博碩士論文 110324041 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:54 、訪客IP:3.141.27.244
姓名 王曉梅(Hsiao-Mei Wang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以Bacillus subtilis降解具有刺鼻氣味之廢水
(Degradation of wastewater with pungent odor by Bacillus subtilis)
相關論文
★ 探討菌體形態對於裂褶菌多醣體之影響★ 探討不同培養方式對猴頭菇抗氧化與抗腫瘤性質的影響
★ 探討不同培養溫度Aspergillus niger 對丹參之機能性影響★ 光合菌在光生物反應器產氫之研究
★ 探討培養溫度對巴西蘑菇液態醱酵之影響★ 利用批式液態培養來探討檸檬酸對裂褶菌生長及其多醣體生成影響之研究
★ 探討不同培養基組成對光合菌Rhodobacter sphaeroides生產Coenzyme Q10之研究★ 利用混合特定菌種生產氫氣之研究
★ 探討氧化還原電位作為Clostridium butyricum連續產氫之研究★ 探討培養基之pH值與Xanthan gum的添加對巴西蘑菇多醣體生產之影響
★ 探討麩胺酸的添加和供氧量對液態發酵生產裂褶菌多醣體之研究★ 探討以兩水相系統提昇Clostridium butyricum產氫之研究
★ 探討通氣量對於樟芝醱酵生產生物鹼之影響★ 探討深層發酵中環境因子對巴西洋菇生產多醣之影響
★ 探討通氣量對於樟芝發酵生產與純化脂解酵素之研究★ 探討以活性碳吸附酸來提昇Clostridium butyricum產氫之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-20以後開放)
摘要(中) 家庭及工業廢水中含有氨氮物質及有機酸,其中氨水、丙酸及丁酸經常導致刺鼻氣味,然而,降解氨氮物質及有機酸的方法和過程繁瑣,且若處理不當就排放到環境中,會對環境造成嚴重影響。
Bacillus subtilis是一種革蘭氏陽性细菌,屬於芽孢桿菌科。它是一種廣泛存在於自然環境中的细菌,且具有高度的耐熱性及其能夠形成孢子以適應較為惡劣的環境。Bacillus subtilis具有多種代谢途径,能够利用有機物和氮源等污染物进行代谢,將其轉化為無害的產物。
因此Bacillus subtilis可以做為一種有效處理家庭污水的方法,通過加入 10 %(v/v) 的菌液至濃度為0.1M之氨水、丙酸、丁酸及上述三種之混和溶液,以每24小時取一點,共取7天,並以分光光度計檢測氨氮含量隨天數的變化,以氣相層析儀檢測丙酸及丁酸隨天數變化的含量。
實驗結果表明,不論是氨氮含量抑或是丙酸和丁酸的含量,在與Bacillus subtilis BCRC10029發酵之後,其三者的含量皆有隨著天數的增加而下降的趨勢,在最佳環境條件下,Bacillus subtilis BCRC10029降解消耗的氨氮共減少了84.4%,丙酸從3.54%被降解消耗至0%,而丁酸也從36.1%下降到15.4%。在混和溶液中,以不同菌液濃度接種由低至高對於氨氮的變化為56.9%、52.2%、65.9%及58.8%。不同菌液濃度對丙酸的降解消耗,在發酵到第7天時,丙酸的殘留量皆趨近於0,而丁酸的殘留量也有一定程度的減少,顯示出Bacillus subtilis BCRC10029具有可消耗氨氮、丙酸及丁酸的能力。
摘要(英) Domestic wastewater contains ammonia nitrogen substances and organic acids, among which ammonia water, propionic acid and butyric acid often cause pungent odors. However, the method and process of degrading ammonia nitrogen substances and organic acids are cumbersome, and if they are not properly treated, and straightly discharged into the sewer, which will have a negative impact on the environment.
Bacillus subtilis is a Gram-positive bacterium that belongs to the Bacillus family. It is a bacterium that widely exists in the natural environment and is highly heat-resistant and capable of forming spores to adapt to harsher environments. Bacillus subtilis has a variety of metabolic pathways, which can metabolize pollutants such as organic matter and nitrogen sources, and convert them into harmless products.
