博碩士論文 109323607 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:18.190.217.134
姓名 武德忠(Vu Duy Khuong)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 兼具考量珩輪修整及珩磨製程之閉迴路內嚙合珩齒齒面拓樸修整
(Closed-loop topology modification of gear tooth flanks considering both dressing and honing processes for internal-meshing gear honing)
相關論文
★ 應用調諧顆粒阻尼器於迴轉式壓縮機振動抑制之研究★ 應用離散元素法與多體動力學於齒輪傳動系統動力分析模型之建立
★ 不同氣體負載下雙螺桿壓縮機動力響應及振動頻譜特徵之預測★ 新型魯氏真空泵轉子齒形之參數化設計及性能評估
★ 以CNC內珩齒機進行螺旋齒輪齒面拓樸修整之研究★ 雙螺桿壓縮機變導程轉子齒間法向間隙之數值計算方法及其三維幾何模型驗證
★ 不同工作條件下冷媒雙螺桿壓縮機之轉子受力分析及動載響應預測★ 應用多體動力學及離散元素法於具阻尼顆粒齒輪及軸承系統抑振之研究
★ 具齒廓修形內嚙合非圓形齒輪創成之方法建立與其傳動誤差分析★ 雙螺桿壓縮機於CFD仿真模擬之三維幾何簡化方法建立
★ 航空發動機齒輪箱傳動系統之強度分析與改善★ 電動車差速齒輪傳動系統之動載分析與性能評估
★ 指狀銑刀安裝偏差對真空泵螺桿轉子加工精度影響之研究★ 以CNC內珩齒機加工具鼓形之錐狀齒輪之研究
★ 應用阻尼顆粒於旋轉機械之振動抑制及動平衡設計★ 考量氣體負載下迴轉式壓縮機動態負載分析模型之建立
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在珩齒過程中,珩輪的運動精度和幾何形狀對齒輪加工精度有很大的影響,其中珩輪修整是保證珩輪輪廓正確性的關鍵工序,雖然珩齒加工已被應用於齒輪精加工一段時間,然而有關珩輪修整相關的研究較少。在本研究中,提出了一種同時考慮珩輪修整和齒面珩磨的珩齒閉迴路齒面拓樸修正方法,分別建立了數控內嚙合珩齒機珩輪修整和珩齒的數學模型,修整輪用於重磨珩輪輪廓,並應用於精加工工件齒輪,模型中加入珩輪修整軸和珩齒軸的附加運動方程式,依據所需的齒形修整,採用敏感度矩陣結合算法來確定附加運動,最後透過數值範例進行齒面雙鼓型修整,驗證所提方法的有效性和實用性.
摘要(英) Gear machining accuracy is significantly affected by the precise motion and geometry of honing wheels in the gear honing process, wherein the dressing process is a key process to guarantee the correct profile of honing wheels. Although the dressing constitutes a key process which has long been used to finish work gears, it has rarely been investigated in the literature. In this study, a closed-loop topology modification method for gear honing considering both dressing and honing processes is proposed. A dressing gear is used to re-shape the honing wheel profile, which is then applied to finish the work gear. Mathematical models of the dressing and the honing are, respectively, established for a CNC internal-meshing gear honing machine. Additional motion functions of dressing and honing axes are also applied in the model. The sensitivity matrix method combined with the Levenberg-Marquardt algorithm are employed to determine the additional motions according to the desired tooth modification. The effectiveness and practicability of the proposed method are verified by carrying out double-crowning as the gear tooth modification in numerical examples.
關鍵字(中) ★ 珩齒
★ 修整輪
★ 珩輪
★ 拓撲修整
★ 敏感度矩陣
★ 雙鼓型修整
★ Levenberg-Marquardt算法
關鍵字(英) ★ Gear honing
★ dressing gear
★ honing wheel
★ topology modification
★ sensitivity matrix
★ double-crowning
★ Levenberg-Marquardt algorithm
論文目次 摘要 i
Abstract ii
Acknowledgments iii
Table of Contents iv
List of figures vi
List of tables viii
Nomenclature x
Chapter 1 Introduction 1
1.1 Research background 1
1.2 Literature review 4
1.3 Research objectives 6
1.4 Thesis overview 7
Chapter 2 Mathematical modelling for both dressing and honing processes on the CNC internal-meshing gear honing 8
2.1 Mathematical modelling for the dressing process 8
2.1.1 Generation of dressing gear 8
2.1.2 Dressing process of honing wheel 11
2.2 Mathematical modelling for the honing process 16
Chapter 3 Closed-loop topology modification of gear tooth flanks considering both dressing and honing processes 20
3.1 Numerical methods for determining machine-axis movement settings 20
3.2 Closed-loop topology modification 25
Chapter 4 Numerical examples 28
4.1 Verification of the closed-loop topology modification on gear tooth flanks with controlling both dressing and honing processes 28
4.2 Flexibility of the closed-loop topology modification on gear tooth flanks considering both dressing and honing processes 36
4.3 Application of the dressing process for achieving the double-crowned surface on gear tooth flanks with distinct pressure angles 40
4.4 Application of controlling both processes dressing and honing for the machining of the gear after heat treatment 46
Chapter 5 Conclusions and future works 50
5.1 Conclusions 50
5.2 Future works 51
Appendix 52
References 53
Author profile 57
參考文獻 [1] Fässler, HMX-400 the new generation of gear-honing machines, Company catalogue, https://www.ceeind.com/public/data/companyCatalogue1227792383.pdf.
