博碩士論文 109326030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.16.70.101
姓名 葉芳宜(Fang-I Yeh)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 利用巨大芽孢桿菌轉化魚廢和蔗渣為Alcalase之綠色循環模組
(Valorization of fish waste and sugarcane bagasse for Alcalase production by Bacillus megaterium via a circular bioeconomy model)
相關論文
★ 利用枯草芽孢桿菌轉化魚內臟之亮胺酸為酮異己酸★ 以酵素法萃煉微藻污泥之長鏈均質聚磷酸鹽
★ 利用一鍋式高溫蛋白酶串聯反應將豆渣升級再造為生物永續製造之蛋白質原料
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) “責任消費與生產”是聯合國2030年前可持續發展目標 (Sustainable development goals, SDGs) 17個主要目標中之一。在臺灣,循環經濟也是5+2產業創新計畫的重點。魚內臟、蔗渣和豆渣是常見的有機固體廢棄物,通常被再利用為動物飼料及肥料,只能有限度提升價值。Alcalase是一種耐熱的鹼性蛋白酶,目前廣泛應用於食品加工、紡織和清潔劑等領域,是一種具有價值之酵素。為減少有機固體廢棄物對環境的傷害,及提升其再利用的價值。依據循環經濟的概念,本研究擬建立一個可利用有機固體廢棄物,來生產有價值酵素的綠色循環模組。利用分子選殖 (Molecular cloning),將分別帶有可產生綠螢光蛋白 (Green fluorescent protein, GFP) 的gfp和產生Alcalase (原稱subtilisin Carlsberg) 的subC的質體轉形至Bacillus megaterium YYBM1中 (分別簡稱為YYBM1- gfp和YYBM1- subC) 。利用GFP易於定量和定性之特性,優化異源蛋白表達的條件,並應用於YYBM1- subC表達Alcalase之上。在含0–1% (w/v) Xylose的Lysogeny broth中,YYBM1-gfp的生長曲線並未出現太大的差異,說明YYBM1-gfp不具有可降解Xylose的能力或影響細菌之生長。當Xylose的濃度越高,所誘導產生的GFP濃度越高。在同樣為1% Xylose的誘導下, BD-xylose誘導YYBM1-gfp所產生的GFP量高於商業Xylose兩倍。其結果也與誘導YYBM1-subC異源蛋白表達相同。在pH 9.0和60 ℃時,Alcalase水解魚內臟蛋白的Vmax最高,其約為0.2 protein mg/mL/min,以及酵素飽和濃度為 0.1 mg/mL。取得最佳酵素水解條件後,將經誘導的YYBM1-subC細胞加入魚內臟和豆渣溶液中,在pH 9.0和60 ℃的環境下加熱兩小時,細菌細胞破裂的同時,胞內酵素釋出,確實可將魚內臟和豆渣進行水解。使用魚廢培養基和BD-xylose產生Alcalase的綠色循環模組與商業版之生產成本相差約19倍,說明了此綠色循環模組具有經濟效益,且也符合SDGs中的第12項與5+2產業創新計畫中的循環經濟。
摘要(英) "Responsible consumption and production" is one of the United Nations′ Sustainable Development Goals (SDGs) in 2030. In Taiwan, Circular Economy is also a focus of the 5+2 Industries Initiatives. Fish viscera, bagasse, and okara are common organic solid wastes. They are often reused as animal feed and fertilizer with limited values. Alcalase is a heat-tolerant alkaline protease (< 65 ℃) widely used as food softener, textile, and detergent. To reduce the negative effects of organic solid waste on the environment and to further enhance its value, this thesis aims to establish a sustainable recycling system for producing Alcalase using fish viscera and bagasse as the substrates for microbial growth. We constructed two plasmids for heterologous protein expression in B. megaterium strain YYBM1 that harbor gfp encoding green fluorescent protein (GFP) and subC encoding Alcalase respectively (YYBM1-gfp and YYBM1-subC). Taking the advantage of the ease in real-time measurements of GFP, we optimized the conditions for heterologous protein expression in strain YYBM1. Later, we