ Turn-on voltage investigation of GaAs-based bipolar transistors with Ga1-xInxAs1-yNy base layers,” IEEE Electron Device Letters, vol.21, no.12, pp.554-556, Dec. 2000.
[8] Y.M. Hsin, H.T. Hsu, K.P. Hseuh, W.B. Tang, C.C. Fan, C.H. Wang, C.W. Chen, and N.Y. Li ,‘Effects of annealing on the DC and RF performance of InGaP/InGaAsN/GaAs HBTs’, Accepted to be published in Journal of Electronics Materials 2003. (SCI)(EI)
[9] Q.J. Hartmann, H. Hwangbo, A. Yung, D.A. Ahmari, M.T. Fresina, J.E. Baker, and G.E. Stillman, ”Removal of hydrogen from the base of carbon-doped In0.49Ga0.51P/GaAs heterojunction bipolar transistors by ex situ annealing and the effects on devices characteristics’ , Appl. Phys. Lett. 68 (7), pp.982-987, 1996.
[10] C. Monier, A. G. Baca, S. Z. Sun, E. Armour, F. Newman, and H. Q. Hou, Appli. Phys. Lett. vol. 81, no.11, pp. 2103 , 2002.
[11] E.S. Yang, C.C. Hsu, H. B. Lo, and Yue-Fei Yang, “Modeling of current gain’s temperature Dependence in Heterojunction-Emitter Bipolar Transistor,” IEEE Trans. Electrons Devices, vol. 47, no. 7, pp.1315-1319, Jul. 2000.
[12] M. Kondow at al , ”Room temperature pulsed operation of InGaAsN’s laser diodes with excellent high-temperature performance,” J. Appl. Phys. vol.35, pp.5711-5713, Nov. 1996.
[13] Y. M. Hsin, H.T. Hsu, K. P. Hseuh, W. B. Tang, P. W. Li, and N. Y. Li1,” Effects of Annealing on the Performance of InGaP/InGaAsN/GaAs HBTs,”Journal of electronic materials , vol. 32, no.9, pp.928-951,2003.
[14] W, Liu, S.K. Fan, T. Henderson, and D. Davito, “Temperature dependences of current gains in GaInP/GaAs and AlGaAs/GaAs heterojunction bipolar transistor,” IEEE trans. Electron Devices, vol.40, no.7 pp.1351-1353, July 1993.
[15] Okamoto H, and M Ikeda, ”Measurement of the electron drift velocity in avalanching GaAs diodes,” IEEE Trans. Electrons Devices, vol. 3,no.23, pp.:372-374,Dev. 1976.
[16] B. Kramer, and A. Mircea, ”Determination of saturated electron velocity in GaAs,” Appl Phys Lett , vol.26, no.11, pp.623.1975.
[17] R. Allam , and J. Pribetich, ”Temperature dependence of electron saturation velocity in GaAs,” Electron Lett, vol. 26, no.11, pp.688, 1990.
[18] M.B. Das, E. Kopp, and H. Morkoc, “Determination of carrier saturation velocity in short-gate-length modulation-doped FET’s,” IEEE Electron Devices Letter , vol.5, no.11. pp.446-449, Apr. 1984;.
[19] S. Bandy , S. Nishimoto, S. Hyder , and C. Hooper,” Saturation velocity determination for In0.33Ga0.47As field-effect transistors,” Appl. Phys. Lett. Vol.38, no.10,pp.817, 1981
[20] J. Dickmann, C.H. Heedt, and H. Daembkes,” Determination of the electron saturation velocity in pseudomorphic AlxGa1-xAsInyGa1-yAs MODFETs at 300 and 100 K,” IEEE trans. Electron Devices, vol.36, no.10, pp.2315,1989.
[21] Y.M. Hsin, S.T. Hsu, C.C. Fan, “Electron saturation velocity of GaInP deduced in a GaInP/GaAs/GaInP double heterojunction bipolar transistor,” Appl Phys lett, vol 77, no. 10, pp.1538, 2000.
