博碩士論文 108383608 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:18.118.137.243
姓名 劉重順(Luu Trong Thuan)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 圓柱型齒輪及螺桿轉子之外嚙合及內嚙合剮齒加工之研究
(A Study on External Meshing and Internal Meshing Skiving Processes for Cylindrical Gears and Screw Rotors)
相關論文
★ 應用調諧顆粒阻尼器於迴轉式壓縮機振動抑制之研究★ 應用離散元素法與多體動力學於齒輪傳動系統動力分析模型之建立
★ 不同氣體負載下雙螺桿壓縮機動力響應及振動頻譜特徵之預測★ 新型魯氏真空泵轉子齒形之參數化設計及性能評估
★ 以CNC內珩齒機進行螺旋齒輪齒面拓樸修整之研究★ 雙螺桿壓縮機變導程轉子齒間法向間隙之數值計算方法及其三維幾何模型驗證
★ 不同工作條件下冷媒雙螺桿壓縮機之轉子受力分析及動載響應預測★ 應用多體動力學及離散元素法於具阻尼顆粒齒輪及軸承系統抑振之研究
★ 具齒廓修形內嚙合非圓形齒輪創成之方法建立與其傳動誤差分析★ 雙螺桿壓縮機於CFD仿真模擬之三維幾何簡化方法建立
★ 航空發動機齒輪箱傳動系統之強度分析與改善★ 電動車差速齒輪傳動系統之動載分析與性能評估
★ 指狀銑刀安裝偏差對真空泵螺桿轉子加工精度影響之研究★ 以CNC內珩齒機加工具鼓形之錐狀齒輪之研究
★ 應用阻尼顆粒於旋轉機械之振動抑制及動平衡設計★ 考量氣體負載下迴轉式壓縮機動態負載分析模型之建立
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-2-16以後開放)
摘要(中) 強力刮齒/剮齒(Power Gear Skiving)是一種有效率的加工齒輪技術,可用於進行內齒輪及外齒輪之加工,然而實際剮齒後齒面常因不對稱刃口而造成不均勻齒面留磨量,造成後續磨齒時成本的增加;此外,往往每一具有特定壓力角及螺旋角之齒輪皆需一對應之刮齒刀,為降低製造成本,如何重複使用同一刮齒刀加工不同壓力角或螺旋角之齒輪亦為一關鍵技術。本文提出利用線性及二次校正齒條廓形進行傳統錐型剮齒刀具刃口之修形,以符合預想加工之齒輪輪廓;更提出基於內、外雙封閉迴路數控剮齒計算,可使用同一刀具進行具有不同壓力角及螺旋角之齒輪加工,經由在各加工軸添加附加運動以修改切削軌跡達到內封閉迴路之目標齒面,而在外部封閉迴路中,則求解出符合加工精度需求齒輪之壓力角或螺旋角範圍。此外,現今應用盤型成形刀具進行螺桿加工之過程極為耗時,且複數螺旋齒面需逐一分度加工,有鑑於此,本研究創新提出可在數控機台上加工螺桿轉子之圓柱型內旋削剮齒刀之設計,建立刀具創成及新型數控加工機台之數學模型,更探討刀具進給速率對於螺桿面加工精度之影響,最終透過數值範例及VERICUT軟體之虛擬切削驗證所提出技術之正確性及可行性。
摘要(英) Power skiving is an effective and qualitative process for machining gears, including internal and external gears. Several practical applications require the exceptional tooth flanks on the skived gear, such as even grinding stock on tooth flanks or double-crowned tooth flanks. Therefore, a novel method to modify the cutting edge of the skiving cutter is essential. In addition, each skived gear with the specific pressure and helix angles requires one skiving cutter, currently. Hence, a novel approach is necessary to reuse the skiving cutter with different pressure angles or helix angles of the work gear. This research proposes the linear and quadratic correction models for the rack to adjust the shape and position of the cutting edge of the external-conical skiving cutter on the rake plane corresponding to the predefined profile of the skived gear. Subsequently, the correction cutter is reused when changing the pressure and helix angles based on a novel dual closed loop consisting of inner and outer closed-loops. The cutting trajectory is modified to achieve the target surface in the inner closed-loop by adding the additional motions for each machining axis movements, where the adjusting limit of the electronic gearbox is considered. The suitable changing range of the skived gear’s pressure or helix angles is determined in the outer closed-loop corresponding to the required deviation of the work gear surface. Furthermore, the existing machining method using disk-type milling cutters for screw rotors is time-consuming. Therefore, a generating machining method based on skiving technology to roughly manufacture screw rotors is essential. This research proposes an internal-cylindrical skiving cutter for producing screw rotors on a new CNC skiving machine. The generating model of the internal-cylindrical cutter and the mathematical models of the cutting process on a general power-skiving system and a new CNC skiving machine are established, where the influence of feed rate on skived screw surface is also evaluated. Finally, the numerical examples, including the simulated results and the virtual experiments on VERICUT software, validate the correctness and practicability of the proposed methods.
