參考文獻 |
[1] G.H. Koch, M.P.H. Brongers, N.G. Thompson, Y.P. Virmani, J.H. Payer, Corrosion Costs and Preventive Strategies in the United States, No. FHWA-RD-01-156, R315-01. United States. Federal Highway Administration, 2002.
[2] E. Pereira, E. Br, A. Resende, M.H.F. de Medeiros, L.C. Meneghetti, Chloride accelerated test: influence of silica fume, water/binder ratio and concrete cover thickness, Revista IBRACON de Estruturas e Materiais 6 (2013): 561-581.
[3] V.C. Li, Engineered Cementitious Composites (ECC): Material, structural, and durability performance. , Concrete Construction Engineering Handbook; Nawy, E., Ed.; CRC Press: Boca Raton, FL, USA,. (2008).
[4] v. Wiktor & H.M. Jonkers, Determination of the crack self-healing capacity of bacterial concrete, in: Concrete Solutions 2011, 2012: pp. 331–334.
[5] N. Nain, R. Surabhi, N. V. Yathish, V. Krishnamurthy, T. Deepa, S. Tharannum, Enhancement in strength parameters of concrete by application of Bacillus bacteria, Constr Build Mater. 202 (2019) 904–908. https://doi.org/10.1016/j.conbuildmat.2019.01.059.
[6] J. Wang, K. van Tittelboom, N. de Belie, W. Verstraete, Use of silica gel or polyurethane immobilized bacteria for self-healing concrete, Constr Build Mater. 26 (2012) 532–540. https://doi.org/10.1016/j.conbuildmat.2011.06.054.
[7] J. García-González, D. Rodríguez-Robles, J. Wang, N. de Belie, J.M. Morán-del Pozo, M.I. Guerra-Romero, A. Juan-Valdés, Quality improvement of mixed and ceramic recycled aggregates by biodeposition of calcium carbonate, Constr Build Mater. 154 (2017) 1015–1023. https://doi.org/10.1016/j.conbuildmat.2017.08.039.
[8] Y.S. Wang, L. Liu, Q. Fu, J. Sun, Z.Y. An, R. Ding, Y. Li, X.D. Zhao, Effect of Bacillus subtilis on corrosion behavior of 10MnNiCrCu steel in marine environment, Sci Rep. 10 (2020). https://doi.org/10.1038/s41598-020-62809-y.
[9] R.V.S. Anna V. Saetta and Renato V. Vitaliani, Analysis of Chloride Diffusion into Partially Saturated Concrete, ACI Mater J. 90 (n.d.). https://doi.org/10.14359/3874.
[10] H.E. Townsend, H.J. Cleary, L. Allegra, Breakdown of Oxide Films on Steel Exposed to Chloride Solutions, Corrosion 37.7 (1981): 384-391.
[11] U. Angst, B. Elsener, C.K. Larsen, Ø. Vennesland, Critical chloride content in reinforced concrete - A review, Cem Concr Res. 39 (2009) 1122–1138. https://doi.org/10.1016/j.cemconres.2009.08.006.
[12] K. Tuutti, Corrosion of Steel in Concrete, Swedish Cement and Concrete Research Institute, Stockholm, 1982.
[13] C. Qing Li, Reliability Based Service Life Prediction of Corrosion Affected Concrete Structures, Journal of Structural Engineering. 130 (2004) 1570–1577. https://doi.org/10.1061/(asce)0733-9445(2004)130:10(1570).
[14] Stratmann, Müller, and J. Müller. "The mechanism of the oxygen reduction on rust-covered metal substrates." Corrosion Science 36.2 (1994): 327-359.
[15] A. Boddy, E. Bentz, A. Thomas, R.D. Hooton, An overview and sensitivity study of a multimechanistic chloride transport model, Cement and concrete research 29.6 (1999): 827-837.
[16] Martys, Nicos S. Survey of concrete transport properties and their measurement. National Institute of Standards and Technology, 1996.
[17] Wong, S. F., et al. "Study of water movement in concrete." Magazine of Concrete Research 53.3 (2001): 205-220.
[18] Stanish, K. D., R. D. Hooton, and M. D. A. Thomas. "Testing the chloride penetration resistance of concrete: a literature review." (1997).
[19] Stanish, Kyle, and Michael Thomas. "The use of bulk diffusion tests to establish time-dependent concrete chloride diffusion coefficients." Cement and Concrete Research 33.1 (2003): 55-62.
[20] M. Nokken, A. Boddy, R.D. Hooton, M.D.A. Thomas, Time dependent diffusion in concrete-three laboratory studies, Cem Concr Res. 36 (2006) 200–207. https://doi.org/10.1016/j.cemconres.2004.03.030.
[21] Stanish, K. D., R. D. Hooton, and M. D. A. Thomas. "Testing the chloride penetration resistance of concrete: a literature review." (1997).
[22] ASTM Designation: C1556 − 11a Standard Test Method for Determining the Apparent Chloride Diffusion Coefficient of Cementitious Mixtures by Bulk Diffusion 1, (n.d.). https://doi.org/10.1520/C1556-11AR16.
