博碩士論文 108326015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:18.217.204.181
姓名 黃宗燈(Tsung-Teng Huang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 以反向電透析(RED)系統產電並去除氨氮
(Electricity generation and ammonia nitrogen removal with reverse electrodialysis (RED) system)
相關論文
★ Advanced Wastewater Analysis: AI-Integrated Flow Injection Analysis (FIA) System for COD Online Monitoring★ 電混凝法應用於金屬表面處理廢水對於處理效率的影響
★ 聚乳酸塑膠在環境水體中的老化及重金屬吸附之探討★ 化學回收廢棄聚乳酸(PLA) 及製備聚氨酯材料
★ 錳改質牡蠣殼固定土壤中鎘和銅之研究★ 職業噪音暴露對人體健康影響研究-以玻璃纖維工廠為例
★ 反向電透析(RED)產電效能評估 -以濃度、流速、膜對數及流道厚度為操作參數★ 煅燒條件對牡蠣殼抗菌能力之影響及抗菌物種- 單線態氧的檢測
★ 臺灣石門水庫及入庫河川表層水中微型塑膠時空分佈、組成與相關性調查★ Feasibility Study of Lanthanum-Modified Calcined Oyster Shells for Phosphorus Removal from Aquatic Environments
★ 氮改質煅燒牡蠣殼提升水中亞甲基藍染料 吸附和光催化降解之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-2-1以後開放)
摘要(中) 隨著人類工業不斷地發展,化石燃料 的燃燒 越發頻繁導致溫室氣體加劇排放, 這 是 氣候變化的 主 要原因。 根據聯合國氣候變化政府間專家委員會( IPCC)的 第 三次 評估報告指出,若再不 針對溫室氣體排放 採取防制措施,到了 2100年全球 平均地面氣溫將比 1990年增加 1.4 5.8 。為了減緩溫室效應,需要開發新的 清潔能源,利用反向電透析( RED)系統從河、海水中提取的鹽度梯度能的發展 潛力巨大, 理論上,每立方公尺的海水與河水之間可產生 0.8 kWh的電能 。影響 RED發電能力的因素有很多,離子交換膜、河海水濃度及流速、電解液濃度及種 類等等皆會對 RED發電能力有影響。 本研究旨 在 RED系統中對氯化鐵 -氯化亞鐵、鐵氰化鉀 -亞鐵氰化鉀及氯化 鈉,三種不同的電解液在不同操作條件下對 RED系統的發電能力的比較,並探 討在發電量維持在高水準之下能使用氧化還原系統氧化水中氨氮的能力 。 對氯化 鐵及鐵氰化鉀而言,電解液濃度越高產出的電流密度越高,其中鐵氰化鉀最高能 產出 0.17 W/m2電流密度。氯化鈉由於不是氧化還原對,因此不適合作為電解液。 在 RED中以氯化鈉去除氨氮的途徑是形成 活性氯,間接氧化氨氮,其效果 受到氯離子及氨氮濃度影響,氯離子濃度越高氨氮濃度越低去除率越高,在本研 究中氨氮去除率在 1 M氯化鈉及 50 ppm氨氮下去除率達到最高 95%。而鐵氰化 鉀處理氨氮效果不好,這可能是因為氧化機制是由電極直接氧化氨氮,因此在本 研究中的結果無法得出一個較令人信服的規律。所有氧化氨氮後檢測出的硝酸鹽 氮濃度皆低於 1 ppm,可知本研究中氨氮大部分是氧化成氮氣,沒有過氧化成硝 酸鹽氮。
摘要(英) With the continuous development of human industry, the burning of fossil fuels has become more frequent, resulting in increased emissions of greenhouse gases, which is the main cause of climate change. According to the third assessment report of the United Nations Intergovernmental Panel on Climate Change (IPCC), if no control measures are taken against greenhouse gas emissions, the global average surface temperature will increase by 1.4-5.8°C by 2100 compared to 1990. In order to slow down the greenhouse effect, it is necessary to develop new clean energy sources. The development potential of salinity gradient energy extracted from rivers and seawater by reverse electrodialysis (RED) system is huge. In theory, the difference between seawater and river water per cubic meter Generates 0.8 kWh of electrical energy. There are many factors that affect the power generation capacity of RED. The ion exchange membrane, the concentration and flow rate of sea water in the river, the concentration and type of electrolyte, etc. will all have an impact on the power generation capacity of RED.