關鍵字(中) ★ 強力刮齒
★ 剮齒
★ 留磨量
★ 雙鼓形修整
★ 拓樸修整
★ 螺桿轉子
★ 內旋削剮齒刀
關鍵字(英) ★ power skiving
★ grinding stock
★ double-crowned tooth
★ topology modification
★ screw rotors
★ internal skiving cutter
★ cylindrical skiving cutter
論文目次 Contents

Information i
摘要……… ii
Abstract….. iii
Acknowledgment iv
Contents…. v
List of Figures viii
List of Table xii
Nomenclature xiii
Chapter 1 Introduction 1
1.1 Background and motivation 1
1.2 Literature review 3
1.3 Novelties and contributions 6
1.4 Research objectives and approaches 7
1.5 Dissertation architecture 8
Chapter 2 Mathematical model of external skiving cutter generation and cylindrical gears cutting 9
2.1 Generation of external-conical skiving cutter 9
2.1.1 Corrected rack model 9
2.1.2 External-conical cutter body generation 12
2.1.3 Cutting edge generation 17
2.2 Manufacturing cylindrical gears on multi axis CNC skiving machine 19
2.3 A novel correction method of the rack for generating precision the pre-defined skived profile 24
2.4 A novel dual closed-loop for manufacturing cylindrical gears with different pressure and helix angles using the same skiving cutter 29
2.4.1 A novel dual closed-loop for expanding the capability of skiving cutter in manufacturing cylindrical gears 29
2.4.2 Solving the machine-axis setting by applying the Levenberg-Marquardt (LM) method 32
Chapter 3 Mathematical model of internal skiving cutter generation and screw rotors cutting 35
3.1 Internal-cylindrical skiving cutter generation 35
3.1.1 Generation of an internal-barrel rotor 35
3.1.2 Generation of an internal-cylindrical skiving cutter 39
3.2 Cutting process on general power-skiving system 44
3.3 Cutting process on a new CNC skiving machine considering influence of axial feed rate 46
Chapter 4 Numerical example 49
4.1 Validation of novel methods for manufacturing cylindrical gears using external-conical skiving cutter 49
4.1.1 Validation of novel correction method for generating even grinding stock on tooth flank of skived gear 49
4.1.2 Validation of novel dual closed-loop for manufacturing gears with different pressure and helix angles using the same skiving cutter 61
4.2 Validation of novel method for manufacturing screw rotors using internal-cylindrical skiving cutter 80
4.2.1 Verification of the general mathematical model using the internal-cylindrical skiving tool 80
4.2.2 Producing the screw rotor on a new CNC skiving machine using the internal-cylindrical skiving tool considering the influence of axial feed rate. 82
4.2.3 Generation of even grinding stock on skived screw rotors using the internal-cylindrical skiving tool on the whirling machine 86
Chapter 5 Conclusions and Future works 89
5.1 Conclusion 89
5.2 Future works 90
APPENDIX 91
References 93
List of Publications 99


參考文獻 References

[1] F. Seibicke, H. Müller, Good things need some time, Gear Solutions (2013) 74-80.
[2] Nachi Fujikoshi Corp, Skiving cutter (2020).
