博碩士論文 110426020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:71 、訪客IP:18.117.70.132
姓名 謝思文(Szu-Wen Hsieh)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 應用 LSTM 方法於預診斷與健康管理模型之研究-以 A 公司塗佈機為例
(Applying LSTM Approach to Prognostics and Health Management Model– A Case Study of Company A Coating Machine)
相關論文
★ 應用灰色理論於有機農產品之經營管理— 需求預測及關鍵成功因素探討★ NAND型Flash價格與交運量預測在風險分析下之決策模式
★ 工業電腦用無鉛晶片組最適存貨政策之研究-以A公司為例★ 砷化鎵代工廠磊晶之最適存貨管理-以W公司為例
★ 資訊分享&決策制定下產銷協同關係之研究 -以IC設計業為例★ 應用分析層級法於電子化學品業委外供應商評選準則之研究
★ 應用資料探勘於汽車售服零件庫存滯銷因素分析-以C公司為例★ 多目標規劃最佳六標準差水準: 以薄膜電晶體液晶顯示器C公司製造流程為例
★ 以資料探勘技術進行消費者返廠定期保養之實證研究★ 以價值鏈觀點探討品牌公司關鍵組織流程之取決-以S公司為例
★ 應用產銷協同規劃之流程改善於化纖產業-現況改善與效益分析★ 權力模式與合作關係對於報價策略之影響研究—以半導體產業A公司為例
★ 應用資料探勘於汽車製造業之庫存原因分析★ 以類神經網路預測代工費報價---以中小面板產業C公司為例
★ 電路板產業存貨改善研究-以N公司為例★ 運用六標準差改善機台備用零件(Spare parts)存貨管理
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在現今科技的快速演進與工業 4.0 的發展推動下,全世界的製造業逐漸以「高生產效率」、「高穩定度機具設備」、「高產品品質」為目標進行發展,使得導入智慧製造相關技術,成為全球各大廠商目前最競爭的致勝關鍵與熱門的議題。整合運用物聯網(Internet of Things, IoT)、雲端運算(Cloud Computing)、人工智慧(Artificial Intelligence,AI)、感測器(Sensor)等先進的技術方式,使得設備轉型智能化,讓機台得以達到預測性維護之目的,發覺異常並盡速進行維修與保養,進而降低故障頻率的發生。
本研究使用 A 公司塗佈機之生產真實數據資料,基於預診斷與健康管理(Prognostics and Health Management, PHM)為架構,透過長短期記憶(Long ShortTerm Memory, LSTM)神經網路方法建置預測模型,由歷史數據進行分析與預測塗佈機之機況異常,並運用三種不同優化器-Adam、Adamax 及 RMSprop,進行模型效能比較,選定最佳模型完成模型驗證分析,將其預測結果繪製呈現,本研究之實驗結果可使機台於 38 秒前偵測出異常,準確率為 99.87%、精確率為 95.29%、召回率為 100%,F1-Score 作為最終整體綜合評價指標,高達 97.59%,以此作為機台設備健康狀況指標,實現預測性維護策略,得以盡早完成檢修保養計畫,並有效確保機台持續運轉,進行產品產出提高生產效率,大幅降低停機時間和延長設備壽命。
摘要(英) With the rapid advancement of technology and the development of Industry 4.0, the global manufacturing industry is progressively focusing on "high production efficiency," "high equipment stability," and "high product quality" as key development goals. Implementing smart manufacturing technologies has become a highly competitive and popular topic among major manufacturers worldwide. The integration of advanced technologies such as the Internet of Things (IoT), cloud computing, artificial intelligence (AI), and sensors enables the transformation of equipment into intelligent systems. This facilitates predictive maintenance, allowing for the timely detection of abnormalities and prompt repairs and maintenance, thereby reducing the frequency of equipment failures.
This study utilizes real production data from Company A′s coating machine. Based on the framework of Prognostics and Health Management (PHM), a predictive model is built using the Long Short-Term Memory (LSTM) neural network method. Historical data is analyzed to predict anomalies in the coating machine, and using three different optimizers-Adam, Adamax, and RMSprop are employed to compare model performance. The optimal model is selected through validation analysis, and its predicted results are presented graphically.
The experimental results of this study enable the detection of abnormalities in the machine 38 seconds in advance, with an accuracy rate of 99.87%, precision rate of 95.29%, recall rate of 100%, and an impressive F1-Score of 97.59% as the overall evaluation metric. These results serve as indicators of the machine′s equipment health condition, enabling the implementation of predictive maintenance strategies. This ensures timely completion of inspection and maintenance plans, effectively ensuring continuous machine operation, improving production efficiency, significantly reducing downtime, and extending equipment lifespan.
