博碩士論文 109323094 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:62 、訪客IP:44.222.175.73
姓名 陳麒九(Chi-Chiu Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 組織工程用擠出式積層製造技術之 轉角積料分析與控制
(Control and Analysis of Over-accumulation in Corners for Extrusion Additive Manufacturing Technology in Tissue Engineering Application)
相關論文
★ 雙光子光致聚合微製造系統之研發★ 雙光子光致聚合五軸微製造系統之雷射加工路徑生成研究
★ 椎弓根螺釘定位演算法及導引夾治具自動化設計流程開發★ 雙光子聚合微製造技術以能量均勻橢圓體為基之曝光時間最佳化研究
★ 雙光子光致聚合微製造以弦高誤差為基之切層演算法★ 雙光子光致聚合微製造技術以螺旋線雷射掃描路徑增強微結構強度研究
★ 雙光子聚合微製造技術之三維結構 製造品質改進研究★ 利用二維多重圖像建構三維三角網格模型的生成與品質改進
★ 組織工程用冷凍成型製造系統 之自動化製作流程開發★ 自動相機校正與二維影像輪廓萃取研究
★ 基於雙光子光致聚合技術之四軸微製造系統製作高深寬比結構之研究★ 冷凍成型積層製造之機台設計與組織工程支架製作參數調校研究
★ 基於二維影像輪廓重建三維模型技術之多視角相機群組空間座標系統整合★ 應用於大型物體三維模型重建之多重二維校正板相機校正流程開發
★ 組織工程用冷凍成型積層製造之固態水支撐結構生成研究★ 聚醚醚酮之積層製造系統開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-1-1以後開放)
摘要(中) 生物列印在這幾年在蓬勃發展,對於列印人體組織,像是皮膚、血管及支架等,已有不少的成果。但這些列印出來的成品,往往會因為積料問題,導致整體列印出來的形狀高度有些許誤差,甚至外圍的輪廓也因為積料,在接近邊緣處的孔洞會因為積料而被覆蓋,導致整體看起來是黏合在一起的,這可能會使得列印出來的生物支架尺寸不符合需求。目前大多使用的生物列印機台,主要都是龍門式的,所以進行轉角處的列印時,會經歷兩軸的加減速,而積料問題往往就是轉角處最為嚴重。
為了嘗試改善轉角積料問題,本研究提出了三種不同的列印策略,分別為加速策略、平滑化策略以及關料策略,並且使用殼聚醣搭配低溫列印機台,列印出不同角度的轉角以及不同間距的支架,並觀察這些支架的積料狀況。為了能夠更加數值化的分析轉角狀況,還對實驗所拍攝的影像進行處理,以面積及線徑的分析方法,比較各個策略列印結果的優劣。
從影像分析結果可以發現,能夠最多改善積料面積的策略為加速策略,不管是任何角度還是任何間距都能有效改善,不過會造成經過轉角後股線震盪;平滑化策略對於不同角度也都有一定程度的減少積料,不過相比加速列印,減少的幅度相對較少,還會一定程度造成轉角處的位置偏移;關料策略則是有嚴重的延遲現象,使得積料狀況幾乎沒有任何改善。
摘要(英) Bioprinting has been thriving in the past few years, and there have been many achievements
in printing human tissues, such as skin, blood vessels, and stents. However, these printed
products often have some errors in the overall shape and height due to the accumulation of material, and even the contours are covered by the holes near the edges due to the accumulation of material, resulting in the overall appearance of bonding together, which may make the printed scaffolds not meet the size requirements. Most of the bioprinting machines used today are mainly gantry type, so when printing in the corners, they will experience acceleration and deceleration of both axes, and the accumulation problem is often the most serious in the corners.

To improve the corner accumulation problem, three different printing strategies were proposed, namely acceleration strategy, smoothing strategy, and closing material strategy. Chitosan was used to print large-pitch and small-pitch scaffolds by low-temperature printing machine and observe the accumulation of these scaffolds. To analyze the corner conditions more numerically, the images of scaffolds were image processed and the advantages and disadvantages of
each strategy were compared by analyzing the area and linewidth.