[3] K.-D. Bouzakis, E. Lili, N. Michailidis, O. Friderikos, Manufacturing of cylindrical gears by generating cutting processes: A critical synthesis of analysis methods, CIRP Annals - Manufacturing Technology 57 (2008) 676-696.
[4] C. Kobialka, Contemporary gear pre-machining solutions, Gear Solutions 11(4) (2013) 42-49.
[5] K. Uriu, T. Osafune, T. Murakami, M. Nakamura, D. Iba, M. Funamoto, I. Moriwaki, Study on design of taper shaped skiving cutters for internal gears, Transactions of the JSME (in Japanese) 84(861) (2018).
[6] Y. Tao, G. Li, B. Cao, L. Jiang, Grinding worm wear evaluation and its influence on gear surface topography in continuous generating gear grinding, Int J Adv Manuf Technol 123 (2022) 3301–3311.
[7] C. Gorgels, H. Schlattmeier, F. Klocke, Optimization of the gear profile grinding process utilizing an analogy process, Gear Tech., (2006) 34-41.
[8] N. Stosic, A geometric approach to calculating tool wear in screw rotor machining, International Journal of Machine Tools and Manufacture 46(15) (2006) 1961-1965.
[9] J. Kreschel, Gleason Power Skiving: Technology and Basics, Gleason Company Publication (2012).
[10] S.P. Radzevich, Gear Cutting Tools Fundamentals of Design and Computation, CRC Press, (2010) 705–712.
[11] X.C. Chen, J. Li, B.C. Lou, A study on the design of error-free spur slice cutter, The International Journal of Advanced Manufacturing Technology 68(1) (2013) 727–738.
[12] X.C. Chen, J. Li, B.C. Lou, A study on the grinding of the major flank face of error-free spur slice cutter, The International Journal of Advanced Manufacturing Technology 72(1) (2014) 425-438.
[13] E. Guo, R. Hong, X. Huang C. Fang, Research on the design of skiving tool for machining involute gears, Journal of Mechanical Science and Technology 28(12) (2014) 5107-5115.
[14] E. Guo, R. Hong, X. Huang, C. Fang, A correction method for power skiving of cylindrical gears lead modification, Journal of Mechanical Science and Technology 29(10) (2015) 4379-4386.
[15] Z. Guo, S.M Mao, X.E. Li, Z.Y Ren, Research on the theoretical tooth profile errors of gears machined by skiving. Mechanism and Machine Theory 97 (2016) 1-11.
[16] Y.P. Shih, Y.J. Li, A novel method for producing a conical skiving tool with error-free flank faces for internal gear manufacture. Journal of Mechanical Design 140(4) (2018).
[17] Moriwaki, T. Osafune, M. Nakamura, M. Funamoto, K. Uriu, T. Murakami, E. Nagata, N. Kurita, T. Tachikawa, Cutting tool parameters of cylindrical skiving cutter with sharpening angle for internal gears, Journal of Mechanical Design 139(3) (2017).
[18] C. Y Tsai, Power-skiving tool design method for interference-free involute internal gear cutting, Mechanism and Machine Theory 164 (2021) 1-19.
[19] C. Y Tsai, Simple mathematical approach for analyzing gear tooth profile errors of different gears cut using same power-skiving tool, Mechanism and Machine Theory 177 (2022) 1-19.
[20] Y.P. Shih, Y.J. Li, Y.C. Lin, H.Y. Tsao, A novel cylindrical skiving tool with error-free flank faces for internal circular splines. Mechanism and Machine Theory 170 (2022) 1-19.
[21] E. Guo, Z. Shi, L. Hu, E. Zhang, X. Ren, Design method of a multi-blade skiving tool for gear skiving, Mech. Mach. Theory 173 (2022).
[22] E. Guo, R. Hong, X. Huang, C. Fang, A novel power skiving method using the common shaper cutter, The International Journal of Advanced Manufacturing Technology 83(1) (2016) 157-165.
[23] F. Zheng, M. Zhang, W. Zhang, X. Guo, Research on the tooth modification in gear skiving, Journal of Mechanical Design 140(8) (2018).
