博碩士論文 110324057 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:18.116.42.208
姓名 王民瑋(Min-Wei Wang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用乳酸菌及酵母菌共發酵豆漿 探討其生產β-(1,3)-D-glucan之影響
(Investigating the effects of β-(1,3)-D-glucan production of soy milk co-fermentated by Lactic Acid Bacteria and Yeast)
相關論文
★ 探討菌體形態對於裂褶菌多醣體之影響★ 探討不同培養方式對猴頭菇抗氧化與抗腫瘤性質的影響
★ 探討不同培養溫度Aspergillus niger 對丹參之機能性影響★ 光合菌在光生物反應器產氫之研究
★ 探討培養溫度對巴西蘑菇液態醱酵之影響★ 利用批式液態培養來探討檸檬酸對裂褶菌生長及其多醣體生成影響之研究
★ 探討不同培養基組成對光合菌Rhodobacter sphaeroides生產Coenzyme Q10之研究★ 利用混合特定菌種生產氫氣之研究
★ 探討氧化還原電位作為Clostridium butyricum連續產氫之研究★ 探討培養基之pH值與Xanthan gum的添加對巴西蘑菇多醣體生產之影響
★ 探討麩胺酸的添加和供氧量對液態發酵生產裂褶菌多醣體之研究★ 探討以兩水相系統提昇Clostridium butyricum產氫之研究
★ 探討通氣量對於樟芝醱酵生產生物鹼之影響★ 探討深層發酵中環境因子對巴西洋菇生產多醣之影響
★ 探討通氣量對於樟芝發酵生產與純化脂解酵素之研究★ 探討以活性碳吸附酸來提昇Clostridium butyricum產氫之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-20以後開放)
摘要(中) 黃豆是一種重要的糧食作物,具有廣泛的應用價值和營養特性,提供優質的植物蛋白質,且富含必需氨基酸、纖維、礦物質和維生素,其中對人體有益之生理活性成分不可少,深入了解其營養成分的組成和對人體健康的生理作用和保健效益,以其原料製作之豆漿更是有助於給人們提供更多的營養選擇。
本研究目的在於利用兩乳酸菌種Lactobacillus plantarum BCRC15478和Lactobacillus buchneri BCE119151,加入酵母菌Saccharomyces cerevisiae BCRC21812共發酵豆漿,並透過各項發酵參數探討,以達到最適化生產β-(1,3)-D-glucan以及提升其抗氧化活性。最終得到Lactobacillus buchneri BCE119151以豆漿濃度7%和發酵溫度37℃加入Saccharomyces cerevisiae BCRC21812共發酵豆漿獲得最佳之結果—最大EPS含量0.255 g/L、最大β-(1,3)-D-glucan含量0.154 g/L及其在EPS相對含量602 mg/g、總多酚含量1093 mg/L以及DPPH自由基清除能力70.9%。綜合上述結果,乳酸菌結合酵母菌共發酵豆漿藉由菌種之間相互作用提高整體性能,對於其相關功能飲品具有相當的潛力。
摘要(英) Soybeans are an important staple crop with a wide range of applications and nutritional properties. They provide high-quality plant-based protein and are rich in essential amino acids, fiber, minerals, and vitamins. Soybeans also contain beneficial physiological active compounds, which play a significant role in human health. In-depth understanding of the composition of their nutritional components and their physiological effects and health benefits on the human body is crucial. Soybeans are commonly used as a raw material to produce soy milk, which further contributes to providing people with more nutritional choices.
The objective of this study is to utilize two strains of lactic acid bacteria, Lactobacillus plantarum BCRC15478 and Lactobacillus buchneri BCE119151, in combination with the yeast Saccharomyces cerevisiae BCRC21812, to co-ferment soy milk. ous fermentation parameters are investigated to optimize the production of β-(1,3)-D-glucan and enhance its antioxidant activity. The optimal results are achieved by fermenting soy milk with 7% concentration and a fermentation temperature of 37°C, using Lactobacillus buchneri BCE119151 in conjunction with Saccharomyces cerevisiae BCRC21812. The The maximum values obtained are as follows: EPS content of 0.255 g/L, β-(1,3)-D-glucan content of 0.154 g/L, EPS relative content of 602 mg/g, total polyphenol content of 1093 mg/L , and DPPH radical scavenging capacity of 70.9%. Based on the above results, the co-fermentation of soy milk with a combination of lactic acid bacteria and yeast demonstrates improved overall performance through synergistic interactions between the strains, suggesting Considerable potential for the development of related functional beverages.
