參考文獻 |
[1] A. Hmamed, Further results on the robust stability of uncertain time delay systems, Internat. J. Systems Sci., vol. 22(1991) 605-614.
[2] Y. T. Juang, Robust Stability and Robust Pole Assignment of Linear Systems with
Structured Uncertainty, IEEE Trans. Automat. Control, vol. 38, no. 11 (1993) 1697-1700.
[3] V. B. Kolmanovskii, V.R. Nosov, Stability of Function Differential Equation, Academic Press, London, 1986.
[4] V. Lakshmikantham, S. Leela, Differential and Integral Inequalities, Academic Press, New York, 1969.
[5] P. L. Liu, Te-Jen Su, Robust stability of interval time-delay systems with delay- dependence, Systems & Control Letters, vol. 33 (1998) 231-239.
[6] T. Mori and H. Kokame, Stability of , IEEE Trans. Automat. Control, vol. 34, no. 4(1989) 460-462.
[7] S. S. Wang, B. S. Chen, and T. P. Lin, Robust stability of uncertain time-delay systems, Int. J. Contr., vol. 46, no.3 (1987) 963-976.
[8] R. K. Yedavalli, Improved measures of stability robustness for linear state space models, IEEE. Trans. Automat. Control, vol. 30 (1985) 577-579.
[9] T. J. Su and C. G. Huang, Robust Stability of Delay Dependence for Linear Uncertain Systems, IEEE. Trans. Automat. Control, vol.37, no. 10 (1992) 1656-1659.
[10] S. P. Bhattacharyya, H. Charpellat, L. H. Keel, Robust Control, 1995.
[11] T. J. Su, T. S. Kuo, Y. Y. Sun, Robust stability for linear time-delay systems with
linear parameter perturbations, Internat. J. Systems Sci., vol. 19 (1988) 2123-2129.
[12] C. H. Lee, Simple Stability Criteria and Memoryless State Feedback Control Design for Time-Delay Systems with Time-Varying Perturbations, IEEE. Trans. Automat. Control, vol. 45, no. 11 (1998) 1211-1215.
[13] Y. T. Juang, Robust Stability and Robust Pole Assignment of Linear Systems with Structured Uncertainty, IEEE Trans. Automat. Control, vol. 36, no. 5 (1991) 635-637.
[14] G. Meinsma, M. Fu, T. Iwasaki, Robustness of the stability of feedback systems with respect to small time delays, Systems & Control Letters, vol. 36 (1999) 131-134.
[15] C. H. Lee and F. C. Kung, New results for the stability of uncertain time-delay systems, Internat. J. Systems Sci., vol. 26 (1995) 999-1004.
[16] X. Li and C. E. de Souza, Delay-dependent robust stability and stabilization of uncertain linear delay systems: A linear matrix inequality approach, IEEE Trans. Automat. Control, vol. 42, no. 8 (1997) 1144-1148.
[17] Y. J. Sun, J. G. Hsieh, H. C. Yang, On the stability of uncertain systems with multiple time-varying delays, IEEE Trans. Automat. Control, vol. 42, no. 1 (1997) 101-105.
[18] L. Xie and Y. C. Soh, Robust control of linear systems generalized positive real uncertainty, Automatica, vol. 33, no. 5 (1997) 963-967.
[19] E. Cheres, Z. J. Palmor, S. Gutman, Quantitative measures of robustness for systems including delayed perturbations, IEEE Trans. Automat. Control, vol. 34, no. 6 (1989) 1203-1204.
[20] J. K. Hale and S. M. V. Lunel, Introduction to functional differential equations, New York, 1993.
[21] E. B. Lee, W. S. Lu, N. E. Wu, A Lyapunov theory for linear time-delay systems, IEEE Trans. Automat. Control, vol. 31, no. 3 (1986) 259-261.
[22] T. Mori, Criteria for asymptotic stability of linear time-delay systems, IEEE Trans. Automat. Control, vol. 30, no. 1 (1985) 158-161.
[23] H. Wu and K. Mizukami, Exponential stabilization of a class of uncertain dynamic systems with time delay, Control-Theory and Advanced Technology, vol. 41 (1996) 116-121.
[24] B.Xu, Comments on Robust stability of delay dependent for linear uncertain systems, IEEE Trans. Automat. Control, vol. 39, no. 8 (1994) 2365.
[25] J. S. Luo, A. Johnson, and P. J. van den Bosch, Delay-independent robust stability of uncertain linear systems, Systems & Control Letters, vol. 24 (1995) 33-39.
[26] H. Kokame, and T. Mori, A Kharitonov-like theorem for interval polynomial matrices, Systems & Control Letters, vol. 16 (1991) 107-116.
[27] M. Fu, A. W. Olbrot, and M. P. Polis, The edge theorem and graphical tests for robust stability of neutral time-delay systems, Automatica, vol. 27, no. 4 (1991) 739-741.
[28] V. L. Kharitonov and A. P. Zhabko, Robust stability of time-delay systems, IEEE Trans. Automat. Control, vol. 39, no. 12 (1994) 2388-2397.
[29] J. Kogan, and A. Leizarowitz, Frequency domain criterion for robust stability of interval time-delay systems, Automatica, vol. 31, no. 3 (1995) 463-469.
[30] P. G. Park, A delay-dependent stability criterion for systems with uncertain time-invariant delays, IEEE Trans. Automat. Control, vol. 44, no. 4 (1999) 876-877.
[31] J. H. Su, Further results on the robust stability of linear systems with a single time delay, Systems & Control Letters, vol. 23 (1994) 375-379.
[32] J. H. Su, I. K. Fong, and C. L. Tseng, Stability analysis of linear systems with time delay, IEEE Trans. Automat. Control, vol. 39, no. 4 (1994) 1341-1344.
[33] G. M. Schoen and H. P. Geering, Stability condition for a delay differential system, Int. J. Contr., vol. 58 (1993) 247-252.
[34] K. G. Shin and X. Cui, Computing time delay and its effects on real-time control systems, IEEE Transaction on Control Systems Technology, vol. 3 (1995) 218-224.
[35] J. T. Tsay, P. L. Liu, and T. J. Su, Robust stability for perturbed large-scale time-delay systems, IEEE Proc. Control Theory Appl., vol. 143, no. 3 (1996) 233-236.
[36] B. Xu, On delay-independent stability of large-scale systems with time delays, IEEE Trans. Automat. Control, vol. 40, no. 5 (1995) 930-933.
[37] F. C. Kung, C. H. Lee and T. H. Li, Decentralized robust control design for large-scale time-delay systems with time-varying uncertainties, JSME International Journal, vol. 39, no. 3 (1996) 243-247.
[38] C. H. Lee, T. H. Li and F. C. kung, Instability analysis and unstable roots region estimate of time-delay systems with highly structured uncertainties, Transactions of the ASME, vol. 22 (1996) 225-233.
[39] M. Xuerong, K. Natalia, R. Alexandra, Robust stability of uncertain stochastic differential delay equations, Systems & Control Letters, vol. 35, no. 5 (1998) 325-336.
[40] 林俊良,強健控制系統分析與設計,國立編譯館,1997. |