[23] American Association of State Highway and Transportation Officials, Standard Method of Test for Resistance of Concrete to Chloride Ion Penetration, T259, in: AASHTO Standards.
[24] Sahmaran, Mustafa, Mo Li, and Victor C. Li. "Transport properties of engineered cementitious composites under chloride exposure." ACI Materials Journal 104.6 (2007): 604-611.
[25] Peng Qiyin, Comparison of methods for estimating the chloride ion intrusion profile and service life of barrier concrete, National Central University, 2015.
[26] De Muynck, Willem, Nele De Belie, and Willy Verstraete. "Improvement of concrete durability with the aid of bacteria." Proceedings of the first international conference on self healing materials. Springer, 2007.
[27] W. Chalee, C. Jaturapitakkul, P. Chindaprasirt, Predicting the chloride penetration of fly ash concrete in seawater, Marine Structures. 22 (2009) 341–353. https://doi.org/10.1016/j.marstruc.2008.12.001.
[28] Life-365 Service Life Prediction Model and Computer Program for Predicting the Service Life and Life-Cycle Cost of Reinforced Concrete Exposed to Chlorides, 2020.
[29] V.C.L. and C.A. Mustafa Sahmaran, Corrosion Resistance Performance of Steel-Reinforced Engineered Cementitious Composite Beams, ACI Mater J. 105 (2008).
[30] Y.S. Wang, L. Liu, Q. Fu, J. Sun, Z.Y. An, R. Ding, Y. Li, X.D. Zhao, Effect of Bacillus subtilis on corrosion behavior of 10MnNiCrCu steel in marine environment, Sci Rep. 10 (2020). https://doi.org/10.1038/s41598-020-62809-y.
[31] S.K. Karn, G. Fang, J. Duan, Bacillus sp. acting as dual role for corrosion induction and corrosion inhibition with carbon steel (CS), Front Microbiol. 8 (2017). https://doi.org/10.3389/fmicb.2017.02038.
[32] M.L. Gana, S. Kebbouche-Gana, A. Touzi, M.A. Zorgani, A. Pauss, H. Lounici, N. Mameri, Antagonistic activity of Bacillus sp. obtained from an Algerian oilfield and chemical biocide THPS against sulfate-reducing bacteria consortium inducing corrosion in the oil industry, J Ind Microbiol Biotechnol. 38 (2011) 391–404. https://doi.org/10.1007/s10295-010-0887-2.
[33] M. Seifan, A.K. Sarmah, A.K. Samani, A. Ebrahiminezhad, Y. Ghasemi, A. Berenjian, Mechanical properties of bio self-healing concrete containing immobilized bacteria with iron oxide nanoparticles, Appl Microbiol Biotechnol. 102 (2018) 4489–4498. https://doi.org/10.1007/s00253-018-8913-9.
[34] R. Siddique, N.K. Chahal, Effect of ureolytic bacteria on concrete properties, Constr Build Mater. 25 (2011) 3791–3801. https://doi.org/10.1016/j.conbuildmat.2011.04.010.
[35] A. Heyer, F. D’Souza, C.F.L. Morales, G. Ferrari, J.M.C. Mol, J.H.W. de Wit, Ship ballast tanks a review from microbial corrosion and electrochemical point of view, Ocean Engineering. 70 (2013) 188–200.
[36] AASHTO, Standard Method of Test for Sampling and Testing for Chloride Ion in Concrete and Concrete Raw Materials, T260-1, in: AASHTO Standards, 2001.
[37] Standard Test Method for Acid-Soluble Chloride in Mortar and Concrete 1, (n.d.). https://doi.org/10.1520/C1152_C1152M-20.
[38] Ahmad, Shamsad. "Techniques for inducing accelerated corrosion of steel in concrete." Arabian Journal for Science and Engineering 34.2 (2009): 95.
[39] Q. Li, X. Jin, D. Yan, C. Fu, J. Xu, Study of wiring method on accelerated corrosion of steel bars in concrete, Constr Build Mater. 269 (2021) 121286. https://doi.org/10.1016/j.conbuildmat.2020.121286.
[40] Sahmaran, Mustafa, et al. "Influence of aggregate type and size on ductility and mechanical properties of engineered cementitious composites." ACI Materials Journal 106.3 (2009): 308.
[41] M. Sahmaran, M. Lachemi, K.M.A. Hossain, R. Ranade, V.C. Li, Influence of aggregate type and size on ductility and mechanical properties of engineered cementitious composites, ACI Mater J. 106 (2009) 308.
[42] T. Thiel, Streaking microbial cultures on agar plates, Science in the Real World: Microbes in Action. (1999).
[43] S. Jena, B. Basa, K.C. Panda, N.K. Sahoo, Impact of Bacillus subtilis bacterium on the properties of concrete, Mater Today Proc. 32 (2020) 651–656.
[44] M.P. Smitha, D. Suji, M. Shanthi, A. Adesina, Application of bacterial biomass in biocementation process to enhance the mechanical and durability properties of concrete, Cleaner Materials. 3 (2022) 100050.