關鍵字(中) ★ 乳酸菌
★ 酵母菌
★ 豆漿
★ 胞外多醣
★ β-(1,3)-D-glucan
★ 共發酵
關鍵字(英) ★ lactic acid bacteria
★ yeast
★ soy milk
★ Exopolysaccharides (EPS)
★ β-(1,3)-D-glucan
★ co-fermentation
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 ix
表目錄 xii
一、緒論 1
1-1 研究動機及目的 1
二、文獻回顧 3
2-1黃豆與豆漿 3
2-1-1黃豆的基本介紹 3
2-1-2黃豆的成分組成 3
2-1-3豆漿的基本介紹 9
2-1-4微生物發酵豆漿 12
2-2乳酸菌及酵母菌 14
2-2-1乳酸菌的基本介紹 14
2-2-2 Lactobacillus plantarum菌種的基本介紹 17
2-2-3 Lactobacillus buchneri菌種的基本介紹 17
2-2-4酵母菌的基本介紹 18
2-2-5 Saccharomyces cerevisiae菌種的基本介紹 20
2-3多醣體 21
2-3-1多醣體介紹 21
2-3-2乳酸菌胞外多醣 23
2-3-3 β-(1,3)-D-glucan(葡聚醣) 24
2-4影響發酵工程之物化因子 28
2-4-1培養基組成 28
2-4-2溫度 31
2-4-3氧氣 32
2-5多菌種共發酵工程 33
三、材料與方法 36
3-1實驗規劃 36
3-2實驗材料 37
3-2-1實驗菌株 37
3-2-2實驗原料 39
3-2-3實驗藥品 39
3-2-4實驗儀器與設備 40
3-3實驗方法 42
3-3-1菌種保存及培養方式 42
3-3-2液態發酵實驗 45
3-4分析方法 48
3-4-1菌種生長曲線 48
3-4-2 pH值分析 48
3-4-3還原糖濃度分析 48
3-4-4總多酚含量分析 51
3-4-5 DPPH自由基清除能力分析 52
3-4-6乳酸及酒精濃度分析 53
3-4-7胞外多醣體分析 56
3-4-8 β-(1,3)-D-glucan活性多醣體分析 57
四、結果與討論 59
4-1菌種生長曲線 59
4-1-1 Lactobacillus plantarum BCRC15478之生長曲線 59
4-1-2 Lactobacillus buchneri BCE119151之生長曲線 60
4-1-3 Saccharomyces cerevisiae BCRC21812之生長曲線 61
4-2乳酸菌單一發酵之豆漿濃度影響探討 62
4-2-1豆漿濃度對發酵豆漿之代謝能力影響 62
4-2-2豆漿濃度對發酵豆漿生產胞外多醣體之影響 65
4-2-3豆漿濃度對發酵豆漿生產β-(1,3)-D-glucan之影響 67
4-2-4豆漿濃度對發酵豆漿抗氧化物質及活性影響 69
4-2-5豆漿濃度對乳酸菌發酵影響之結論 71
4-3乳酸菌單一發酵之溫度影響探討 72
4-3-1溫度對發酵豆漿之代謝能力影響 72
4-3-2溫度對發酵豆漿生產胞外多醣體之影響 75
4-3-3溫度對發酵豆漿生產β-(1,3)-D-glucan之影響 77
4-3-4溫度對發酵豆漿抗氧化物質及活性影響 79
4-3-5溫度對乳酸菌發酵影響之結論 81
4-4乳酸菌與酵母菌共發酵豆漿之探討 82
4-4-1不同乳酸菌分別與酵母菌共發酵豆漿之代謝能力影響 83
4-4-2不同乳酸菌分別與酵母菌共發酵豆漿生產胞外多醣體之影響 86
4-4-3不同乳酸菌分別與酵母菌共發酵豆漿β-(1,3)-D-glucan之影響 88
4-4-4不同乳酸菌分別與酵母菌共發酵豆漿抗氧化物質及活性影響 90
4-5各菌種組合發酵豆漿之結論 92
五、結論 93
參考文獻 95
參考文獻 [1] D. Fukushima, "Recent progress of soybean protein foods: chemistry, technology, and nutrition," Food Reviews International, vol. 7, no. 3, pp. 323-351, 1991.
[2] M. A. R. Mazumder and A. A. Begum, "Soy milk as source of nutrient for malnourished population of developing country: A review," International Journal of Advanced Scientific and Technical Research, vol. 5, no. 6, pp. 192-203, 2016.
[3] O. Palacios, J. Badran, M. A. Drake, M. Reisner, and H. Moskowitz, "Consumer acceptance of cow′s milk versus soy beverages: Impact of ethnicity, lactose tolerance and sensory preference segmentation," Journal of sensory studies, vol. 24, no. 5, pp. 731-748, 2009.