applied the optimized conditions to the express recombinant Alcalase in YYBM1-subC. The growth yield of YYBM1-gfp cultures cultivated in LB containing 0–1% (w/v) xylose are highly similar, indicating that YYBM1-gfp does not have the capability to degrade xylose. The yield of GFP is enhanced with the increase in xylose concentrations (from 0–1%). Moreover, the use of bagasse xylose (1%) for inducing the protein overexpression resulted in a two-fold GFP/Alcalase yield than using commercial xylose (1%) in strain YYBM1. The recombinant Alcalase revealed a Vmax of 30 U per milligram at 60 ℃ and pH 9.0 as well as a saturation centration of 0.1 mg Alcalase per mL for fish visceral protein hydrolysis. The induced YYBM1-subC cells were added to the fish viscera and okara, respectively, and the pH of the suspensions were adjusted to pH 9.0 and were incubated at 60°C for two hours so that the bacterial cells were autolyzed and the intracellular enzymes were released. In addition to fish viscera, the recombinant Alcalase also hydrolyzed okara into smaller polypeptides and amino acids. Therefore, the cost of using protein waste and BD-xylose to manufacture Alcalase based on the circular bioeconomy model established in this thesis is 20 times less than the commercial medium, buttressing the SDGs and 5+2 Industries Initiative.
關鍵字(中) ★ 巨大芽孢桿菌
★ 豆渣
★ 異源蛋白質表達
★ 魚內臟
★ 循環經濟
★ 綠螢光蛋白
★ 蔗渣
★ 鹼性蛋白酶
關鍵字(英) ★ Alcalase
★ Bacillus megaterium
★ Bagasse
★ Circular economy
★ Fish viscera
★ Green fluorescent protein
★ Heterologous protein expression
★ Okara
論文目次 摘要 i
Abstract i
謝誌 iii
目錄 iv
圖目錄 vii
表目錄 ix
名詞縮寫說明 x
第一章 前言 1
1.1. 研究動機 1
1.2. 研究目的 2
第二章 文獻回顧 4
2.1 相關環境永續策略 4
2.1.1 聯合國永續發展目標 4
2.1.2 5+2產業創新計畫 6
2.2 細菌 7
2.2.1 細菌細胞結構 7
2.2.2 內孢子 8
2.2.3 內毒素 9
2.2.4 巨大芽孢桿菌 (Bacillus megaterium ) 9
2.3 酵素 10
2.3.1 鹼性蛋白酶簡介 10
2.3.2 Alcalase 15
2.3.3 酵素動力學 15
2.4 操作組 17
2.5 綠色螢光蛋白 (Green fluorescent protein, GFP) 19
2.6 魚內臟蛋白水解 19
2.6.1 化學水解 20
2.6.2 酵素水解 20
2.7 蔗渣酸水解 21
2.8 豆渣 23
第三章 材料與方法 25
3.1 實驗架構 25
3.2 實驗材料 26
3.3 實驗設備 28
3.4 菌種保存 29
3.4.1 -80 ℃保存 29
3.4.2 平板培養基保存 29
3.5 菌種培養 29
3.6 基因操作 ( DNA manipulation) 29
3.6.1 限制酶切割 (Restriction digestion) 29
3.6.2 洋菜凝膠電泳 (Agarose gel electrophoresis) 30
3.6.3 基因體DNA萃取 (Genomic DNA extraction) 30
3.6.4 質體DNA萃取 (Plasmid DNA extraction) 31
3.6.5 膠體純化 (Gel extraction) 32
3.6.6 聚合酶連鎖反應 (Polymerase chain reaction, PCR) 32
3.7 分子選殖 (Molecular cloning) 33
3.7.1 接合作用 (Ligation) 33
3.7.2 轉形作用 (Transformation) 34
3.8 異源蛋白表達 (Heterologous protein expression) 35