[2] Z. Wang, L. Chen, and H.A. Zhao, Review of gear surface finish improvement techniques, J. Manuf. Sci. Eng. 141(2) (2019) 021011.
[3] J. Kim, J. Lee, and Y. Kim, The evolution of internal gear honing technology, J. Adv. Manuf. Technol. 92(9-12) (2017) 2972-2981.
[4] T. Nguyen, K. Nguyen, and J. Kim, Precision manufacturing of gears for medical devices, Int. J. Precis. Eng. Manuf. 16(3) (2015) 547-552.
[5] Y. Dai, L. Li, and J. Chen, Double-crowned surface gears: Design, analysis, and manufacturing, J. Manuf. Sci. Eng. 134(2) (2012) 021007.
[6] Y. Zhang, L. Li, and J. Chen, The development of internal gear honing technology, J. Manuf. Sci. Eng. 138(3) (2016) 031012.
[7] Y. Gao, J. Han, S. Ding, L. Liu, and F. Lv, Study on cutting processing characteristics and precision of CNC internal power honing gear, MMEBC 2016. (2016) 44-50.
[8] C. Pereira, Gear honing: A review of state-of-the-art and future directions, J. Manuf. Process. 41 (2019) 300-314.
[9] D.T. Mehta, and M.G. Rathi, A review on internal gear honing, Int. J. Eng. Res. Technol. 2(5) (2013) 973-983.
[10] S.P.D. Santos, L.C. Brandao, L.H. Gallicchio, and Z.D.C. Silveira, Finishing process analysis between honing and hard hobbing in pinion gears applied to a steering system, Energy Procedia. 14 (2012) 2-8.
[11] R. Lupas and L.D. Beju, Apects of the internal gear honing process, Sciendo. 70 (2018) 28-35.
[12] J. Kim, Surface hardness of gear teeth after honing process, Int. J. Precis. Eng. Manuf. 18(3) (2017) 367-371.
[13] Y. Zhang, Gear-honing process optimization based on surface roughness and wear resistance, J. Adv. Manuf. Technol. 95(5-8) (2018) 1835-1843.
[14] W. Wunderlin, Fässler gear honing-an established hard gear finishing process, SAE Transactions. 96(3) (1987) 746-757.
[15] H. Jung, A study on the machining efficiency of gear honing process, J. Mech. Sci. Technol. 30(5) (2016) 1847-1853.
[16] J. Lee, A study on the production time and cost analysis of gear honing process, J. Mech. Sci. Technol. 29(8) (2015) 3331-3336.
[17] J. Kim, Environmental analysis of gear manufacturing processes, J. Clean. Prod. 136 (2016) 1066-1075.
[18] Y. Shen, The application of gear-honing technology in the manufacturing of plastic gears, J. Mater. Process. Technol. 259 (2018) 269-275.
[19] Y. Liu, The application of gear-honing technology in the manufacturing of small gears, Int. J. Precis. Eng. Manuf. 20(6) (2019) 873-879.
[20] F.L. Litvin, and A. Fuentes, Gear geometry and applied theory, 2nd ed., Cambridge University Press, Cambridge, UK, 2004.
[21] Y. Dai, L. Li, and J. Chen, Double-crowned surface gears: Design, analysis, and manufacturing, J. Manuf. Sci. Eng. 134(2) (2012) 021007.
[22] Y.R. Wu, and V.T. Tran, Transmission and load analysis for a crowned helical gear pair with twist-free tooth flanks generated by an external gear honing machine, Mech. Mach. Theory. 98 (2016) 36-47.
[23] V.T. Tran, R.H. Hsu, and C.B. Tsay, Tooth contact analysis for a double-crowned involute helical gear with twist-free tooth flanks generated by dual-lead hob cutters, J. Mech. Des. 137(5) (2015) 052601(1-11).