[4] X. Sui, T. Zhang, and L. Jiang, "Soy protein: Molecular structure revisited and recent advances in processing technologies," Annual Review of Food Science and Technology, vol. 12, pp. 119-147, 2021.
[5] M. Friedman and D. L. Brandon, "Nutritional and health benefits of soy proteins," Journal of agricultural and food chemistry, vol. 49, no. 3, pp. 1069-1086, 2001.
[6] K. K. Carroll, "Review of clinical studies on cholesterol-lowering response to soy protein," Journal of the American Dietetic Association, vol. 91, no. 7, pp. 820-828, 1991.
[7] L. Karr-Lilienthal, C. Kadzere, C. Grieshop, and G. Fahey Jr, "Chemical and nutritional properties of soybean carbohydrates as related to nonruminants: A review," Livestock Production Science, vol. 97, no. 1, pp. 1-12, 2005.
[8] L. Yang et al., "Insoluble dietary fiber from soy hulls regulates the gut microbiota in vitro and increases the abundance of bifidobacteriales and lactobacillales," Journal of food science and technology, vol. 57, pp. 152-162, 2020.
[9] J.-M. Lecerf et al., "Soyfoods, glycemic control and diabetes," Nutrition clinique et métabolisme, vol. 34, no. 2, pp. 141-148, 2020.
[10] E. G. Perkins, "Composition of soybeans and soybean products," in Practical handbook of soybean processing and utilization: Elsevier, 1995, pp. 9-28.
[11] A. Lebiedzińska and P. Szefer, "Vitamins B in grain and cereal–grain food, soy-products and seeds," Food Chemistry, vol. 95, no. 1, pp. 116-122, 2006.
[12] Y.-B. Lee, H. J. Lee, and H. S. Sohn, "Soy isoflavones and cognitive function," The Journal of nutritional biochemistry, vol. 16, no. 11, pp. 641-649, 2005.
[13] S. Giri and S. Mangaraj, "Processing influences on composition and quality attributes of soymilk and its powder," Food Engineering Reviews, vol. 4, pp. 149-164, 2012.
[14] H. Han et al., "Recent innovations in processing technologies for improvement of nutritional quality of soymilk," CyTA-Journal of Food, vol. 19, no. 1, pp. 287-303, 2021.
[15] M. Jayachandran and B. Xu, "An insight into the health benefits of fermented soy products," Food chemistry, vol. 271, pp. 362-371, 2019.
[16] S. Hati, N. Patel, and S. Mandal, "Comparative growth behaviour and biofunctionality of lactic acid bacteria during fermentation of soy milk and bovine milk," Probiotics and antimicrobial proteins, vol. 10, pp. 277-283, 2018.
[17] R. R. Gamba et al., "Chemical, microbiological, and functional characterization of kefir produced from cow’s milk and soy milk," International Journal of Microbiology, vol. 2020, 2020.
[18] S. Ahsan et al., "Functional exploration of bioactive moieties of fermented and non-fermented soy milk with reference to nutritional attributes," Journal of microbiology, biotechnology and food sciences, vol. 2021, pp. 145-149, 2021.
[19] L. Axelsson, "Lactic acid bacteria: classification and physiology," Food Science and Technology-New York-Marcel Dekker-, vol. 139, pp. 1-66, 2004.
[20] Y. Wang et al., "Metabolism characteristics of lactic acid bacteria and the expanding applications in food industry," Frontiers in bioengineering and biotechnology, vol. 9, p. 612285, 2021.
[21] A. Thierry, T. Pogačić, M. Weber, and S. Lortal, "Production of flavor compounds by lactic acid bacteria in fermented foods," Biotechnology of lactic acid bacteria: novel applications, pp. 314-340, 2015.
[22] A. Zapaśnik, B. Sokołowska, and M. Bryła, "Role of lactic acid bacteria in food preservation and safety," Foods, vol. 11, no. 9, p. 1283, 2022.
[23] T. Bintsis, "Lactic acid bacteria: their applications in foods," J. Bacteriol. Mycol, vol. 6, no. 2, pp. 89-94, 2018.
[24] G. Melgar-Lalanne, Y. Rivera-Espinoza, and H. Hernández-Sánchez, "Lactobacillus plantarum: An overview with emphasis in biochemical and healthy properties," Lactobacillus: Classification, Uses and Health Implications. Pérez Campos A., Mena AL (eds). Nova Publishing, New York, USA, pp. 1-31, 2012.