關鍵字(中) ★ 預診斷與健康管理
★ 深度學習
★ 長短期記憶
★ 優化器
★ 智慧製造
關鍵字(英) ★ Prognostics and Health Management
★ Deep Learning
★ Long Short-Term Memory Network
★ Optimizer
★ Smart Manufacturing
論文目次 中文摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究架構 3
第二章 文獻探討 4
2.1 預測性維護策略(Predictive Maintenance, PdM) 4
2.2 預診斷與健康管理(Prognostics and Health Management, PHM) 7
2.3 機器學習(Machine Learning, ML) 10
2.4 深度學習(Deep Learning, DL) 14
第三章 研究方法 19
3.1 研究項目 19
3.2 研究問題 21
3.3 長短期記憶(Long Short-Term Memory) 23
3.3.1 激勵函數(Activation Function) 26
3.3.2 損失函數(Loss Function) 29
3.4 優化器(Optimizer) 30
3.4.1 Adagrad(Adaptive Gradient) 30
3.4.2 RMSprop(Root Mean Square Propagation) 31
3.4.3 Adam(Adaptive Momentum) 32
3.4.4 Adamax(Adaptive Max Pooling) 33
3.5 評價指標(Evaluation Metrics) 34
第四章 實驗結果與分析 36
4.1 實驗環境與開發工具 36
4.2 資料集說明與預處理 37
4.3 實驗設計 40
4.3.1 滑動窗口(Sliding Window) 40
4.3.2 模型建立 43
4.4 實驗結果 44
4.4.1 模型分析與比較 44
4.4.2 模型驗證結果 51
第五章 結論與建議 56
5.1 結論 56
5.2 未來研究建議方向 57
參考文獻 58
參考文獻 1. Achouch, M., Dimitrova, M., Ziane, K., Sattarpanah Karganroudi, S., Dhouib, R., Ibrahim, H.; Adda, M. (2022) On Predictive Maintenance in Industry 4.0: Overview, Models, and Challenges. Appl. Sci., 12, 8081.
2. Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021). Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8(1), pp. 1-74
3. Atamuradov, V., Medjaher, K., Dersin, P., Lamoureux, B., & Zerhouni, N. (2017). Prognostics and health management for maintenance practitioners - review, implementation and tools evaluation. International Journal of Prognostics and Health Management, 8(Special Issue 7), pp. 1-31
4. Buckner, C. (2019). Deep learning: A philosophical introduction. Philosophy Compass, 14(10).
5. Calabrese, F., Regattieri, A., Botti, L., & Galizia, F. G. (2019). Prognostic health management of production systems. New proposed approach and experimental evidences. Procedia Manufacturing, 39, pp. 260-269
6. Cheng, S., & Pecht, M. (2009). A fusion prognostics method for remaining useful life prediction of electronic products. 2009 IEEE International Conference on Automation Science and Engineering, CASE 2009, pp. 102-107
7. Choi, R. Y., Coyner, A. S., Kalpathy-Cramer, J., Chiang, M. F., & Peter Campbell, J. (2020). Introduction to machine learning, neural networks, and deep learning. Translational Vision Science and Technology, 9(2).
8. Çinar, Z. M., Nuhu, A. A., Zeeshan, Q., Korhan, O., Asmael, M., & Safaei, B. (2020). Machine learning in predictive maintenance towards sustainable smart manufacturing in industry 4.0. Sustainability (Switzerland), 12(19).
9. Deloitte(2017). Predictive Maintenance. Taking pro-active measures based on advanced data analytics to predict and avoid machine failure, Analytics Institute. Accessed: Jan. 21, 2023. [Online]. Available at: https://www2.deloitte.com/content/dam/Deloitte/de/Documents/deloitte-analytics/Deloitte_Predictive-Maintenance_PositionPaper.pdf
10. Dey, A. (2016). Machine Learning Algorithms: A Review. International Journal of Computer Science and Information Technologies, 7(3), pp. 1174-1179
11. Emmert-Streib, F., Yang, Z., Feng, H., Tripathi, S., & Dehmer, M. (2020). An Introductory Review of Deep Learning for Prediction Models With Big Data. In Frontiers in Artificial Intelligence (Vol. 3), pp.1-23
12. Gackowiec, P. (2019). General overview of maintenance strategies – concepts and approaches. Multidisciplinary Aspects of Production Engineering, 2(1), pp. 126-139
13. Georgevici, A. I., & Terblanche, M. (2019). Neural networks and deep learning: a brief introduction. In Intensive Care Medicine (Vol. 45, Issue 5), pp. 712-714
14. Guo, Y., Cao, X., Liu, B., & Peng, K. (2020). El Nino index prediction using deep learning with ensemble empirical mode decomposition. Symmetry, 12(6).
15. Jaai,R. and Pecht, M. (2009) “Fusion prognostics,” Proceedings, AIAC-13 Thirteenth Australian International Aerospace Congress.