This study aims to compare the power generation capacity of the RED system with three different electrolytes, ferric chloride-ferrous chloride, potassium ferricyanide-potassium ferrocyanide and sodium chloride, under different operating conditions. , and explore the ability to use the redox system to oxidize ammonia nitrogen in water when the power generation is maintained at a high level. For ferric chloride and potassium ferricyanide, the higher the electrolyte concentration, the higher the output current density, and the highest output current density of potassium ferricyanide is 0.17 W/m2. Sodium chloride is not suitable as an electrolyte because it is not a redox couple.
The way to remove ammonia nitrogen with sodium chloride in RED is to form active chlorine and indirectly oxidize ammonia nitrogen. The effect is affected by the concentration of chloride ions and ammonia nitrogen. The higher the concentration of chloride ions, the lower the concentration of ammonia nitrogen, the higher the removal rate. The removal rate reaches a maximum of 95% at 1 M sodium chloride and 50 ppm ammonia nitrogen. Potassium ferricyanide is not effective in treating ammonia nitrogen, which may be because the oxidation mechanism is direct oxidation of ammonia nitrogen by the electrode, so the results in this study cannot draw a more convincing rule. The concentration of nitrate nitrogen detected after the oxidation of ammonia nitrogen was all lower than 1 ppm. It can be seen that most of the ammonia nitrogen in this study was oxidized to nitrogen gas, and there was no peroxidation to nitrate nitrogen.
關鍵字(中) ★ 反向電透析
★ 鹽差能發電
★ 氨氮去除
關鍵字(英) ★ reverse electrodialysis
★ salt difference energy generation
★ ammonia nitrogen removal
論文目次 第一章 前言 1
1-1 研究緣起 1
1-2 研究目的 3
第二章 文獻回顧 5
2-1 鹽差能 5
2-1-1 鹽差能介紹 5
2-1-2 鹽差能與其他能源比較 7
2-2 反向電透析 8
2-2-1 反向電透析原理 8
2-2-2 反向電透析功率計算 10
2-2-3 反向電透析之影響因素 11
2-2-4 反向電透析之應用研究 22
2-3 氨氮 25
2-3-1 氮循環 25
2-3-2 氨氮的危害 27
2-3-3 氨氮相關法規 28
2-4 電化學去除氨氮 30
2-4-1 電化學直接氧化法 30
2-4-2 電化學間接氧化法 30
第三章 研究方法 33
3-1 研究流程與步驟 33
3-2 實驗材料與設備 35
3-2-1 實驗藥品 35
3-2-2 實驗設備 38
3-2-3 實驗裝置 40
3-3 實驗方法 43
3-3-1 RED發電檢測 43
3-3-2 氨氮檢測 45
3-3-3 硝酸鹽氮檢測 46
第四章 結果與討論 47
4-1 RED產電分析 47
4-1-1 流速 vs. 電流密度 47
4-1-2 鐵氰化鉀/氯化鐵/氯化鈉電解液 vs. 電流密度 49
4-1-3 鐵氰化鉀/氯化鐵/氯化鈉電解液加入氨氮 vs. 電流密度 53
4-2 RED去除氨氮分析 56
4-2-1 鐵氰化鉀溶液去除氨氮 56
4-2-2 氯化鈉溶液去除氨氮 59
第五章 結論與建議 63
5-1 結論 63
5-2 建議 64
參考文獻 65
參考文獻 1. Veerman, J., Reverse electrodialysis: design and optimization by modeling and experimentation. Rijksuniversiteit Groningen: Groningen, The Netherlands, 2010.
2. Pawlowski, S., J. Crespo, and S. Velizarov, Sustainable power generation from salinity gradient energy by reverse electrodialysis, in Electrokinetics Across Disciplines and Continents. 2016, Springer. p. 57-80.
3. Yang, E., et al., Critical review of bioelectrochemical systems integrated with membrane-based technologies for desalination, energy self-sufficiency, and high-efficiency water and wastewater treatment. 2019. 452: p. 40-67.
4. McCarty, P.L., J. Bae, and J. Kim, Domestic wastewater treatment as a net energy producer–can this be achieved? 2011, ACS Publications.
5. Hong, J.G., et al., Modeling of power generation from the mixing of simulated saline and freshwater with a reverse electrodialysis system: The effect of monovalent and multivalent ions. 2013. 110: p. 244-251.
