博碩士論文 109323035 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:3.138.200.66
姓名 高亦德(Yi-Te Kao)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 磁電式致動旋轉機械平衡儀計算/設計製作與驗證
相關論文
★ TFT-LCD前框卡勾設計之衝擊模擬分析與驗證研究★ TFT-LCD 導光板衝擊模擬分析及驗證研究
★ 數位機上盒掉落模擬分析及驗證研究★ 旋轉機械狀態監測-以傳動系統測試平台為例
★ 發射室空腔模態分析在噪音控制之應用暨結構聲輻射效能探討★ 時頻分析於機械動態訊號之應用
★ VKF階次追蹤之探討與應用★ 火箭發射多通道主動噪音控制暨三種線上鑑別方式
★ TFT-LCD衝擊模擬分析及驗證研究★ TFT-LCD掉落模擬分析及驗證研究
★ TFT-LCD螢幕掉落破壞分析驗證與包裝系統設計★ 主動式火箭發射噪音控制使用可變因子演算法
★ 醫學/動態訊號處理於ECG之應用★ 光碟機之動態研究與適應性尋軌誤差改善
★ 具新型菲涅爾透鏡之超音波微噴墨器分析與設計★ 醫用近紅外光光電量測系統之設計與驗証
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-12-1以後開放)
摘要(中) 大型旋轉機械如電廠、紡織廠、石化廠的動力馬達或引擎動力輸出室,或是在船舶底層輪機艙、飛機引擎室等,都具有振噪條件惡劣及空間侷限因素,實施現場動平衡校正相當困難且辛苦;其雖屬傳統技術且發展相當早,然而仍存在前述條件下未滿足的需求,即惡劣環境條件,能適當進行的需要。因應這種惡劣的工作環境,本研究發展一個具備智能性、且能夠大幅降低人為介入,甚至無人化的磁電式致動旋轉機械平衡系統。採用常規平衡校正所採取的影響係數法,無需人為介入額外加配重,而是經計算後透過平衡轉盤上鋼球位置變動,藉著定位座磁電開關致動,引導軌道上鋼球定位於平衡轉盤應在位置,達到旋轉機械平衡校正的目的。本論文分為三部分–(1)不平衡振動訊號數值模擬:藉由力學計算合成模擬訊號,再設計不平衡時軸承上所量測到的振動訊號,產生多個不同的數值模擬狀態,隨後分別以轉盤配重及磁電致動進行平衡校正,驗證平衡校正演算程式的正確性;(2)實驗平台及平衡校正系統設計:針對平衡校正課題設計實驗平台,系統以LabVIEW®與MATLAB®撰寫量測、計算、及控制人機介面,再由電腦透過Wi-Fi無線模組進行定位座開關控制;(3)實驗平台平衡校正驗證:以所設計的旋轉平台,驗證磁電式致動平衡儀的校正能力,其平衡盤面有5條非對稱式溝槽,每條溝槽設計3個配重定位點,經控制溝槽內配重鋼球進行校正;盤面外圈具有15個螺絲鎖孔,可利用不同重量的螺絲進行轉盤配重平衡校正。實驗設計900 rpm及1000 rpm兩種平衡轉速,先以轉盤配重在盤面外圈鎖附螺絲進行平衡校正,經校正後平台振動量下降可達90%以上;在旋轉平台經轉盤配重達到近似平衡後,設計配重造成已知的不平衡量驗證演算。在平衡盤外圈每 鎖上已知配重,再以轉盤配重平衡校正流程進行計算,並將其結果與設計的配重比較,計算準確度介於84.3–94.8%;在平衡盤外圈每 鎖上已知配重,再以磁電致動平衡校正流程進行計算,將其結果與設計的配重比較,計算準確度介於88.4–96.9%,並以此計算結果進行磁電致動平衡校正,振動量下降60.7–75.7%,可有效降低旋轉機械的不平衡振動量。最後對磁電致動平衡校正系統進行能力評估,在兩轉速下皆能達到ISO 1940動平衡規範G 6.3以下,證實所設計製作的系統可確實達到平衡校正之目的。
摘要(英) Large rotating machines such as power motors or engines in power plants, textile factories, and petrochemical plants, or in the engine room on the bottom of the vessel, or aircraft engine rooms, etc., have harsh noise conditions and space limitations. Though balancing techniques belongs to a kind of traditional technology and have been developed for decades, there still exists unmet need. In response to this harsh working environment, this study developed an electromagnetic actuation technique for rotating machinery dynamic balancing can greatly reduce human intervention. The calculation procedure is similar to the influence coefficient method used in the usual balance correction, but it does not add extra weight by intervention, but changes the position of the steel ball on the balance turntable tract to achieve change after the calculation. The electromagnetic switch of the steel ball seat is used to brake, and the steel ball on the guiding track is positioned at the position where the balance turntable should be, so as to achieve the purpose of balance correction of the rotating machinery.