[22] Y.M. Hsin, W.B. Tang, and H.T. Hsu, “Temperature dependence of electron saturation velocity in GaAs measured in InGaP/GaAs HBT using DC and AC approaches,” Solid-State electronics, vol. 49, pp.295-300,2005.
[23] B. Kramer, and A. Mircea,” Determination of saturated electron velocity in GaAs,” Appl Phys Lett , vol. 26, no. 11, pp.623,1975.
[24] C.T. Kirk ,”A Theory of Transistor Cutoff Frequency (Ft) Falloff at High Current Densities,” IRE Trans. Electron Dev 1962; March:164.
[25] A. Josep, J.D. Cressler, D.M. Richey, and G. Niu,”Optimization of SiGe HBTs for operation at high current densities,” IEEE Trans. Electrons Devices, vol.46, no.7, pp.1347-1354,1999.
[26] S. M. Sze, Physics of semiconductor devices, John Wiley & Sons, 1981
[27] A.A.David , R. Gopal, J.H. Quesnell, L.H. Michael, F. Milton, E.S.Gregory,” Temperature Dependence of InGaP/GaAs Heterojunction Bipolar Transistor DC and Small-Signal Behavior,” IEEE Trans. Electrons Devices, vol.46, no. 4, pp.634, 1999.
[28] C. Chang, P. M. Asbeck , P. Zampardi , and K.C.Wang,”Direct measurement of Cbe and Cbc versus voltage for small HBT's with microwave s-parameters for scaled Gummel-Poon BJT models,’ IEEE Trans. Microwave Theory Tech. vol. 47, no.1, pp.108-110, Jan. 1999.
[29] J.J. Liou, L.L. Liou, C.I. Huang, and B. Bayraktaroglu ,”A physics-based, analytical heterojunction bipolar transistor model, including thermal and high-current effects,” IEEE Trans. Electrons Devices, vol. 40, no. 9, pp.1570-1577, Sept.1993.
[30] E.S. Harmon, M.L. Lovejoy , M.R. Melloch, M.S. Lundstrom, T.J. Lyon, and J.M. Woodall,”Experimental observation of a minority electron mobility enhancement in degenerately doped p-type GaAs,” Appl. Phys. Lett , vol 63. no. 4, pp.536,1993.
[31] G. Timp , J. Bude, K.K. Bourdelle, J. Garno J, et al,” The ballistic nano-transistor,” IEDM Tech. Dig., vol.55, 1999.
[32] N. Bovolon, P. Baureis, J.E. Muller, P. Zwicknagl, R. Schultheis, and E. Zanoni,” A simple method for the thermal resistance measurement of AlGaAs/GaAs heterojunction bipolar transistors,” IEEE Trans. Electrons Devices, vol. 45, no.8, pp.1846 – 1848, Aug. 1998.
[1] L. Degachi, and F.M. Ghannouchi,” Systematic and rigorous extraction method of HBT small-signal model parameters, IEEE Trans. Microwave Theory Tech. vol.54, no. 2, pp.682-688, 2006.
[2] S. Bousnina, P. Mandeville, A.B. Kouki, R. Surridge, and F.M. Ghannouchi, F.M, ” A new analytical and broadband method for determining the HBT small-signal model parameters,” IEEE MTT-S International Microwave Symposium Digest.vol.3, no.11, pp.1397-1400, 2000.
[3] B. Sheinman, E. Wasige, M. Rudolph, R. Doerner, V. Sidorov, S. Cohen, and D. Ritter,” A peeling algorithm for extraction of the HBT small-signal equivalent circuit,” IEEE Trans. Microwave Theory Tech. vol. 50, no.12, pp. 2804-2810, 2002.
[4] N. L. Wang, W.J. Ho, and J.A. Higgins,” New de-embedding method for millimetre-wave bipolar transistor S-parameter measurement,” Electronics Letters, vol. 27, no. 18, pp.1611-1612, 1991.
[5] Q. Liang; W.M. Kuo; J. Cressler, G. Niu, A.J. Joseph, and D.L. Harame,” Accurate AC transistor characterization to 110 GHz using a new four-port self-calibrated extraction technique,” 2004 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, vol. 8, pp.:282-285, 2004.