3.9 異源蛋白的萃取和純化 (Heterologous protein expression extraction and purification) 36
3.9.1 異源蛋白萃取 36
3.9.2 異源蛋白純化 36
3.10 蛋白質之定性和定量 37
3.10.1 布拉德福蛋白質定量法 (Bradford protein assay) 37
3.10.2 十二烷基硫酸鈉聚丙烯醯胺凝膠電泳 (Sodium dodecyl sulfate polyacrylamide gel electrophoresis, SDS-PAGE) 37
3.11 魚廢培養基製作 38
3.12 最佳化Alcalase水解魚內臟蛋白的條件 38
3.12.1 不同pH下水解魚內臟試驗 38
3.12.2 酵素飽和濃度測定 38
3.12.3 胺基酸定量 39
3.13 YYBM1- subC細胞水解液水解蛋白質 39
3.13.1 水解BSA 39
3.13.2 水解魚內臟 40
3.13.3 水解豆渣 40
第四章 結果與討論 41
4.1 重組質體之轉形 41
4.2 異源蛋白表達和純化 45
4.3 優化誘導YYBM1- gfp異源表達之木糖濃度 47
4.4 商業Xylose和BD-xylose誘導YYBM1異源表達之比較 49
4.5 最佳化Alcalase水解魚內臟蛋白的條件 50
4.6 綠色循環模組之建立 53
4.6.1 水解魚內臟 54
4.6.2 水解豆渣 57
第五章 結論與建議 60
5.1 結論 60
5.2 建議 60
參考文獻 61
附錄A 69
附錄B 75


參考文獻 Aguilar, R, JA Ramırez, G Garrote, and M Vázquez, "Kinetic study of the acid hydrolysis of sugar cane bagasse", Journal of food engineering, Vol 55, 4, pp. 309-318, 2002.
Ajala, E. O., J. O. Ighalo, M. A. Ajala, A. G. Adeniyi, and A. M. Ayanshola, "Sugarcane bagasse: a biomass sufficiently applied for improving global energy, environment and economic sustainability", Bioresources and bioprocessing, Vol 8, 1, pp. 2021.
Amit Verma, Hukum Singh Pal, Rachna Singh, and Sanjeev Agarwal, "Potential of alkaline protease isolated from Thermoactinomyces sp. RM4 as an alternative to conventional chemicals in leather industry dehairing process.", Agriculture environment and biotechnology, Vol 4, 2, pp. 173-178, 2011.
Anton, Brian P, and Elisabeth A Raleigh, "Complete genome sequence of NEB 5-alpha, a derivative of Escherichia coli K-12 DH5α", Genome announcements, Vol 4, 6, pp. e01245-01216, 2016.
Baca D. Rebeca, M. T. Peña-Vera, and M. Díaz-Castañeda, "Production of fish protein hydrolysates with bacterial proteases; yield and nutritional value", Food science, Vol 56, 2, pp. 309-314, 1991.
Baweja, M., R. Tiwari, P. K. Singh, L. Nain, and P. Shukla, "An alkaline protease from Bacillus pumilus MP 27: functional analysis of its binding model toward its applications as detergent additive", Front microbiol, Vol 7, pp. 1195, 2016.
Ben Rebah, F., and N. Miled, "Fish processing wastes for microbial enzyme production: a review", 3 Biotech, Vol 3, 4, pp. 255-265, 2013.
Benítez R., Benítez R., Ibarz A., and Pagan J., "Protein hydrolysates: processes and applications", Acta bioquimica clinica latinoamericana, Vol 42, pp. 227-236, 2008.
Bhaskar, N, VK Modi, K Govindaraju, C Radha, and R Gowda Lalitha, "Utilization of meat industry by products: protein hydrolysate from sheep visceral mass", Bioresource technology, Vol 98, 2, pp. 388-394, 2007.