[45] N. Otsuki, S. Nagataki, K. Nakashita, Evaluation of the AgNO3 solution spray method for measurement of chloride penetration into hardened cementitious matrix materials, Constr Build Mater. 7 (1993) 195–201.
[46] L. V. Real, D.R.B. Oliveira, T. Soares, M.H.F. Medeiros, AgNO3 spray method for measurement of chloride penetration: the state of art, ALCONPAT Journal. 5 (n.d.) 141–151. https://doi.org/10.21041/ra.
[47] C. V. Pontes, G.C. Réus, E.C. Araújo, M.H.F. Medeiros, Silver nitrate colorimetric method to detect chloride penetration in carbonated concrete: How to prevent false positives, Journal of Building Engineering. 34 (2021). https://doi.org/10.1016/j.jobe.2020.101860.
[48] NT BUILD 492. "Concrete, mortar and cement-based repair materials: chloride migration coefficient from non-steady-state migration experiments." NORDTEST (1999).
[49] L. Song, W. Sun, J. Gao, Time dependent chloride diffusion coefficient in concrete, Journal of Wuhan University of Technology-Mater. Sci. Ed. 28 (2013) 314–319. https://doi.org/10.1007/s11595-013-0685-6.
[50] H.-W. Song, C.-H. Lee, K.Y. Ann, Factors influencing chloride transport in concrete structures exposed to marine environments, Cem Concr Compos. 30 (2008) 113–121. https://doi.org/10.1016/j.cemconcomp.2007.09.005.
[51] T. Uomoto, S. Misra, Behavior of concrete beams and columns in marine environment when corrosion of reinforcing bars takes place, Special Publication. 109 (1988) 127–146.
[52] J. Feng, Y. Su, C. Qian, Coupled effect of PP fiber, PVA fiber and bacteria on self-healing efficiency of early-age cracks in concrete, Constr Build Mater. 228 (2019). https://doi.org/10.1016/j.conbuildmat.2019.116810.
[53] J. Feng, Y. Su, C. Qian, Coupled effect of PP fiber, PVA fiber and bacteria on self-healing efficiency of early-age cracks in concrete, Constr Build Mater. 228 (2019). https://doi.org/10.1016/j.conbuildmat.2019.116810.
[54] Y. Al-Najjar, S. Yeşilmen, A.M. Al-Dahawi, M. Şahmaran, G. Yıldırım, M. Lachemi, L. Amleh, Physical and Chemical Actions of Nano-Mineral Additives on Properties of High-Volume Fly Ash Engineered Cementitious Composites, ACI Mater J. 113 (2016). https://doi.org/10.14359/51689114.
[55] J. García-González, D. Rodríguez-Robles, J. Wang, N. de Belie, J.M. Morán-del Pozo, M.I. Guerra-Romero, A. Juan-Valdés, Quality improvement of mixed and ceramic recycled aggregates by biodeposition of calcium carbonate, Constr Build Mater. 154 (2017) 1015–1023. https://doi.org/10.1016/j.conbuildmat.2017.08.039.
[56] N. Nain, R. Surabhi, N.V. Yathish, V. Krishnamurthy, T. Deepa, S. Tharannum, Enhancement in strength parameters of concrete by application of Bacillus bacteria, Constr Build Mater. 202 (2019) 904–908. https://doi.org/10.1016/j.conbuildmat.2019.01.059.
[57] J. Wang, K. van Tittelboom, N. de Belie, W. Verstraete, Use of silica gel or polyurethane immobilized bacteria for self-healing concrete, Constr Build Mater. 26 (2012) 532–540. https://doi.org/10.1016/j.conbuildmat.2011.06.054.
[58] M. de Rooij, K. van Tittelboom, N. de Belie, E. Schlangen, Self-healing phenomena in cement-Based materials: state-of-the-art report of RILEM technical committee 221-SHC: self-Healing phenomena in cement-Based materials, Springer, 2013.
[59] Syed Ayub Azher, A prediction model for the residual flexural strength of corroded reinforced concrete beams, King Fahd University of Petroleum and Mineral, 2005.
[60] F. P. Ijsseling, Application of Electrochemical Methods of Corrosion Rate Determination to System Involving Corrosion Product Layers, British Corrosion Journal, London. 21 (1986) 95–101.
[61] P.B. YuBun Auyeung and Lan Chung, Bond Behavior of Corroded Reinforcement Bars, ACI Mater J. 97 (n.d.). https://doi.org/10.14359/826.
[62] B. van Belleghem, P. van den Heedeand, N. de Belie, Resistance to Chloride Penetration of Self-Healing Concrete with Encapsulated Polyurethane, in: 2016: pp. 1291–1300. https://doi.org/10.18552/2016/SCMT4D118.
[63] K.S. Yoo, S.Y. Jang, K.M. Lee, Recovery of chloride penetration resistance of cement-based composites due to self-healing of cracks, Materials. 14 (2021). https://doi.org/10.3390/ma14102501.
|