[25] M. V. Arasu, N. A. Al-Dhabi, S. Ilavenil, K. C. Choi, and S. Srigopalram, "In vitro importance of probiotic Lactobacillus plantarum related to medical field," Saudi journal of biological sciences, vol. 23, no. 1, pp. S6-S10, 2016.
[26] F. Ruiz-Larrea, "Applications of protective cultures and bacteriocins in wine making," in Protective Cultures, Antimicrobial Metabolites and Bacteriophages for Food and Beverage Biopreservation: Elsevier, 2011, pp. 433-448.
[27] D. K. Combs and P. C. Hoffman, "Lactobacillus buchneri for silage aerobic stability," 5th Arlington Dairy day Proceedings, pp. 28-30, 2001.
[28] L. Mari, R. Schmidt, L. G. Nussio, C. Hallada, and L. Kung Jr, "An evaluation of the effectiveness of Lactobacillus buchneri 40788 to alter fermentation and improve the aerobic stability of corn silage in farm silos," Journal of dairy science, vol. 92, no. 3, pp. 1174-1176, 2009.
[29] S. Liu, K. A. Skinner-Nemec, and T. D. Leathers, "Lactobacillus buchneri strain NRRL B-30929 converts a concentrated mixture of xylose and glucose into ethanol and other products," Journal of Industrial Microbiology and Biotechnology, vol. 35, no. 2, pp. 75-81, 2008.
[30] J. C. Kapteyn, H. Van Den Ende, and F. M. Klis, "The contribution of cell wall proteins to the organization of the yeast cell wall," Biochimica et Biophysica Acta (BBA)-General Subjects, vol. 1426, no. 2, pp. 373-383, 1999.
[31] B. P. Tu, A. Kudlicki, M. Rowicka, and S. L. McKnight, "Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes," Science, vol. 310, no. 5751, pp. 1152-1158, 2005.
[32] M. Koutsokali and M. Valahas, "Anaerobic and aerobic respiration in yeast: small-scale variations on a classic laboratory activity," Journal of Chemical Education, vol. 97, no. 4, pp. 1041-1047, 2020.
[33] C. T. Hittinger, J. L. Steele, and D. S. Ryder, "Diverse yeasts for diverse fermented beverages and foods," Current opinion in biotechnology, vol. 49, pp. 199-206, 2018.
[34] M. Parapouli, A. Vasileiadis, A.-S. Afendra, and E. Hatziloukas, "Saccharomyces cerevisiae and its industrial applications," AIMS microbiology, vol. 6, no. 1, p. 1, 2020.
[35] V. Siewers, "An overview on selection marker genes for transformation of Saccharomyces cerevisiae," Yeast Metabolic Engineering: Methods and Protocols, pp. 3-15, 2014.
[36] B. Maji, "Introduction to natural polysaccharides," in Functional polysaccharides for biomedical applications: Elsevier, 2019, pp. 1-31.
[37] S. Li et al., "Molecular modification of polysaccharides and resulting bioactivities," Comprehensive Reviews in Food Science and Food Safety, vol. 15, no. 2, pp. 237-250, 2016.
[38] J. Liu, S. Willför, and C. Xu, "A review of bioactive plant polysaccharides: Biological activities, functionalization, and biomedical applications," Bioactive Carbohydrates and Dietary Fibre, vol. 5, no. 1, pp. 31-61, 2015.
[39] M. Yalpani, Polysaccharides: syntheses, modifications and structure/property relations. Elsevier, 2013.
[40] E. Korcz and L. Varga, "Exopolysaccharides from lactic acid bacteria: Techno-functional application in the food industry," Trends in Food Science & Technology, vol. 110, pp. 375-384, 2021.
[41] G. Caggianiello, M. Kleerebezem, and G. Spano, "Exopolysaccharides produced by lactic acid bacteria: from health-promoting benefits to stress tolerance mechanisms," Applied microbiology and biotechnology, vol. 100, pp. 3877-3886, 2016.
[42] K. M. Lynch, E. Zannini, A. Coffey, and E. K. Arendt, "Lactic acid bacteria exopolysaccharides in foods and beverages: Isolation, properties, characterization, and health benefits," Annual review of food science and technology, vol. 9, pp. 155-176, 2018.
[43] C. Laroche and P. Michaud, "New developments and prospective applications for β (1, 3) glucans," Recent patents on biotechnology, vol. 1, no. 1, pp. 59-73, 2007.
[44] N. Dalonso, G. H. Goldman, and R. M. M. Gern, "β-(1→ 3),(1→ 6)-Glucans: medicinal activities, characterization, biosynthesis and new horizons," Applied microbiology and biotechnology, vol. 99, pp. 7893-7906, 2015.