This thesis is divided into three parts-(1) unbalance vibration signal numerical simulation: synthesize simulation signal with mechanics, and design the unbalanced vibration signal which we can measured on the bearing. Then balance it with traditional counterweight approach and electro-magnetic actuation these produced state to verify the correction of the system; (2) the experiment platform and field balancing system design: the platform is designed for balancing experiment. The system with measurement, calculation, and control human machine interface is program by LabVIEW® and MATLAB®. The Wi-Fi module which connected with the computer can control the power switch of the seat; (3) verify field balancing on the experiment platform: verify the balancing ability of electro-magnetic actuation balance system on the designed rotary platform. The balancing plane has 5 asymmetrical slots and 3 positioned keyhole on each slot, it can be balanced by controlling the counterweight steel ball, the outer ring of the balancing plane have 15 screw hole. The experiment is designed by 900rpm and 1000rpm two rotation speed. After balanced by adding counterweight on the turntable outer ring, the vibration of the platform can decrease over 90%. While the rotary platform approximate balanced, add counterweight to design known unbalance vibration data for verifying. Known counterweight is added at the outer ring of the balancing plane , each of it is 60 degrees away from others, the accuracy of adding counterweight on the turntable is 78.6–94.8%. Known counterweight is added at the outer ring of the balancing plane , each of it is 90 degrees away from others, the accuracy of using the designed electro-magnetic actuation is 78.9–97%, and the vibration can decrease 49–86% by using the calculation result for balancing. Finally, verify the ability of electromagnetic actuation balancing system. According to the standard ISO 1940, with two different rotation speed, it is proved that the balancing level of the rotor system can fall under G 6.3. The design system can effectively satisfy the goal of balancing.
關鍵字(中) ★ 旋轉機械
★ 平衡校正
★ 影響係數法
★ 磁電式
★ 智能性致動
關鍵字(英) ★ Rotary machinery
★ Field balancing
★ Influence coefficient method
★ Electro-magnetic
★ Intelligent actuation
論文目次 摘要 i
Abstract iii
致謝 v
目錄 viii
圖目錄 xi
表目錄 xiv
符號說明 xv
第一章 緒論 1
1-1 研究背景動機與目的 1
1-2 文獻回顧 2
1-2-1 平衡校正演算方式 2
1-2-2 平衡校正技術種類 3
1-3 研究範疇與章節規則 6
第二章 理論基礎 7
2-1 頻譜分析 7
2-2 轉子質量不平衡振動特徵與種類 9
2-3 平衡校正-影響係數法 11
2-3-1 單面平衡配重 11
2-3-2 雙面平衡配重 12
2-3-3 疊代法 15
2-3-4 磁電式平衡校正法 16
2-4 平衡校正-最小平方法 18
2-5 動平衡等級規範 21
第三章 平衡校正數值模擬 23
3-1 模擬訊號設計 23
3-1-1 模擬訊號生成 25
3-1-2 平衡校正程式 27
3-2 轉動不平衡模擬驗證 28
3-3 磁電致動平衡校正模擬驗證 32
第四章 平衡校正機台與系統 37
4-1 實驗平台 37
4-1-1 旋轉平台設計 37
4-1-2 平台元件規格 40
4-2 量測系統 43
4-3 系統設計及功能模組 45
4-3-1 系統模組架構 45
4-3-2 使用者介面及功能 46
第五章 旋轉平台平衡校正驗證 52
5-1 量測程序 52
5-2 轉盤配重單面平衡校正實例 53
5-2-1 實驗設計 53
5-2-2 平衡結果與討論 55
5-3 磁電式單面平衡校正實例 59
5-3-1 實驗設計 59
5-3-2 平衡結果與討論 61
5-4 平衡校正能力評估 65
第六章 結論與未來展望 67
6-1 結論 67
6-2 未來展望 67
參考文獻 68

參考文獻 [1] L. Li, S. Cao, J. Li, R. Nie, and L. Hou, "Review of rotor balancing methods," Machines, vol. 9, no. 5, pp. 89-105, 2021.