Therefore, in this experiment Bacillus subtilis BCRC10029 is used as a method to treat domestic wastewater. By adding 10% (v/v) of the bacterial suspensions to a concentration of 0.1M ammonia, propionic acid, butyric acid and the mixed solution of the above three, a sample is taken every 24 hours for a total of 7 days, and the change of ammonia nitrogen content with the number of days was detected with a spectrophotometer, and the content of propionic acid and butyric acid with the number of days was detected with a gas chromatograph.
The experimental results show that no matter the content of ammonia nitrogen or the content of propionic acid and butyric acid, after fermentation with Bacillus subtilis BCRC10029, the contents of the three all have a downward trend with the increase of days. Under the best environmental conditions, Bacillus subtilis BCRC10029 The ammonia nitrogen consumed by the degradation of Bacillus subtilis BCRC10029 decreased by 84.4%, propionic acid was degraded and consumed from 3.54% to 0%, and butyric acid also decreased from 36.1% to 15.4%. In the mixed solution, the changes of ammonia nitrogen were 56.9%, 52.2%, 65.9% and 58.8% when inoculated with different bacterial concentration from low to high. The degradation and consumption of propionic acid by different concentrations of bacteria suspensions, the residual amount of propionic acid tended to 0 on the 7th day of fermentation, while the residual amount of butyric acid also decreased to a certain extent, showing that Bacillus subtilis BCRC10029 has the ability to degrade and consume ammonia nitrogen, propionic acid and butyric acid.
關鍵字(中) ★ 枯草芽孢桿菌
★ 廢水
★ 氨氮
關鍵字(英) ★ Bacillus subtilis
★ wastewater
★ ammonia nitrogen
論文目次 目錄
摘要 I
ABSTRACT II
致謝 III
目錄 IV
表目錄 VI
圖目錄 VII
一、 緒論 1
1-1 研究動機 1
1-2 研究目的 1
二、 文獻回顧 3
2-1 家庭廢水及工業廢水 3
2-1-1 廢水的基本介紹 3
2-1-2 廢水的處理及影響 3
2-2 枯草芽孢桿菌 5
2-2-1 芽孢桿菌基本介紹 5
2-2-2 Bacillus subtilis 菌種基本介紹 7
2-3 影響發酵工程的物化因子 8
2-3-1 培養基組成 8
2-3-2 溫度 11
2-3-3 pH值 13
2-3-4 攪拌速率 13
三、 材料與方法 15
3-1 實驗規劃 15
3-2 實驗材料 17
3-2-1 實驗菌株 17
3-2-2 實驗原料 17
3-2-3 實驗藥品 17
3-2-4 實驗儀器與設備 19
3-3 實驗方法 22
3-3-1 冷凍乾燥管臨時存放及開管活化 22
3-3-2 菌種保存 24
3-3-3 菌種固態培養 25
3-3-4 液態種瓶培養 26
3-3-5 液態發酵實驗 26
3-4 分析方法 28
3-4-1 pH值分析 28
3-4-2 丙酸和丁酸濃度分析 28
3-4-3 氨氮含量分析 31
3-4-4 菌落數分析 34
四、 結果與討論 35
4-1 菌種生長曲線 35
4-2 不同環境下之菌種生長曲線 36
4-2-1 未調整pH值之菌種生長曲線 36
4-2-2 調整pH值之菌種生長曲線 38
4-2-3 混和溶液之菌種生長曲線 40
4-3 氨氮含量之分析 45
4-3-1 初始pH值之影響 45
4-3-2 調整pH值之影響 46
4-3-3 混和溶液之影響 47
4-4 丙酸及丁酸含量分析 51
4-4-1 初始pH值之影響 51
4-4-2 調整pH值之影響 52
4-4-3 混和溶液之影響 54
五、 結論 61
參考文獻 63
參考文獻 1. Thomas, O. and M.-F. Thomas, Chapter 12 - Industrial wastewater, in UV-Visible Spectrophotometry of Waters and Soils (Third Edition), O. Thomas and C. Burgess, Editors. 2022, Elsevier. p. 385-416.