Brienzo, Michel, Ana Flavia Azevedo Carvalho, FC Figueiredo, and P Oliva Neto, "Sugarcane bagasse hemicellulose properties, extraction technologies and xylooligosaccharides production", Food waste: practices, management and challenges, Vol pp. 155-188, 2016.
Carvalho, Danila, "Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and sugarcane straw", KTH royal institute of technology, 2015.
Catrinck, Mariana N., Paula S. Barbosa, Helder R. O. Filho, Robson S. Monteiro, Márcio H. P. Barbosa, Rogério M. Ribas, and Reinaldo F. Teófilo, "One-step process to produce furfural from sugarcane bagasse over niobium-based solid acid catalysts in a water medium", Fuel processing technology, Vol 207, pp. 2020.
Chabeaud, A, Patrick Dutournié, Fabienne Guérard, L Vandanjon, and Patrick Bourseau, "Application of response surface methodology to optimise the antioxidant activity of a saithe (Pollachius virens) hydrolysate", Marine biotechnology, Vol 11, 4, pp. 445-455, 2009.
Chandel, Anuj K., Silvio S. da Silva, Walter Carvalho, and Om V. Singh, "Sugarcane bagasse and leaves: foreseeable biomass of biofuel and bio-products", Journal of chemical technology & biotechnology, Vol 87, 1, pp. 11-20, 2012.
Chandel, Anuj Kumar, Rajeev Kumar Kapoor, Ajay Singh, and Ramesh Chander Kuhad, "Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501", Bioresource technology, Vol 98, 10, pp. 1947-1950, 2007.
Cheng, Ke-Ke, Bai-Yan Cai, Jian-An Zhang, Hong-Zhi Ling, Yu-Jie Zhou, Jing-Ping Ge, and Jing-Ming Xu, "Sugarcane bagasse hemicellulose hydrolysate for ethanol production by acid recovery process", Biochemical engineering journal, Vol 38, 1, pp. 105-109, 2008.
Church, Frank C, Harold E Swaisgood, David H Porter, and George L Catignani, "Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins", Journal of dairy science, Vol 66, 6, pp. 1219-1227, 1983.
Clare, DA, and HE Swaisgood, "Bioactive milk peptides: a prospectus", Journal of dairy science, Vol 83, 6, pp. 1187-1195, 2000.
Claver, Irakoze Pierre, and Huiming Zhou, "Enzymatic hydrolysis of defatted wheat germ by proteases and the effect on the functional properties of resulting protein hydrolysates", Journal of food biochemistry, Vol 29, 1, pp. 13-26, 2005.
Ellaiah, P, B Srinivasulu, and K Adinarayana, "A review on microbial alkaline protease", Scientific and industrial research Vol 61, 9, pp. 690-704, 2002.
Flickinger MC, and Drew SW, "Encyclopedia of bioprocess technology:fermentation, biocatalysis and bioseparation", J. wiley and sons inc, Vol pp. 958-971, 1999.
Gómez, Leidy J, Nathalia A Gómez, José E Zapata, Gabriel López-García, Antonio Cilla, and Amparo Alegría, "Optimization of the red tilapia (Oreochromis spp.) viscera hydrolysis for obtaining iron-binding peptides and evaluation of in vitro iron bioavailability", Foods, Vol 9, 7, pp. 883, 2020.
Gao, M. T., M. Hirata, E. Toorisaka, and T. Hano, "Acid-hydrolysis of fish wastes for lactic acid fermentation", Bioresour technol, Vol 97, 18, pp. 2414-2420, 2006.
Gámez, Sara, Juan Jose González-Cabriales, José Alberto Ramírez, Gil Garrote, and Manuel Vázquez, "Study of the hydrolysis of sugar cane bagasse using phosphoric acid", Journal of food engineering, Vol 74, 1, pp. 78-88, 2006.
Gupta, R., Q. K. Beg, and P. Lorenz, "Bacterial alkaline proteases: molecular approaches and industrial applications", Appl microbiol biotechnol, Vol 59, 1, pp. 15-32, 2002.