6. Mei, Y. and C.Y.J.D. Tang, Recent developments and future perspectives of reverse electrodialysis technology: A review. 2018. 425: p. 156-174.
7. Guler, E., K.J.J.o.M.S. Nijmeijer, and Research, Reverse electrodialysis for salinity gradient power generation: challenges and future perspectives. 2018. 4(3): p. 108-110.
8. Vermaas, D.A., et al., High efficiency in energy generation from salinity gradients with reverse electrodialysis. 2013. 1(10): p. 1295-1302.
9. Loeb, S., One hundred and thirty benign and renewable megawatts from Great Salt Lake? The possibilities of hydroelectric power by pressure-retarded osmosis. Desalination, 2001. 141(1): p. 85-91.
10. Zoungrana, A. and M. Çakmakci, From non‐renewable energy to renewable by harvesting salinity gradient power by reverse electrodialysis: A review. International Journal of Energy Research, 2021. 45(3): p. 3495-3522.
11. Mora, D.A. and A. de Rijck, Blue energy: salinity gradient power in practice. Global Sustainable Development Report; United Nations: New York, NY, USA, 2015.
12. Evans, A., V. Strezov, and T.J. Evans, Assessment of sustainability indicators for renewable energy technologies. Renewable and sustainable energy reviews, 2009. 13(5): p. 1082-1088.
13. Yip, N.Y., et al., Salinity gradients for sustainable energy: primer, progress, and prospects. Environmental science & technology, 2016. 50(22): p. 12072-12094.
14. Post, J.W., et al., Salinity-gradient power: Evaluation of pressure-retarded osmosis and reverse electrodialysis. 2007. 288(1-2): p. 218-230.
15. Długołȩcki, P., et al., Practical potential of reverse electrodialysis as process for sustainable energy generation. Environmental science & technology, 2009. 43(17): p. 6888-6894.
16. 陈霞, et al., 反向电渗析在新能源及环境保护应用中的研究进展. 2018. 69(1): p. 188-202.
17. Geise, G.M., et al., Salt concentration differences alter membrane resistance in reverse electrodialysis stacks. Environmental Science & Technology Letters, 2014. 1(1): p. 36-39.
18. Długołęcki, P., et al., Current status of ion exchange membranes for power generation from salinity gradients. Journal of Membrane Science, 2008. 319(1-2): p. 214-222.
19. Hong, J.G., et al., Potential ion exchange membranes and system performance in reverse electrodialysis for power generation: A review. Journal of Membrane Science, 2015. 486: p. 71-88.
20. Strathmann, H., Ion-exchange membrane separation processes. 2004: Elsevier.
21. Güler, E., et al., Performance-determining membrane properties in reverse electrodialysis. Journal of Membrane Science, 2013. 446: p. 266-276.
22. Galama, A., et al., Membrane resistance: The effect of salinity gradients over a cation exchange membrane. Journal of membrane science, 2014. 467: p. 279-291.
23. Suda, F., T. Matsuo, and D. Ushioda, Transient changes in the power output from the concentration difference cell (dialytic battery) between seawater and river water. Energy, 2007. 32(3): p. 165-173.
24. Veerman, J., et al., Reverse electrodialysis: Comparison of six commercial membrane pairs on the thermodynamic efficiency and power density. Journal of Membrane Science, 2009. 343(1): p. 7-15.
25. Hong, J.G. and Y. Chen, Nanocomposite reverse electrodialysis (RED) ion-exchange membranes for salinity gradient power generation. Journal of Membrane Science, 2014. 460: p. 139-147.
26. Fontananova, E., et al., Effect of solution concentration and composition on the electrochemical properties of ion exchange membranes for energy conversion. Journal of Power Sources, 2017. 340: p. 282-293.
27. Vermaas, D.A., et al., Influence of multivalent ions on renewable energy generation in reverse electrodialysis. Energy & Environmental Science, 2014. 7(4): p. 1434-1445.
28. Veerman, J., et al., Reverse electrodialysis: Performance of a stack with 50 cells on the mixing of sea and river water. Journal of Membrane Science, 2009. 327(1): p. 136-144.
29. Vermaas, D.A., M. Saakes, and K. Nijmeijer, Doubled Power Density from Salinity Gradients at Reduced Intermembrane Distance. Environmental Science & Technology, 2011. 45(16): p. 7089-7095.