From the results of the image analysis, we found that the acceleration strategy can improve the accumulation area most, which is effective at any angle and any pitch, but causes the strands to oscillate after the corner; The smoothing strategy also reduces the accumulation to a certain extent for different angles, but the reduction is relatively small compared to the acceleration strategy, and it also causes the position shift at the corner; The closing material strategy has serious delays, making little or no improvement in the accumulation of corners.
關鍵字(中) ★ 生物列印
★ 轉角積料
★ 路徑規劃
★ 影像處理
關鍵字(英) ★ Bioprinting
★ Corner accumulation
★ Path planning
★ Image processing
論文目次 摘要 ..................................................... i
Abstract ................................................ ii
致謝 ................................................... iii
目錄 .................................................... iv
圖目錄 .................................................. vi
表目錄 .................................................. ix
第一章 緒論 .............................................. 1
1-1 前言 ................................................. 1
1-2 文獻回顧 ............................................. 2
1-3 研究目的與動機 ....................................... 10
1-4 論文架構 ............................................ 11
第二章 研究與理論說明 .................................... 12
2-1 生物支架與生物列印簡介................................. 12
2-2 低溫沉積製造 ......................................... 16
2-3 生物列印機台簡介 ..................................... 17
2-4 路徑規劃策略 ......................................... 21
第三章 系統架構及研究方法 ................................. 24
3-1 自動化校正流程 ....................................... 24
3-2 馬達PID 調控 ........................................ 28
3-3 運動控制流程 ......................................... 33
3-4 列印策略 ............................................ 38
3-5 影像處理方法 ......................................... 44
3-6 實驗架構及流程 ....................................... 48
第四章 實驗結果與討論 .................................... 53
4-1 靜態及動態控制流程列印結果比較 ........................ 53
4-2 各種策略列印結果比較 ................................. 57
4-3 轉角影像分析 ......................................... 65
4-4 以最佳策略列印多層支架 ................................ 75
第五章 結論與未來展望 .................................... 76
5-1 結論 ................................................ 76
5-2 未來展望 ............................................ 77
參考文獻 ................................................ 78
參考文獻 [1] National Institute of Biomedical Imaging and Bioengineering 官方網站, 取自
https://www.nibib.nih.gov/science-education/science-topics/tissue-engineering-and-regenerative-
medicine
[2] Bakhshandeh, B., Zarrintaj, P., Oftadeh, M. O., Keramati, F., Fouladiha, H., Sohrabi-
Jahromi, S., & Ziraksaz, Z. (2017). Tissue engineering; strategies, tissues, and biomaterials.
Biotechnology and genetic engineering reviews, 33(2), 144-172.
[3] Zaszczyńska, A., Moczulska-Heljak, M., Gradys, A., & Sajkiewicz, P. (2021). Advances
in 3d printing for tissue engineering. Materials, 14(12), 3149.
[4] Yu, J., Park, S. A., Kim, W. D., Ha, T., Xin, Y. Z., Lee, J., & Lee, D. (2020). Current
advances in 3D bioprinting technology and its applications for tissue engineering. Polymers,
12(12), 2958.
[5] Wu, G. H., & Hsu, S. H. (2015). polymeric-based 3D printing for tissue engineering. Journal
of medical and biological engineering, 35(3), 285-292.
[6] Comminal, R., Serdeczny, M. P., Pedersen, D. B., & Spangenberg, J. (2019). Motion planning
and numerical simulation of material deposition at corners in extrusion additive manufacturing.
Additive Manufacturing, 29, 100753.
[7] Giberti, H., Sbaglia, L., & Urgo, M. (2017). A path planning algorithm for industrial processes
under velocity constraints with an application to additive manufacturing. Journal
of Manufacturing Systems, 43, 160-167.
[8] Ertay, D. S., Yuen, A., & Altintas, Y. (2018). Synchronized material deposition rate control
with path velocity on fused filament fabrication machines. Additive Manufacturing, 19,
205-213.