2. G, L.
3. Chiu, Y.-C., et al., Control of carbon and ammonium ratio for simultaneous nitrification and denitrification in a sequencing batch bioreactor. International biodeterioration & biodegradation, 2007. 59(1): p. 1-7.
4. Khardenavis, A.A., A. Kapley, and H.J. Purohit, Simultaneous nitrification and denitrification by diverse Diaphorobacter sp. Applied Microbiology and Biotechnology, 2007. 77: p. 403-409.
5. Khin, T. and A.P. Annachhatre, Novel microbial nitrogen removal processes. Biotechnology advances, 2004. 22(7): p. 519-532.
6. Yang, X.-P., et al., Isolation and nitrogen removal characteristics of an aerobic heterotrophic nitrifying–denitrifying bacterium, Bacillus subtilis A1. Bioresource technology, 2011. 102(2): p. 854-862.
7. Ilyas, M., et al., Environmental and health impacts of industrial wastewater effluents in Pakistan: a review. Rev Environ Health, 2019. 34(2): p. 171-186.
8. Buczyńska, A., R. Rolecki, and S. Tarkowski, [Industrial wastes and health hazards]. Med Pr, 1999. 50(2): p. 179-90.
9. Turnbull., P.C.B., Bacillus, in Medical Microbiology, S. Baron, Editor. 1996.
10. Britannica, E., bacillus. 7 May. 2020.
11. Errington, J. and L.T.V. Aart, Microbe Profile: Bacillus subtilis: model organism for cellular development, and industrial workhorse. Microbiology (Reading), 2020. 166(5): p. 425-427.
12. Paul, S.I., et al., Identification of marine sponge-associated bacteria of the Saint Martin′s island of the Bay of Bengal emphasizing on the prevention of motile Aeromonas septicemia in Labeo rohita. Aquaculture, 2021. 545: p. 737156.
13. Rahman, M.M., et al., Whole-Genome Sequence of Bacillus subtilis WS1A, a Promising Fish Probiotic Strain Isolated from Marine Sponge of the Bay of Bengal. Microbiol Resour Announc, 2020. 9(39).
14. Serra, C.R., et al., Sporulation during growth in a gut isolate of Bacillus subtilis. Journal of bacteriology, 2014. 196(23): p. 4184-4196.
15. Hirooka, K., Transcriptional response machineries of Bacillus subtilis conducive to plant growth promotion. Bioscience, biotechnology, and Biochemistry, 2014. 78(9): p. 1471-1484.
16. Philippe Noirot, P.P.a.M.-F.N.-G., Bacillus: Cellular and Molecular Biology. Replication of the Bacillus subtilis Chromosome. May 2007: Caister Academic Press.
17. Earl, A.M., R. Losick, and R. Kolter, Ecology and genomics of Bacillus subtilis. Trends Microbiol, 2008. 16(6): p. 269-75.
18. Hu, P., et al., Sensing of nitrogen limitation by Bacillus subtilis: comparison to enteric bacteria. J Bacteriol, 1999. 181(16): p. 5042-50.
19. Gauvry, E., et al., Effects of temperature, pH and water activity on the growth and the sporulation abilities of Bacillus subtilis BSB1. International Journal of Food Microbiology, 2021. 337: p. 108915.
20. Sidorova, T.M., et al., Optimization of laboratory cultivation conditions for the synthesis of antifungal metabolites by bacillus subtilis strains. Saudi Journal of Biological Sciences, 2020. 27(7): p. 1879-1885.
21. Yang, T., et al., A Novel Regulator Participating in Nitrogen Removal Process of Bacillus subtilis JD-014. Int J Mol Sci, 2021. 22(12).
22. Schilling, O., et al., Transcriptional and metabolic responses of Bacillus subtilis to the availability of organic acids: transcription regulation is important but not sufficient to account for metabolic adaptation. Appl Environ Microbiol, 2007. 73(2): p. 499-507.
指導教授 徐敬衡(Chin-Hang Shu) 審核日期 2023-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明