30. Nagarale, R.K., G.S. Gohil, and V.K. Shahi, Recent developments on ion-exchange membranes and electro-membrane processes. Advances in Colloid and Interface Science, 2006. 119(2): p. 97-130.
31. Chang, H.-K., E. Choi, and J. Park, Paper-based energy harvesting from salinity gradients. Lab on a Chip, 2016. 16(4): p. 700-708.
32. Zhu, X., W. He, and B.E. Logan, Reducing pumping energy by using different flow rates of high and low concentration solutions in reverse electrodialysis cells. Journal of Membrane Science, 2015. 486: p. 215-221.
33. Vermaas, D.A., M. Saakes, and K. Nijmeijer, Enhanced mixing in the diffusive boundary layer for energy generation in reverse electrodialysis. Journal of Membrane Science, 2014. 453: p. 312-319.
34. Kim, H.-K., et al., High power density of reverse electrodialysis with pore-filling ion exchange membranes and a high-open-area spacer. Journal of Materials Chemistry A, 2015. 3(31): p. 16302-16306.
35. Gi Hong, J. and Y. Chen, Evaluation of electrochemical properties and reverse electrodialysis performance for porous cation exchange membranes with sulfate-functionalized iron oxide. Journal of Membrane Science, 2015. 473: p. 210-217.
36. Gi Hong, J., S. Glabman, and Y. Chen, Effect of inorganic filler size on electrochemical performance of nanocomposite cation exchange membranes for salinity gradient power generation. Journal of Membrane Science, 2015. 482: p. 33-41.
37. Zhang, H., et al., A novel hybrid poly (vinyl alcohol)(PVA)/poly (2, 6-dimethyl-1, 4-phenylene oxide)(PPO) membranes for reverse electrodialysis power system. Electrochimica Acta, 2017. 239: p. 65-73.
38. Cho, D.H., et al., Effect of cationic groups in poly(arylene ether sulfone) membranes on reverse electrodialysis performance. Chemical Communications, 2017. 53(15): p. 2323-2326.
39. Avci, A.H., et al., Effect of Mg2+ ions on energy generation by Reverse Electrodialysis. Journal of Membrane Science, 2016. 520: p. 499-506.
40. Post, J.W., H.V. Hamelers, and C.J. Buisman, Influence of multivalent ions on power production from mixing salt and fresh water with a reverse electrodialysis system. Journal of Membrane Science, 2009. 330(1-2): p. 65-72.
41. Vaselbehagh, M., et al., Biofouling phenomena on anion exchange membranes under the reverse electrodialysis process. Journal of Membrane Science, 2017. 530: p. 232-239.
42. Burheim, O.S., et al., Improved electrode systems for reverse electro-dialysis and electro-dialysis. Desalination, 2012. 285: p. 147-152.
43. Veerman, J., et al., Reverse electrodialysis: evaluation of suitable electrode systems. Journal of Applied Electrochemistry, 2010. 40(8): p. 1461-1474.
44. Hatzell, M.C., et al., Comparison of hydrogen production and electrical power generation for energy capture in closed-loop ammonium bicarbonate reverse electrodialysis systems. Physical Chemistry Chemical Physics, 2014. 16(4): p. 1632-1638.
45. Hatzell, M.C., X. Zhu, and B.E. Logan, Simultaneous hydrogen generation and waste acid neutralization in a reverse electrodialysis system. ACS Sustainable Chemistry & Engineering, 2014. 2(9): p. 2211-2216.
46. Li, W., et al., A novel hybrid process of reverse electrodialysis and reverse osmosis for low energy seawater desalination and brine management. Applied Energy, 2013. 104: p. 592-602.
47. Logan, B.E. and M. Elimelech, Membrane-based processes for sustainable power generation using water. Nature, 2012. 488(7411): p. 313-319.
48. Aziz, H.A., et al., Removal of ammoniacal nitrogen (N-NH3) from municipal solid waste leachate by using activated carbon and limestone. Waste Management & Research, 2004. 22(5): p. 371-375.
49. Manios, T., E.I. Stentiford, and P.A. Millner, THE REMOVAL OF NH3-N FROM PRIMARY TREATED WASTEWATER IN SUBSURFACE REED BEDS USING DIFFERENT SUBSTRATES. Journal of Environmental Science and Health, Part A, 2002. 37(3): p. 297-308.