[24] Z.H. Fong, Mathematical model of universal hypoid generator with supplemental kinematic flank correction motions. Journal of Mechanical Design 122 (2000) 136–142.
[25] Y.P. Shih, Z.H. Fong, Flank modification methodology for face-hobbing hypoid gears based on ease-off topography, Journal of Mechanical Design 129 (12) (2007) 1294–1302.
[26] Y.P. Shih, S.D. Chen, A flank correction methodology for a five-axis CNC gear profile grinding machine, Mechanism and Machine Theory 47 (2012) 31–45
[27] V.Q. Tran, Y.R. Wu, A novel method for closed-loop topology modification of helical gears using internal-meshing gear honing, Mechanism and Machine Theory 145 (2020) 1–15.
[28] Y.B. Shen, X. Liu X, D.Y. Li, Z.P. Li, A method for grinding face gear of double crowned tooth geometry on a multi-axis CNC machine, Mechanism and Machine Theory 121 (2018) 460–474.
[29] J. Jiang, Z.D. Fang, High-order tooth flank correction for a helical gear on a six-axis CNC hob machine, Mechanism and Machine Theory 91 (2015) 227–237.
[30] P. Boa, H. Gonzalez, A. Callejab, L.N.L Lacalle, M. Barton, 5-axis double-flank CNC machining of spiral bevel gears via custom-shaped milling tools– Part I: modeling and simulation, Precision Engineering 62 (2020) 204-212.
[31] G.G Escudero, P. Bob, H. Gonzalez, A. Callejaa, M. Barton, L.N.L Lacalle, 5-axis double-flank CNC machining of spiral bevel gears via custom-shaped tools—Part II: physical validations and experiments, The International Journal of Advanced Manufacturing Technology 119 (2021) 1647-1658.
[32] M. Bizzarria, M. Barto, Manufacturing of Screw Rotors Via 5-axis Double-Flank CNC Machining, Computer-Aided Design 132 (2021) 1-14.
[33] K. Rajain, O. Sliusarenko, M. Bizzarri, M. Barton, Curve-guided 5-axis CNC flank milling of free-form surfaces using custom-shaped tools, Computer Aided Geometric Design 94 (2022) 1-12.
[34] Scherbarth S, Tooth Cutter and method for cutting the teeth of gear tooth elements, US Patent 9352406B2 (2016).
[35] C.J. Chiang, Z.H. Fong, Design of form milling cutters with multiple inserts for screw rotors, Mech. Mach. Theory 45(11) (2010) 1613-1627.
[36] Y. Kuang, W. Lin, Z. Dong, L. Wu, Q. Wang, A cutter path generation strategy for helical surface machining of screw rotor, Science Progress 103(1) (2020) 1–16.
[37] D.Y. Yu, Z. Ding, Geometric characteristics analysis and parametric modeling for screw rotor precision machining, Int. J. Adv. Manuf. Technol. 107 (2020) 3615-3623.
[38] Arifin, Y.R. Wu, Analytical design of disk-type milling cutter with multiple inserts and CNC milling simulation of screw rotors considering grinding stock, Mech. Mach. Theory 170 (2022) 1-17.
[39] Arifin, Y.R. Wu, Integrated multi-objective optimization on the geometrical design of a disk-type milling cutter with multiple inserts applying uniform design, RBF neural network, and PSO algorithm, Int. J. Adv. Manuf. Technol. 121 (2022) 4829-4846.
[40] Leitz Metalworking Technology Group, Gear cutting tools.
[41] Y.R. Wu, C.W. Fan, Mathematical modeling for screw rotor form grinding on vertical multi-axis computerized numerical control form grinder, J. Manuf. Sci. Eng. 135(5) (2013) 1-13.
[42] Y.R. Wu, W.H. Hsu, A general mathematical model for continuous generating machining of screw rotors with worm-shaped tools, Applied Mathematical Modelling 38(1) (2014) 28-37.
[43] Y. Zhao, S. Zhao, W. Wei, Precision grinding of screw rotors using CNC method, Int. J. Adv. Manuf. Technol. 89 (2017) 2967-2979.