[45] B. Du, M. Meenu, H. Liu, and B. Xu, "A concise review on the molecular structure and function relationship of β-glucan," International journal of molecular sciences, vol. 20, no. 16, p. 4032, 2019.
[46] N. A. Gow, J.-P. Latge, and C. A. Munro, "The fungal cell wall: structure, biosynthesis, and function," Microbiology spectrum, vol. 5, no. 3, p. 5.3. 01, 2017.
[47] G. Camilli, G. Tabouret, and J. Quintin, "The complexity of fungal β-glucan in health and disease: effects on the mononuclear phagocyte system," Frontiers in immunology, vol. 9, p. 673, 2018.
[48] S. Kluters, K. Steinhauser, R. Pfänder, and J. Studts, "Introduction and clearance of beta‐glucan in the downstream processing of monoclonal antibodies," Biotechnology Progress, vol. 37, no. 4, p. e3149, 2021.
[49] B. Du, Z. Bian, and B. Xu, "Skin health promotion effects of natural beta‐glucan derived from cereals and microorganisms: a review," Phytotherapy Research, vol. 28, no. 2, pp. 159-166, 2014.
[50] N. Kayanna, I. Suppavorasatit, W. Bankeeree, P. Lotrakul, H. Punnapayak, and S. Prasongsuk, "Production of prebiotic aubasidan-like β-glucan from Aureobasidium thailandense NRRL 58543 and its potential as a functional food additive in gummy jelly," LWT, vol. 163, p. 113617, 2022.
[51] D. Wang, C. Zhu, G. Zhang, C. Wang, and G. Wei, "Enhanced β-glucan and pullulan production by Aureobasidium pullulans with zinc sulfate supplementation," Applied microbiology and biotechnology, vol. 104, pp. 1751-1760, 2020.
[52] J. A. Bockwoldt, J. Fellermeier, E. Steffens, R. F. Vogel, and M. A. Ehrmann, "β-Glucan production by Levilactobacillus brevis and Pediococcus claussenii for in situ enriched rye and wheat sourdough breads," Foods, vol. 10, no. 3, p. 547, 2021.
[53] N. Yamamoto and M. L. Droffner, "Mechanisms determining aerobic or anaerobic growth in the facultative anaerobe Salmonella typhimurium," Proceedings of the National Academy of Sciences, vol. 82, no. 7, pp. 2077-2081, 1985.
[54] M. Jangra, P. D. Belur, L. B. Oriabinska, and O. M. Dugan, "Multistrain probiotic production by co‐culture fermentation in a lab‐scale bioreactor," Engineering in Life Sciences, vol. 16, no. 3, pp. 247-253, 2016.
[55] L. Fang et al., "Effects of mixed fermentation of different lactic acid bacteria and yeast on phytic acid degradation and flavor compounds in sourdough," LWT, p. 114438, 2023.
[56] A. A. N. Saqib and P. J. Whitney, "Differential behaviour of the dinitrosalicylic acid (DNS) reagent towards mono-and di-saccharide sugars," Biomass and bioenergy, vol. 35, no. 11, pp. 4748-4750, 2011.
[57] A. Blainski, G. C. Lopes, and J. C. P. De Mello, "Application and analysis of the folin ciocalteu method for the determination of the total phenolic content from Limonium brasiliense L," Molecules, vol. 18, no. 6, pp. 6852-6865, 2013.
[58] K. H. Musa, A. Abdullah, and A. Al-Haiqi, "Determination of DPPH free radical scavenging activity: application of artificial neural networks," Food chemistry, vol. 194, pp. 705-711, 2016.
[59] N. A. Evans, P. A. Hoyne, and B. Stone, "Characteristics and specificity of the interaction of a fluorochrome from aniline blue (sirofluor) with polysaccharides," Carbohydrate Polymers, vol. 4, no. 3, pp. 215-230, 1984.
[60] A. Dysvik et al., "Co-fermentation involving Saccharomyces cerevisiae and Lactobacillus species tolerant to brewing-related stress factors for controlled and rapid production of sour beer," Frontiers in Microbiology, vol. 11, p. 279, 2020.
[61] Z. Ge et al., "Effects of Lactobacillus plantarum and Saccharomyces cerevisiae co‐fermentation on the structure and flavor of wheat noodles," Journal of the Science of Food and Agriculture, vol. 102, no. 11, pp. 4697-4706, 2022.
指導教授 徐敬衡(Chin-Hang Shu) 審核日期 2023-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明