50. Randall, D.J. and T.K.N. Tsui, Ammonia toxicity in fish. Marine Pollution Bulletin, 2002. 45(1): p. 17-23.
51. Eddy, F.B., Ammonia in estuaries and effects on fish. Journal of Fish Biology, 2005. 67(6): p. 1495-1513.
52. Postgate, J., Nitrogen fixation. 1998: Cambridge University Press.
53. Sumino, T., et al., Nitrogen removal from wastewater using simultaneous nitrate reduction and anaerobic ammonium oxidation in single reactor. 2006. 102(4): p. 346-351.
54. Kim, J.-H., Y.-B. Yu, and J.-H. Choi, Toxic effects on bioaccumulation, hematological parameters, oxidative stress, immune responses and neurotoxicity in fish exposed to microplastics: A review. Journal of Hazardous Materials, 2021. 413: p. 125423.
55. Benli, A.Ç.K., G. Köksal, and A. Özkul, Sublethal ammonia exposure of Nile tilapia (Oreochromis niloticus L.): Effects on gill, liver and kidney histology. Chemosphere, 2008. 72(9): p. 1355-1358.
56. Cong, M., et al., Effects of ammonia nitrogen on gill mitochondria in clam Ruditapes philippinarum. Environmental Toxicology and Pharmacology, 2019. 65: p. 46-52.
57. Qi, X.-Z., et al., Ammonia exposure alters the expression of immune-related and antioxidant enzymes-related genes and the gut microbial community of crucian carp (Carassius auratus). Fish & Shellfish Immunology, 2017. 70: p. 485-492.
58. Wright, R.O., W.J. Lewander, and A.D. Woolf, Methemoglobinemia: Etiology, Pharmacology, and Clinical Management. Annals of Emergency Medicine, 1999. 34(5): p. 646-656.
59. Renou, S., et al., Landfill leachate treatment: Review and opportunity. Journal of hazardous materials, 2008. 150(3): p. 468-493.
60. Chiang, L.-C., J.-E. Chang, and T.-C. Wen, Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate. Water Research, 1995. 29(2): p. 671-678.
61. Marinčić, L. and F.B. Leitz, Electro-oxidation of ammonia in waste water. Journal of Applied Electrochemistry, 1978. 8(4): p. 333-345.
62. Deng, Y. and J.D. Englehardt, Electrochemical oxidation for landfill leachate treatment. Waste management, 2007. 27(3): p. 380-388.
63. Martínez-Huitle, C.A. and L.S. Andrade, Electrocatalysis in wastewater treatment: recent mechanism advances. Quimica Nova, 2011. 34: p. 850-858.
64. Mendia, L., Electrochemical processes for wastewater treatment. Water Science and Technology, 1982. 14(1-2): p. 331-344.
65. Sudoh, M., et al., OXIDATIVE DEGRADATION OF AQUEOUS PHENOL EFFLUENT WITH ELECTROGENERATED FENTON′′S REAGENT. Journal of chemical engineering of japan, 1986. 19(6): p. 513-518.
66. Zhou, Y., et al., Electrochemical oxidation of ammonia accompanied with electricity generation based on reverse electrodialysis. 2018. 269: p. 128-135.
67. Weiner, A.M. and R.K. McGovern, A new reverse electrodialysis design strategy which significantly reduces the levelized cost of electricity. Journal of Membrane Science, 2015. 493: p. 605-614.
68. Scialdone, O., et al., Investigation of electrode material – Redox couple systems for reverse electrodialysis processes. Part I: Iron redox couples. Journal of Electroanalytical Chemistry, 2012. 681: p. 66-75.
69. Scialdone, O., et al., Investigation of electrode material–redox couple systems for reverse electrodialysis processes. Part II: Experiments in a stack with 10–50 cell pairs. 2013. 704: p. 1-9.
70. Bunce, N.J. and D. Bejan, Mechanism of electrochemical oxidation of ammonia. Electrochimica Acta, 2011. 56(24): p. 8085-8093.
71. Li, L. and Y. Liu, Ammonia removal in electrochemical oxidation: Mechanism and pseudo-kinetics. Journal of Hazardous Materials, 2009. 161(2): p. 1010-1016.
指導教授 林伯勳(Po-Hsun Lin) 審核日期 2023-2-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明