[44] Z. Liu, Q. Tang, Y.F. Zhang, An analytical method for surface roughness prediction in precision grinding of screw rotors, Int. J. Adv. Manuf. Technol. 103 (2019) 2665–2676.
[45] M.T. Hoang, Y.R. Wu, V.T. Tran, A general mathematical model for screw-rotor honing using an internal-meshing honing machine, Mech. Mach. Theory 154 (2020) 1-15.
[46] L. Tao, M. Yuan, H. Fang, A pre-compensation method for profile errors of screw rotors under precision form grinding, Int. J. Adv. Manuf. Technol. 117 (2021) 3229–3239.
[47] L.V. Mohan, M.S. Shunmugam, Simulation of whirling process and tool profiling for machining of worms, Journal of Materials Processing Technology 185(1–3) (2007) 191-197.
[48] M. Serizawa, T. Matsumura, Control of Helical Blade Machining in Whirling, Procedia Manufacturing 5 (2016) 417-426.
[49] C. Liu, Y. He, Y. Wang, Y. Li, S. Wang, L. Wang, Y. Wang, An investigation of surface topography and workpiece temperature in whirling milling machining, International Journal of Mechanical Sciences 164 (2019) 1-13.
[50] M. Soshi, F. Rigolone, J. Sheffield, K. Yamazaki, Development of a directly-driven thread whirling unit with advanced tool materials for mass-production of implantable medical parts, CIRP Annals 67(1) (2018) 117-120.
[51] F. Zanger, V. Sellmeier, J. Klose, M. Bartkowiak, V. Schulze, Comparison of Modeling Methods to Determine Cutting Tool Profile for Conventional and Synchronized Whirling, Procedia CIRP 58 (2017) 222-227.
[52] L. Wang, Y. He, Y. Wang, Y. Li, C. Liu, S. Wang, Y. Wang, Analytical modeling of material removal mechanism in dry whirling milling process considering geometry, kinematics and mechanics, International Journal of Mechanical Sciences 172 (2020) 1-17.
[53] F.L. Litvin, A. Fuentes, Gear geometry and applied theory. 2th ed. Cambridge University Press, 2004.
[54] S.M. Burney, T.A. Jilani, C. Ardil, Levenberg-Marquardt algorithm for Karachi Stock Exchange share rates forecasting, World Academy of Science, Engineering and Technology 3 (2004) 171-176.
[55] M.I.A. Lourakis, A brief description of the Levenberg–Marquardt algorithm implemented by levmar, Foundation of Research and Technology (2005) 1–6.
[56] N. Stosic, I.K. Smith, A. Kovacevic, Screw Compressors: Mathematical Modelling and Performance Calculation, 1st ed, Springer, Heidelberg, Germany, 2005.
[57] Y.R. Wu, Z.H. Fong, Rotor profile design for the twin-screw compressor based on the normal-rack generation method, J. Mech. Design 130 (4) (2008) 1-8.
[58] J. H. Kuang, W. L. Chen, Determination of tip parameters for the protuberance preshaving cutters, Mech. Mach. Theory 31(7) (1996) 839-849.
[59] K. Elsayed, C. Lacor, Modeling, Analysis and optimization of aircyclones using artificial neural network, response surface methodology and CFD simulation approaches, Powder Technology, 212 (1) (2011) 115–133.
[60] K.T. Fang, D.K. Lin, P. Winker, Y. Zhang, Uniform design: theory and application, Technometrics, 42(3) (2000) 237-248.
[61] M. Zhao, W.C. Cui, Application of the optimal Latin hypercube design and radial basis function network to collaborative optimization, J. Mar. Sci. Appl., 6(3) (2007) 24.
[62] K. Fang, M.Q Liu, H. Qin, Y.D. Zhou, Theory and application of uniform experimental designs, New York: Springer, 2018.
[63] DIN-3962 (1978) Tolerances for cylindrical gear teeth.
[64] M. Trübswetter, M. Otto, K. Stahl, Evaluation of Gear Flank Surface Structure Produced by Skiving, Forsch. Ingenieurwes. 83 (2019) 719–726.
指導教授 吳育仁(Yu-Ren Wu) 審核日期 2023-2-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明