[2] G. Ranjan and R. Tiwari, "Application of active magnetic bearings for in situ flexible rotor residual balancing using a novel generalized influence coefficient method," Inverse Problems in Science and Engineering, vol. 27, no. 7, pp. 943-968, 2019.
[3] X. Xu and P. P. Fan, "Rigid rotor dynamic balancing by two-plane correction with the influence coefficient method," in Applied Mechanics and Materials, vol. 365, pp. 211-215, 2013.
[4] Z. Jian et al., "Online unbalance compensation of a maglev rotor with two active magnetic bearings based on the LMS algorithm and the influence coefficient method," Mechanical Systems and Signal Processing, vol. 166, paper#108460, 2022.
[5] H. Phan and L. He, "Validation studies of linear oscillating compressor cascade and use of influence coefficient method," Journal of Turbomachinery, vol. 142, no. 5, paper#051005, 2020.
[6] G. Urbikain, D. Olvera, L. de Lacalle, and A. Elías-Zúñiga, "Stability and vibrational behaviour in turning processes with low rotational speeds," The International Journal of Advanced Manufacturing Technology, vol. 80, no. 5, pp. 871-885, 2015.
[7] G. Urbikain Pelayo, A. Alvarez, L. N. López de Lacalle Marcaide, M. Arsuaga Berrueta, M. A. Alonso, and F. Veiga Suárez, "A reliable turning process by the early use of a deep simulation model at several manufacturing stages," Machines, vol. 5, no. 2, pp. 1-15, 2017.
[8] W. Kellenberger, "Balancing flexible rotors on two generally flexible bearings," Brown Boveri Review, vol. 54, no. 9, pp. 603-617, 1967.
[9] W. Kellenberger, "Should a flexible rotor be balanced in N or (N+ 2) planes?," Journal of Engineering for Industry, vol. 94, no. 2, pp. 548-558, 1972.
[10] Y. Khulief, M. Mohiuddin, and M. El-Gebeily, "A new method for field-balancing of high-speed flexible rotors without trial weights," International Journal of Rotating Machinery, vol. 2014, paper#603241, 2014.
[11] S. Tresser, A. Dolev, and I. Bucher, "Dynamic balancing of super-critical rotating structures using slow-speed data via parametric excitation," Journal of Sound and Vibration, vol. 415, no. 17, pp. 59-77, 2018.
[12] A. A. Ibraheem, N. M. Ghazaly, and G. Abdel-Jaber, "Review of rotor balancing techniques," American Journal of Industrial Engineering, vol. 6, no. 1, pp. 19-25, 2019.
[13] J. J. Yu, "Relationship of influence coefficients between static-couple and multiplane methods on two-plane balancing," Journal of engineering for gas turbines and power, vol. 131, no. 1, paper#012508, 2009.
[14] T.-W. Lin, Y. Kang, C.-C. Wang, C.-W. Chang, and C.-P. Chiang, "An investigation in optimal locations by genetic algorithm for balancing flexible rotor-bearing systems," in Turbo Expo: Power for Land, Sea, and Air, paper#47276, pp. 899-906, 2005.
[15] S. Zhong, L. Li, H. Chen, and Z. Lu, "A novel balancing method for rotor using unsupervised deep learning," Shock and Vibration, vol. 2021, paper#1800164, 2021.
[16] V. N. Carvalho, B. F. R. Rende, A. D. G. Silva, A. Ap Cavalini, and V. Steffen, "Robust balancing approach for rotating machines based on fuzzy logic," Journal of Vibration and Acoustics, vol. 140, no. 5, 2018.