[9] Li, F., Chen, S., Wu, Z., & Yan, Z. (2018). Adaptive process control of wire and arc additive
manufacturing for fabricating complex-shaped components. The International Journal of Advanced Manufacturing Technology, 96(1), 871-879.
[10] Liu, Y., Fang, S., Han, Z., Liu, Y., Yu, Y., & Hu, Q. (2013). Pneumatic feeding system for
low-temperature deposition manufacturing based on system identification: This paper proposes
a model to improve the low-temperature deposition manufacturing process by adjusting
the feeding velocity through the time series control. Virtual and Physical Prototyping,
8(1), 3-9.
[11] 陳柏任,「組織工程應用之平面與旋轉兩用式三維生物列印機開發」,國立中央大學,
碩士論文,民國111 年。
[12] Li, B., Moriarty, T. F., Webster, T., & Xing, M. (2020). Racing for the surface: Antimicrobial
and Interface Tissue Engineering. New York, America: Springer, Cham.
[13] Chung, C., & Burdick, J. A. (2008). Engineering cartilage tissue. Advanced drug delivery
reviews, 60(2), 243-262.
[14] Mandrycky, C., Wang, Z., Kim, K., & Kim, D. H. (2016). 3D bioprinting for engineering
complex tissues. Biotechnology advances, 34(4), 422-434.
[15] Gao, G., Kim, B. S., Jang, J., & Cho, D. W. (2019). Recent strategies in extrusion-based
three-dimensional cell printing toward organ biofabrication. ACS Biomaterials Science &
Engineering, 5(3), 1150-1169.
[16] Xie, Z., Gao, M., Lobo, A. O., & Webster, T. J. (2020). 3D bioprinting in tissue engineering
for medical applications: the classic and the hybrid. Polymers, 12(8), 1717.
[17] Liu, C., Tong, J., Ma, J., Wang, D., Xu, F., Liu, Y., & Lao, C. (2019). Low-temperature
deposition manufacturing: a versatile material extrusion-based 3D printing technology for
fabricating hierarchically porous materials. Journal of Nanomaterials, 2019.
[18] Jiang, J., & Ma, Y. (2020). Path planning strategies to optimize accuracy, quality, build
time and material use in additive manufacturing: a review. Micromachines, 11(7), 633.
[19] Li, W., Liu, Y., Yamazaki, K., Fujisima, M., & Mori, M. (2008). The design of a NURBS pre-interpolator for five-axis machining. The International Journal of Advanced Manufacturing Technology, 36(9), 927-935.
[20] 洪承暉,「使用微型閥並具備自動平台校正功能之三維生物列印機開發」,國立中央
大學,碩士論文,民國107 年。
[21] 曾偉智,「多噴頭置換模組開發與混合式三維生物列印之研究」,國立中央大學,碩
士論文,民國108 年。
[22] LinMot 官方網站,取自https://shop.linmot.com/data/import/Dokumente/0185-0144-
E_1V0_AN_HT_ClosedLoopForceControlTuning.pdf
[23] Toshiyuki Kitamori. (1980). Design Theory of PID Control Systems. Instrumentation and
Control, 19(4), 382-391.
[24] Ziegler, J. G., & Nichols, N. B. (1942). Optimum settings for automatic controllers. Transactions
of the American Society of Mechanical Engineers, 64(11), 433-444.
[25] Cohen, G., & Coon, G. A. (1953). Theoretical consideration of retarded control. Transactions
of the American Society of Mechanical Engineers, 75(5), 827-834.
[26] Croisier, F., & Jérôme, C. (2013). Chitosan-based biomaterials for tissue engineering. European
polymer journal, 49(4), 780-792.
[27] 薛廷威,「以二維熱影像之溫度序列與深度學習預測生物支架線徑之研究」,國立中
央大學,碩士論文,民國110 年。
指導教授 廖昭仰(Chao-Yaug Liao) 審核日期 2023-1-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明