[24] V.T Tran, Generation of a double-crowned involute helical gear with twist-free tooth flanks by a CNC hobbing machine with three synchronous axes, Vietnam J. Mech. 39(2) (2017) 97-108.
[25] A. Wang, and L. El-Bayoumy, Crowning techniques in aerospace actuation gearing, DETC2009. (2009) 289-294.
[26] Y. Zhang, L. Li, and J. Chen, The use of broaching to produce double-crowned surface gears, J. Manuf. Sci. Eng. 138(3) (2016) 031011.
[27] Y. Liu, X. Zhang, and L. Wang, The feasibility of using milling to produce double-crowned surface gears, J. Mater. Process. Technol. 246 (2018) 190-196.
[28] J. Kim, J. Lee, and Y. Kim, Comparison of gear manufacturing methods for double-crowned surface gears, J. Adv. Manuf. Technol. 92(9-12) (2017) 2963-2971.
[29] Z. Wang, L. Chen, and H. Zhao, A review of gear surface finish improvement techniques, J. Manuf. Sci. Eng. 141(2) (2019) 021011.
[30] T. Nguyen, K. Nguyen, and J. Kim, Precision manufacturing of gears for medical devices, Int. J. Precis. Eng. Manuf. 16 (2015).
[31] J. Johnson and J. Smith, Comparison of gear manufacturing methods, J. Manuf. 45(2) (2010) 123-129.
[32] Y. Zhang, L. Li, and J. Chen, Improving the surface finish of gears by abrasive flow machining, J. Manuf. Sci. Eng. 138(3) (2016) 031010.
[33] J. Huang, Y. Liu, and X. Zhang, Gear-honing technology for manufacturing gears from non-conventional materials, J. Manuf. Sci. Eng. 140(4) (2018) 041004.
[34] X. Xu, Y. Wang, and L. Chen, Gear-honing technology for the production of complex geometry gears, J. Manuf. Sci. Eng. (2019).
[35] V.T. Tran, R.H. Hsu, and C.B. Tsay, Study on the anti-twist helical gear tooth flank with longitudinal tooth crowning, J. Mech. Des. 136(6) (2014) 061007(1-10).
[36] Y.R. Wu, and V.T. Tran, Lead crowning and anti-twist for tooth flank of a heat treated helical gear on internal CNC honing machine, Appl. Mech. Mater. 799-800 (2015) 554-559.
[37] Z.H. Fong, and G.H. Chen, Gear flank modification using a variable lead grinding worm method on a computer numerical control gear grinding machine, J. Mech. Des. 138(8) (2016) 083302(1-10).
[38] F.L. Litvin, I.G. Peres, A. Fuentes, K. Hayasaka, and K. Yukishima, Topology of modified surfaces of involute helical gears with line contact developed for improvement of bearing contact, reduction of transmission errors, and stress analysis, Math. Comput. Model. 42(9-10) (2005) 1063–1078.
[39] M.T. Hoang, Y.R. Wu, and V.Q. Tran, A general mathematical model for screw-rotor honing using an internal-meshing honing machine, Mech. Mach. Theory. 154 (2020) 104038(1-15).
[40] V.Q. Tran, and Y.R. Wu, A novel method for closed-loop topology modification of helical gears using internal-meshing gear honing, Mech. Mach. Theory. 145 (2020) 103691(1-15).
[41] V.Q. Tran, and Y.R. Wu, Dual lead-crowning for helical gears with long face width on a CNC internal gear honing machine, Mech. Mach. Theory. 130 (2018) 170-183.
[42] J. Jiang, and Z.D. Fang, High-order tooth flank correction for a helical gear on a six-axis CNC hob machine, Mech. Mach. Theory. 91 (2015) 227–237.
[43] J. Han, Y.G. Zhu, L. Xia, and X.Q. Tian, A novel gear flank modification methodology on internal gearing power honing gear machine, Mech. Mach. Theory. 121 (2018) 669–682.
[44] M.I.A. Lourakis, A brief description of the Levenberg-Marquardt algorithm implemened by levmar, Foundation of Research and Technology. 2015 1-6.
[45] H.P. Gavin, The Levenberg-Marquardt method for nonlinear least squares curve-fitting problems, Department of Civil and Environmental Engineering, Duke University, USA (2013) 1-15.
[46] J.R. Kim, S.H. Yoon, Y.C. Jung, C.H. Suh, and T.H. Kwon, A study on the thermal deformation simulation of spur gear according to the heat zones in heat treatment process, J. Korean Soc. Precis. Eng. 19(7) (2020) 60-66
指導教授 吳育仁(Yu-Ren Wu) 審核日期 2023-2-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明