José Antonio Vázquez, Andrea Fernández-Compás, María Blanco, Isabel Rodríguez-Amado, Helena Moreno, Javier Borderías, Ricardo I., and Pérez-Martín, "Development of bioprocesses for the integral valorisation of fish discards", Biochemical engineering journal, Vol 144, pp. 198-208, 2019.
Katayama, Miki, and Lester A Wilson, "Utilization of okara, a byproduct from soymilk production, through the development of soy‐based snack food", Journal of food science, Vol 73, 3, pp. S152-S157, 2008.
Khan, Sohail, Abdur Rehman, Haroon Shah, Rana Muhammad Aadil, Ahmad Ali, Qayyum Shehzad, Waqas Ashraf, Fang Yang, Aiman Karim, Adnan Khaliq, and Wenshui Xia, "Fish protein and its derivatives: the novel applications, bioactivities, and their functional significance in food products", Food reviews international, Vol pp. 1-28, 2020.
Khardenavis, A. A., A. Kapley, and H. J. Purohit, "Processing of poultry feathers by alkaline keratin hydrolyzing enzyme from Serratia sp. HPC 1383", Waste manag, Vol 29, 4, pp. 1409-1415, 2009.
Korneli, C., F. David, R. Biedendieck, D. Jahn, and C. Wittmann, "Getting the big beast to work-systems biotechnology of Bacillus megaterium for novel high-value proteins", Journal of biotechnology, Vol 163, 2, pp. 87-96, 2013.
Kristinsson, H. G., and B. A. Rasco, "Fish protein hydrolysates: production, biochemical, and functional properties", Crit rev food sci nutr, Vol 40, 1, pp. 43-81, 2000.
Kruger, Nicholas J, "The Bradford method for protein quantitation", The protein protocols handbook, Vol pp. 17-24, 2009.
Lai, Wing Ching Bianca, Xi Chen, Marco Kai Yuen Ho, Jiang Xia, and Sharon Shui Yee Leung, "Bacteriophage-derived endolysins to target gram-negative bacteria", International journal of pharmaceutics, Vol 589, pp. 119833, 2020.
Laopaiboon, P., A. Thani, V. Leelavatcharamas, and L. Laopaiboon, "Acid hydrolysis of sugarcane bagasse for lactic acid production", Bioresour technol, Vol 101, 3, pp. 1036-1043, 2010.
Lavarack, BP, GJ Griffin, and D Rodman, "The acid hydrolysis of sugarcane bagasse hemicellulose to produce xylose, arabinose, glucose and other products", Biomass and bioenergy, Vol 23, 5, pp. 367-380, 2002.
Li, B., Y. Zhang, H. Yang, and R Li, "Effect of drying methods on functional properties of bean curd dregs", Journal of henan institute of science and technology, Vol 36, 3, pp. 64–66, 2008.
Li, Bo, Meiying Qiao, and Fei Lu, "Composition, nutrition, and utilization of okara (soybean residue)", Food reviews international, Vol 28, 3, pp. 231-252, 2012.
Martínez-Alvarez, Oscar, Susana Chamorro, and Agustín Brenes, "Protein hydrolysates from animal processing by-products as a source of bioactive molecules with interest in animal feeding: a review", Food research international, Vol 73, pp. 204-212, 2015.
Mateos-Aparicio, Inmaculada, Araceli Redondo-Cuenca, María-José Villanueva-Suárez, María-Aurora Zapata-Revilla, and María-Dolores Tenorio-Sanz, "Pea pod, broad bean pod and okara, potential sources of functional compounds", LWT-food science and technology, Vol 43, 9, pp. 1467-1470, 2010.
Montilha, MS, MF Sbroggio, VRG Figueiredo, EI Ida, and LE Kurozawa, "Optimization of enzymatic protein hydrolysis conditions of okara with endopeptidase Alcalase", International food research journal, Vol 24, 3, pp. 1067, 2017.