16. Khoshaba, F., Kareem, S., Awla, H., Mohammed, C. Machine learning algorithms in Bigdata analysis and its applications: A Review. In Proceedings of the 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), Ankara, Turkey, 9–11 June 2022; pp. 1–8.
17. Kilicarslan, S., Adem, K., & Çelik, M. (2021). An overview of the activation functions used in deep learning algorithms. Journal of New Results in Science, 10(3), pp. 75-88
18. Kim, G. S., & Lee, Y. H. (2021). Transformation towards a smart maintenance factory: The case of a vessel maintenance depot. Machines, 9,11,267
19. Kingma, D. P., & Ba, J. L. (2015). Adam: A method for stochastic optimization. 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings.
20. Lee, J., Wu, F., Zhao, W., Ghaffari, M., Liao, L., & Siegel, D. (2014). Prognostics and health management design for rotary machinery systems - Reviews, methodology and applications. Mechanical Systems and Signal Processing, 42(1–2), pp. 314-334
21. Legát, V., Mošna, F., Aleš, Z., & Jurča, V. (2017). Preventive maintenance models – higher operational reliability. Eksploatacja i Niezawodnosc, 19(1), pp. 134-141
22. Li, Z., Wang, K., & He, Y. (2016). Industry 4.0 - Potentials for Predictive Maintenance. Proc. 6th Int. Workshop Adv. Manuf. Autom., pp. 42-46
23. Mansor, M. A., Ohsato, A., & Sulaiman, S. (2012). Knowledge management for maintenance activities in the manufacturing sector. International Journal of Automotive and Mechanical Engineering, 5(1), pp. 612-621
24. Mathew, S., Azarian, M., & Pecht, M. (2011). Prognostics of Systems: Approaches and Applications. Proceedings of the 24th International Congress on Condition Monitoring and Diagnostics Engineering Management. Accessed: Feb. 20, 2023 [Online]. Available at: https://www.prognostics.umd.edu/calcepapers/COMADEM2011.pdf
25. Nannan, H., Xiaohao, S., & Liu, B. (2018). A Review on Prognostics and Health Management. International Journal of Advanced Network, Monitoring and Controls, 3(1), pp. 115-121
26. Qi, Q., & Tao, F. (2018). Digital Twin and Big Data Towards Smart Manufacturing and Industry 4.0: 360 Degree Comparison. IEEE Access 6, pp. 3585-3593
27. Samatas, G. G., Moumgiakmas, S. S., & Papakostas, G. A. (2021). Predictive Maintenance-Bridging Artificial Intelligence and IoT. 2021 IEEE World AI IoT Congress, AIIoT 2021.
28. Sarker, I. H. (2021). Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions. In SN Computer Science (Vol. 2, Issue 6), pp.1-20
29. Sezer, A., & Altan, A. (2021). Detection of solder paste defects with an optimization‐based deep learning model using image processing techniques. Soldering and Surface Mount Technology, 33(5), pp. 291-298
30. Sharma, S., Sharma, S., & Athaiya, A. (2020). ACTIVATION FUNCTIONS IN NEURAL NETWORKS. International Journal of Engineering Applied Sciences and Technology, 04(12), pp. 310-316
31. Sheppard, J., Kaufman, M., & Wilmer, T. (2009). IEEE standards for prognostics and health management. IEEE Aerospace and Electronic Systems Magazine, 24(9), pp. 97-103
32. Silvestrini, S., & Lavagna, M.(2022) Deep Learning and Artificial Neural Networks for Spacecraft Dynamics, Navigation and Control. Drones, 6, 270.
33. Xia, T., Dong, Y., Xiao, L., Du, S., Pan, E., & Xi, L. (2018). Recent advances in prognostics and health management for advanced manufacturing paradigms. In Reliability Engineering and System Safety (Vol. 178), pp. 255-268
34. Xiao, B., Liu, Y., & Xiao, B. (2019). Accurate state-of-charge estimation approach for lithium-ion batteries by gated recurrent unit with ensemble optimizer. IEEE Access, 7, pp. 54192-54202
35. Xu, P. (2019). Review on Studies of Machine Learning Algorithms. Journal of Physics: Conference Series, 1187(5).
36. Yaqub, M., Jinchao, F., Zia, M. S., Arshid, K., Jia, K., Rehman, Z. U., & Mehmood, A. (2020). State-of-the-art CNN optimizer for brain tumor segmentation in magnetic resonance images. Brain Sciences, 10(7).
37. Yi, D., Ahn, J., & Ji, S. (2020). An effective optimization method for machine learning based on ADAM. Applied Sciences (Switzerland), 10(3).
38. Zhao, Z., Quan, Q., & Cai, K. Y. (2014). A profust reliability based approach to prognostics and health management. IEEE Transactions on Reliability, 63(1), pp. 26-41
指導教授 陳振明(Jen-Ming Chen) 審核日期 2023-6-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明