[6] P.B. Winson, S.M. Lardizabal, and L. Dunleavy,” A table-based bias and temperature-dependent small-signal and noise equivalent circuit model,” IEEE Trans. Microwave Theory Tech. vol. 45, no.1,pp.46-51, 1997.
[7] A. Pascht, M. Grozing, D. Wiegner, and M. Berroth,” Small-signal and temperature noise model for MOSFETs,” IEEE Trans. Microwave Theory Tech. vol. 50, no. 8, pp.1927-1934, 2002.
[8] U. Basaran, N. Wieser, G. Feiler, and M. Berroth,” Small-signal and high-frequency noise modeling of SiGe HBTs,” IEEE Trans. Microwave Theory Tech. vol. 53, no.3, pp.919-928, 2005.
[9] G. Niu,” Noise in SiGe HBT RF technology: physics, modeling, and circuit implications,”Proceedings of the IEEE, vol.93,no.9, pp.1583-1597, 2005.
[10] S. Bruce, K.J. Vandamme, and A. Rydberg,” Temperature dependence and electrical properties of dominant low-frequency noise source in SiGe HBT,” IEEE Trans. Electron Devices, vol. 47, no. 5, pp.1107-1112,2000.
[11] K. Woonyun, K.Sanghoon , L. Kyungho , C. Minchul , K. Jongchan, and K. Bumman,” Analysis of nonlinear behavior of power HBTs,” IEEE Trans. Microwave Theory Tech. vol.50,no.7, pp.1714-1722, 2002.
[12] C.M. Snowden, ” Large-signal microwave characterization of AlGaAs/GaAs HBT's based on a physics-based electrothermal model,” IEEE Trans. Microwave Theory Tech. vol. 45, no.1, pp.58 -71, 1997.
[13] K. Woonyun , K. Sanghoon , L. Kyungho , C. Minchul, Y. Youngoo , and K. Bumman,” The effects of Cbc on the linearity of AlGaAs/GaAs power HBTs,” IEEE Trans. Microwave Theory Tech. vol. 49, no.7,pp.1270-1276, 2001.
[14] J.H. Kim, Y.S. Noh, and C.S. Park,” Linearised HBT MMIC power amplifier with partially RF coupled active bias circuit for W-CDMA portable terminals applications,”Electronics Letters, vol.39, no.10, pp.781-783, 2003.
[15] K.W. Kobayashi, R. Kasody, A.K. Oki, and D.C. Streit,” A 5-10 GHz octave-band AlGaAs/GaAs HBT-Schottky diode down-converter MMIC,” IEEE Journal of Solid-State Circuits, vol.31, no.10, pp.1412-1418, 1996.
[16] K. Yamamoto, S. Suzuki,K. Mori, T. Asada,T. Okuda,A. Inoue, T. Miura,K. Chomei, R. Hattori, M. Yamanouchi, and T. Shimura,” A 3.2-V operation single-chip dual-band AlGaAs/GaAs HBT MMIC power amplifier with active feedback circuit technique,” IEEE Journal of Solid-State Circuits, vol. 35,no. 8, pp.1109-1120, 2000.
[17] B. Bayraktaroglu,” GaAs HBT's for microwave integrated circuits,” Proceedings of the IEEE, vol. 81, no.12, pp.1762 – 1785, 1993.
[18] W. Huei, K.W. Chang, L.T. Tran, J.C. Cowles, T.R. Block, E.W. Lin, G.S. Dow, A.K. Oki, D.C. Streit, and B.R. Allen,” Low phase noise millimeter-wave frequency sources using InP-based HBT MMIC technology,”
IEEE Journal of Solid-State Circuits, vol.31, no.10, pp.419-1425, 1996.
[19] T. Yoshimasu, M. Akagi, N. Tanba, and S. Hara,” An HBT MMIC power amplifier with an integrated diode linearizer for low-voltage portable phone applications,” IEEE Journal of Solid-State Circuits, vol. 33, no.9, pp.1290-296, 1998.
指導教授 辛裕明(Yue-ming Hsin) 審核日期 2006-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明