Nehru, G., S. R. R. Tadi, A. M. Limaye, and S. Sivaprakasam, "Production and characterization of low molecular weight heparosan in Bacillus megaterium using Escherichia coli K5 glycosyltransferases", Int J biol macromol, Vol 160, pp. 69-76, 2020.
Nielsen, PM, D Petersen, and CJJOFS Dambmann, "Improved method for determining food protein degree of hydrolysis", Journal of food science, Vol 66, 5, pp. 642-646, 2001.
Ovissipour, Mahmoudreza, Abdolmohammad Abedian, Ali Motamedzadegan, Barbara Rasco, Reza Safari, and Hoda Shahiri, "The effect of enzymatic hydrolysis time and temperature on the properties of protein hydrolysates from Persian sturgeon (Acipenser persicus) viscera", Food chemistry, Vol 115, 1, pp. 238-242, 2009.
Ovissipour, Mahmoudreza, Abdolmohammad Abedian Kenari, Ali Motamedzadegan, and Rajab Mohammad Nazari, "Optimization of enzymatic hydrolysis of visceral waste proteins of yellowfin tuna (Thunnus albacares)", Food and bioprocess technology, Vol 5, 2, pp. 696-705, 2010.
Pasupuleti, Vijai K., and Steven Braun, State of the art manufacturing of protein hydrolysates, 2008
Pedro, Sónia, and Maria Leonor Nunes, Reducing salt levels in seafood products, 2019
Pereira, Dafne Garcia, Ariana Justus, Heloísa Gabriel Falcão, Thais de Souza Rocha, Elza Iouko Ida, and Louise Emy Kurozawa, "Enzymatic hydrolysis of okara protein concentrate by mixture of endo and exopeptidase", Journal of food processing and preservation, Vol 43, 10, pp. 2019.
Perry L. McCarty, and Bruce E. Rittmann, Environmental biotechnology: principles and applications, McGraw-Hill education, 2020
Peter Raven, George Johnson, Kenneth Mason, Jonathan Losos, and Susan Singer, Biology, McGraw Hill, 2016
R J DeLange, and E L Smith, "Subtilisin Carlsberg. I. Amino acid composition; isolation and composition of peptides from the tryptic hydrolysate", Journal of biological chemistry, Vol 243, 9, pp. 2134-2142, 1968.
Rawlings, Neil D, Matthew Waller, Alan J Barrett, and Alex Bateman, "MEROPS: the database of proteolytic enzymes, their substrates and inhibitors", Nucleic acids research, Vol 42, D1, pp. D503-D509, 2014.
Redondo-Cuenca, Araceli, Ma José Villanueva-Suárez, and Inmaculada Mateos-Aparicio, "Soybean seeds and its by-product okara as sources of dietary fibre. measurement by AOAC and englyst methods", Food chemistry, Vol 108, 3, pp. 1099-1105, 2008.
Rodrı́guez-Chong, Antonio, José Alberto Ramı́rez, Gil Garrote, and Manuel Vázquez, "Hydrolysis of sugar cane bagasse using nitric acid: a kinetic assessment", Journal of food engineering, Vol 61, 2, pp. 143-152, 2004.
Rutherfurd, S. M., and G. S. Gilani, "Amino acid analysis", Curr protoc protein sci, Vol Chapter 11, pp. Unit 11 19, 2009.
Rygus, Thomas, and Wolfgang Hillen, "Inducible high-level expression of heterologous genes in Bacillus megaterium using the regulatory elements of the xylose-utilization operon", Applied microbiology and biotechnology, Vol 35, 5, pp. 594-599, 1991.
Sabotic, J., and J. Kos, "Microbial and fungal protease inhibitors-current and potential applications", Appl microbiol biotechnol, Vol 93, 4, pp. 1351-1375, 2012.
Saha, B. C., "Hemicellulose bioconversion", J ind microbiol biotechnol, Vol 30, 5, pp. 279-291, 2003.
