參考文獻 |
1.王櫻茂、吳振成、楊宏儀、田永銘、陳裕新,「台灣地區鹼-骨材反應特性之研究」,行政院國科會專題研究報告,NSC78-0410-E006-20,共98頁(1989)。
2.田永銘、王淑慧、潘亮宇、陳維民,「混凝土鹼-骨材反應劣化與防治」,構造物破壞原因探討與處置研討會論文集,台北,第125-150頁(1999)。
3.田永銘、楊世和、王淑慧,「台灣東部骨材鹼反應潛能研究」,中國土木水利工程學刊,第十三卷,第一期,第217~226頁(2001)。
4.田永銘、楊世和、彭柏翰、王淑慧,「台灣的鹼-骨材反應問題與對策」,土木水利,第二十六卷,第一期,第78-94頁(1999)。
5.林晏吉,「花東地區鹼-骨材反應之成因探討」,碩士論文,國立中央大學土木工程學系,中壢(1999)。
6.林志寶,「台灣骨材鹼反應潛能資料庫建置」,碩士論文,國立中央大學土木工程學系,中壢(2002)。
7.侯彥廷,「平台式掃描器在影像擷取及長度量測之應用」,碩士論文,國立中央大學土木工程學系,中壢(2002)。
8.徐豐裕,「鹼-骨材反應引致之破裂行為」,碩士論文,國立中央大學土木工程學系,中壢(2003)。
9.張文恭,「花蓮地區單一岩種之鹼-骨材反應研究」,碩士論文,國立中央大學土木工程學系,中壢(2000)。
10.張庭華,「海岸山脈安山岩之鹼-骨材反應特性及抑制方法」,碩士論文,國立中央大學土木工程研究所,中壢(2001)。
11.彭柏翰,「花蓮溪安山岩含量之悲極效應研究」,碩士論文,國立中央大學土木工程研究所,中壢(2000)。
12.黃兆龍,混凝土品質保證,詹氏書局,台北,第199-222頁(1988)。
13.楊世和,「台灣東部反應性骨材之探討及分析」,碩士論文,國立中央大學土木工程學系,中壢(1997)。
14.詹皇祥,「近景數化影像半自動式混凝土裂縫量測」,碩士論文,國立中央大學土木工程學系,中壢(2001)。
15.ASTM C215-91, “Standard Test Method for Fundamental Transverse, Longitudinal, and Torsional Frequencise of Concrete Specimens” Annual Book of ASTM Standards, pp.121-124 (1996).
16.ASTM C227-90, “Standard Test Method for Potential Alkali Reactivity of Cement-Aggregate Combinations(Mortar Bar Method),”Annual Book of ASTM Standards, p.125-129 (1996).
17.ASTM C597-91, “Standard Test Method for Pulse Velocity Through Concrete,” Annual Book of ASTM Standards, pp.286-288 (1996).
18.ASTM C1260-94, “Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method),” Annual book of ASTM Standards, pp. 644-647 (1996).
19.ASTM C1293-95,“Standard Test Method for Concrete Aggregates by Determination of Length Change of Concrete due to Alkali-Silica Reaction,” Annual Book of ASTM Standards, pp.648-653 (1996).
20.Carles-Gibergues, A., and Cyr, M., “Interpretation of expansion curves of concrete subjected to accelerated alkali-aggregate reaction (AAR) test,” Cement and Concrete Research, Vol. 32, pp. 691-700 (2002).
21.Clark, L.A., and Ng, N.E., “The Effect of Alkali-Silica Reaction on Punching Shear Strength of Reinforced Concrete Slabs,” Proceeding 8th International Conference on Alkali-Aggregate Reaction in Concrete, Kyoto, Japan, pp.659-664 (1989).
22.Chengzhi, Z., Aiqin, W., Mingshu T., and Ningsheng Z., “Influence of Dimension of Test Specimen on Alkali-Aggregate Reaction Expansion,” ACI Material Journal, Vol. 96, No. 2, pp. 204-207 (1997).
23.Cyr, M., and Carles-Gibergues, A., “Normalized age applied to AAR occurring in concretes with or without mineral admixtures,” Cement and Concrete Research, Vol. 32, pp. 1771-1782 (2002).
24.Fujii, M., Kobayashi, K., Kojima, T., and Maehara, H., “The Static and Dynamic Behavior of Reinforced Concrete Beams with Cracking Due to Alkali-Silica Reaction,” Proceeding 7th International Conference on Alkali-Aggregate Reaction in Concrete, Ottawa, Canada, pp.126-130 (1987).