[17] H. Taplak, S. Erkaya, and İ. Uzmay, "Passive balancing of a rotating mechanical system using genetic algorithm," Scientia Iranica, vol. 19, no. 6, pp. 1502-1510, 2012.
[18] R. Horvath, G. T. Flowers, and J. Fausz, "Passive balancing of rotor systems using pendulum balancers," Journal of vibration and acoustics, vol. 130, no. 4, 2008.
[19] A. M. Haidar and J. L. Palacios, "A general model for passive balancing of supercritical shafts with experimental validation of friction and collision effects," Journal of Sound and Vibration, vol. 384, no. 8, pp. 273-293, 2016.
[20] Y. Ishida, "Recent development of the passive vibration control method," Mechanical Systems and Signal Processing, vol. 29, pp. 2-18, 2012.
[21] C.-H. Ou, C.-H. Hsu, G.-J. Fan, and W.-Y. Chen, "Rotary machine vibration monitoring and smart balance correction," Advances in Mechanical Engineering, vol. 12, no. 6, pp. 1-11, 2020.
[22] 邱文賜, 中華民國專利公報公告編號:M259159, 「轉動平衡裝置」, 2005年3月.
[23] P.-C. Tung, M.-T. Tsai, K.-Y. Chen, Y.-H. Fan, and F.-C. Chou, "Design of model-based unbalance compensator with fuzzy gain tuning mechanism for an active magnetic bearing system," Expert Systems with Applications, vol. 38, no. 10, pp. 12861-12868, 2011.
[24] J.-D. Moon, B.-S. Kim, and S.-H. Lee, "Development of the active balancing device for high-speed spindle system using influence coefficients," International Journal of Machine Tools and Manufacture, vol. 46, no. 9, pp. 978-987, 2006.
[25] N. P. Kamisetti and G. Narayanan, "Electro-Magnetic Bearings with Power Electronic Control for High-Speed Rotating Machines: Review, Analysis and Design Example," IEEE Transactions on Industry Applications, vol. 57, no. 5, pp. 4946-4957, 2021.
[26] J. Liu and Y. Ishida, "Vibration suppression of rotating machinery utilizing an automatic ball balancer and discontinuous spring characteristics," Journal of vibration and acoustics, vol. 131, no. 4, pp. 1004-1011, 2009.
[27] 蔡佳倫, "渦輪幫浦離線平衡校正技術研究," 機械工程學系, 國立中央大學, 碩士論文, 2006.
[28] 陳皓庭, "產線整合監測系統暨資訊串流功能開發研究," 機械工程學系, 國立中央大學, 碩士論文, 2020.
[29] J. W. Cooley and J. W. Tukey, "An algorithm for the machine calculation of complex Fourier series," Mathematics of computation, vol. 19, no. 90, pp. 297-301, 1965.
[30] H. Scharbele, S. Youssef, F. Pacheco, C. Penz, and S. Avila, "Rotor unbalance kind and severity identification by current signature analysis with adaptative update to multiclass machine learning algorithms," Studies in Engineering and Technology, vol. 8, no. 1, pp. 28-39, 2021.
[31] J. Vuojolainen, R. Jastrzebski, and O. Pyrhonen, "Balancing of a rotor with active magnetic bearing system: Comparison of one-and two-plane balancing procedures," in 2018 20th European Conference on Power Electronics and Applications (EPE′18 ECCE Europe): IEEE, pp. 1-7, 2018.
[32] C. Uzoh, "zPure analytical approach to rotational balancing," Journal of safety Engineering, vol. 1, no. 4, pp. 50-56, 2012.
[33] T. P. Goodman, "A Least-Squares Method for Computing Balance Corrections," Journal of Engineering for Industry, vol. 86, no. 3, pp. 273-277, 1964.
[34] ISO:Mechanical vibration-Balance quality requirements for rotors in a constant (rigid) state-Part 1: Specification and verification of balance tolerances, ISO 1940-1, 2003.
[35] 劉晏宏, "旋轉機械狀態監測-以傳動系統測試平台為例," 機械工程學系, 國立中央大學, 碩士論文, 2002.
指導教授 潘敏俊(Min-Chun Pan) 審核日期 2022-11-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明