Shahid, Faiza, Afsheen Aman, Sidra Pervez, and Shah Ali Ul Qader, "Degradation of long chain polymer (dextran) using thermostable dextranase from hydrothermal spring isolate (Bacillus megaterium)", Geomicrobiology journal, Vol 36, 8, pp. 683-693, 2019.
Shahidi, Fereidoon, Vamadevan Varatharajan, Han Peng, and Ruchira Senadheera, "Utilization of marine by-products for the recovery of value-added products", Journal of food bioactives, Vol 6, pp. 2019.
Sharma, Mayuri, Yogesh Gat, Shalini Arya, Vikas Kumar, Anil Panghal, and Ashwani Kumar, "A review on microbial alkaline protease: an essential tool for various industrial approaches", Industrial biotechnology, Vol 15, 2, pp. 69-78, 2019.
Siddik, Muhammad AB, Janet Howieson, Ravi Fotedar, and Gavin J Partridge, "Enzymatic fish protein hydrolysates in finfish aquaculture: a review", Reviews in aquaculture, Vol 13, 1, pp. 406-430, 2021.
Stammen, S., B. K. Muller, C. Korneli, R. Biedendieck, M. Gamer, E. Franco-Lara, and D. Jahn, "High-yield intra- and extracellular protein production using Bacillus megaterium", Appl environ microbiol, Vol 76, 12, pp. 4037-4046, 2010.
Stammen, Simon, Franziska Schuller, Sylvia Dietrich, Martin Gamer, Rebekka Biedendieck, and Dieter Jahn, "Application of Escherichia coli phage K1E DNA-dependent RNA polymerase for in vitro RNA synthesis and in vivo protein production in Bacillus megaterium", Applied microbiology and biotechnology, Vol 88, 2, pp. 529-539, 2010.
Sun, JX, XF Sun, H Zhao, and RC Sun, "Isolation and characterization of cellulose from sugarcane bagasse", Polymer degradation and stability, Vol 84, 2, pp. 331-339, 2004.
Tacias-Pascacio, V. G., R. Morellon-Sterling, E. H. Siar, O. Tavano, A. Berenguer-Murcia, and R. Fernandez-Lafuente, "Use of Alcalase in the production of bioactive peptides: A review", Int J biol macromol, Vol 165, Pt B, pp. 2143-2196, 2020.
Taheri, A, SAA Anvar, H Ahari, and V Fogliano, "Comparison the functional properties of protein hydrolysates from poultry by-products and rainbow trout (Onchorhynchus mykiss) viscera", Iranian journal of fisheries sciences Vol pp. 2013.
Takalloo, Zeinab, Mohsen Nikkhah, Robabeh Nemati, Nezam Jalilian, and Reza H Sajedi, "Autolysis, plasmolysis and enzymatic hydrolysis of baker′s yeast (Saccharomyces cerevisiae): a comparative study", World journal of microbiology and biotechnology, Vol 36, 5, pp. 1-14, 2020.
Tavano, Olga Luisa, "Protein hydrolysis using proteases: an important tool for food biotechnology", Journal of molecular catalysis b: enzymatic, Vol 90, pp. 1-11, 2013.
Thakur, A., A. Sharma, K. C. Khaire, V. S. Moholkar, P. Pathak, N. K. Bhardwaj, and A. Goyal, "Two-step saccharification of the xylan portion of sugarcane waste by recombinant xylanolytic enzymes for enhanced xylose production", ACS omega, Vol 6, 17, pp. 11772-11782, 2021.
Turnbull, Peter CB, JM Kramer, and J Melling, "Bacillus", Medical microbiology, Vol pp. 1996.
United Nations: https://sdgs.un.org/.
United Nations: Sustainable development goals. https://www.un.org/en/sustainable-development-goals.
Van der Riet, WB, AW Wight, JJL Cilliers, and JM Datel, "Food chemical investigation of tofu and its byproduct okara", Food chemistry, Vol 34, 3, pp. 193-202, 1989.