25.Fan, S., and Hanson, J.M., “Length Expansion and Cracking of Plain and Reinforced-Concrete Prisms Due to Alkali-Silica Reaction,” ACI Structural Journal, Vol. 95, No. 4, pp. 480-487 (1998).
26.Fan, S., and Hanson, J. M., “Effect of ASR Expansion and Cracking on structural Behavior of Reinforced Concrete Beams,” ACI Structural Journal, Vol. 95, No. 5, pp. 498-505 (1998).
27.Gross, M.R., “Strain accommodated by brittle failure in adjacent units of the Monterey Formation, U.S.A.: scale effects and evidence for uniform displacement boundary condition,” Journal of Structural Geology, Vol. 17, No. 9, pp. 1303-1318 (1995).
28.Hobbs, D.W., Alkali-Silica Reaction in Concrete, Thomas Telford, London, (1988).
29.Jones, A.E.K., and Clark L.A., “The Practicalities and Theory of Using Crack Width Summation to Estimate ASR Expansion.” Proceedings of the Institution of Civil Engineers, Structures and Buildings, Vol. 104, No. 2, pp. 183-192 (1994).
30.Jones, A.E.K., and Clark L.A., “Structural Effect of Alkali-Silica Reaction.” Proceeding 10th International Conference on Alkali-Aggregate Reaction in Concrete, Melbourne, Australia, pp.394-401 (1996).
31.Kobayashi, K., Shiraki, R., and Kawai, K., “Influence of Alkali Concentration and Distribution Occurring in Concrete Members on Expansion Due to Alkali-Silica Reaction,” Proceeding 8th International Conference on Alkali-Aggregate Reaction in Concrete, Kyoto, Japan, pp.641-646 (1989).
32.Katayama,T.,“Petrography of Alkali-Aggregate Reactions in Concrete Reactive Minerals and Reaction Products,” East Asia Alkali-Aggregate Reaction Seminar, Tottori, Japan, (1997).
33.Marrett, R., and Allmendinger, R.W., “Amount of extension on “small” faults : An example from the Viking graben,” Geology, Vol. 20, pp. 47-50 (1992).
34.Marzouk, H., and Langdon, S., “The Effect of Alkali-Aggregate Reactivity on the Mechanical Properties of High and Normal Strength Concrete,” Cement and Concrete Composites, Vol. 25, No. 4, pp. 549-556 (2003).
35.Mo, X., Yu, C., and Xu, Z., “Long-term effectiveness and mechanism of LiOH in inhibiting alkali-silica reaction,” Cement and Concrete Research, Vol. 33, pp. 115-119 (2003).
36.Nishibayashi, S., Yamura, K., and Sakata, K., “Evaluation of Cracking of Concrete Due to Alkali-Aggregate Reaction,” Proceeding 8th International Conference on Alkali-Aggregate Reaction in Concrete, Kyoto, Japan, pp.759-764 (1989).
37.Nemati, K.M., “Preserving microstructure of concrete under load using the Wood's metal technique,” International Journal of Rock Mechanics and Mining Sciences, Vol. 37, No. 1, pp. 133-142 (2000).
38.Rivard, P., Fournier, B., and Ballivy, G., ”Quantitative Petrographic Technique for Concrete Damage Due to ASR: Experimental and Application,” Cement Concrete and Aggregates , Vol. 22, No.1, pp. 63-72 (2000).
39.Rivard, P., Fournier, B., and Ballivy, G., “The Damage Rating Index Method for ASR Affected Concrete-A Critical Review of Petrographic Features of Deterioration and Evaluation Criteria,” Cement Concrete and Aggregates , Vol. 24, No. 2, pp. 81-91 (2002).
40.Swamy, R.N., The Alkali-Silica Reaction in Concrete, Van Nostrand Reinhold, New York, (1992).
41.Shayan, A., “Prediction of alkali reactive potential of some Australian aggregate and correlation with service performance,” ACI Material Journal, Vol. 89, pp. 13-23 (1992).
42.Shayan, A., “The ‘Pessimum’ Effect in an Accelerated Motar Bar Test Using 1 M NaOH Solution at 80℃,” Cement and Concrete Composites, Vol. 14, pp. 249-255 (1992).
43.Thorsen, T., and Larsen, E.S., “Alkali-Silica Reaction in Damaged Concrete Static and Dynamic Tests-Material Investigations.” Proceeding 10th International Conference on Alkali-Aggregate Reaction in Concrete, Melbourne, Australia, pp.402-409 (1996).
44.Zinin, P., Manghnani, M.H., Wang, Y.C., and Livingston, R.A., “Detection of Cracks in Concrete Composites Using Acoustic Microscopy,” NDT&E International, Vol. 31, No. 1, pp. 283-287 (2000). |