Vary, P. S., R. Biedendieck, T. Fuerch, F. Meinhardt, M. Rohde, W. D. Deckwer, and D. Jahn, "Bacillus megaterium-from simple soil bacterium to industrial protein production host", Appl microbiol biotechnol, Vol 76, 5, pp. 957-967, 2007.
Vary, Patricia S, "Prime time for Bacillus megaterium", Microbiology, Vol 140, 5, pp. 1001-1013, 1994.
Villamil, O., H. Vaquiro, and J. F. Solanilla, "Fish viscera protein hydrolysates: production, potential applications and functional and bioactive properties", Food chemistry, Vol 224, pp. 160-171, 2017.
Vázquez, José Antonio, María Blanco, Javier Fraguas, Lorenzo Pastrana, and Ricardo Pérez-Martín, "Optimisation of the extraction and purification of chondroitin sulphate from head by-products of Prionace glauca by environmental friendly processes", Food chemistry, Vol 198, pp. 28-35, 2016.
Vázquez, José Antonio, Javier Fraguas, Ramon Novoa-Carballal, Rui L Reis, Ricardo I Pérez-Martín, and Jesus Valcarcel, "Optimal isolation and characterisation of chondroitin sulfate from rabbit fish (Chimaera monstrosa)", Carbohydrate polymers, Vol 210, pp. 302-313, 2019.
Vázquez, José Antonio, Isabel Rodríguez-Amado, Carmen G Sotelo, Noelia Sanz, Ricardo I Pérez-Martín, and Jesus Valcárcel, "Production, characterization, and bioactivity of fish protein hydrolysates from aquaculture turbot (Scophthalmus maximus) wastes", Biomolecules, Vol 10, 2, pp. 310, 2020.
Vong, Weng Chan, and Shao-Quan Liu, "Biovalorisation of okara (soybean residue) for food and nutrition", Trends in food science & technology, Vol 52, pp. 139-147, 2016.
Whitman, William B, David C Coleman, and William J Wiebe, "Prokaryotes: the unseen majority", Proceedings of the national academy of sciences, Vol 95, 12, pp. 6578-6583, 1998.
Yang, Y., R. Biedendieck, W. Wang, M. Gamer, M. Malten, D. Jahn, and W. D. Deckwer, "High yield recombinant penicillin G amidase production and export into the growth medium using Bacillus megaterium", Microbial cell factories, Vol 5, pp. 36, 2006.
Yang, Yang, Marco Malten, Rebekka Biedendieck, Wei Wang, Dieter Jahn, and Wolf-Dieter Deckwer, "Bacillus megaterium as a recombinant protein production host", Microbial cell factories, Vol 5, 1, pp. 1-2, 2006.
Yu, Cheng‐An, and Chun‐Yao Yang, "Effect of ultrasound on the extraction of bioactive aglycone isoflavones for the green valorization of black soybean residue (okara)", Journal of food processing and preservation, Vol 43, 7, pp. 2019.
台糖循環經濟: https://www.taisugar.com.tw/Circular/CP2.aspx?n=11221.
行政院新聞傳播處: 賴揆:積極推動循環經濟 創造經濟與環保雙贏. 2018, https://www.ey.gov.tw/Page/9277F759E41CCD91/14bd8667-0aaf-4dbb-a555-bf6cbf1e7900.
行政院農業委員會漁業署: 民國109年(2020)漁業統計年報. 2020, https://www.fa.gov.tw/view.php?theme=FS_AR&subtheme=&id=20.
張基隆, 胡祐甄, 黃姿菁, 鄭筱翎, and 謝寶萱 生物化學, 華杏出版機構, 2020
循環台灣基金會: https://circular-taiwan.org/linear_economy/.
顏振升, "利用枯草芽孢桿菌轉化魚內臟之亮胺酸為酮異己酸", 國立中央大學, 2022.

指導教授 王柏翔(Po-Hsiang Wang) 審核日期 2022-12-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明