博碩士論文 110324072 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:3.134.118.95
姓名 王竹萱(Chu-Hsuan Wang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 探討添加油茶果殼生物碳於兩階段乾式厭氧發酵來轉換菇包木屑為氫氣與甲烷之研究
(Study on hydrogen and methane of spent mushroom substrate in two-stage dry anaerobic fermentation by adding Camellia oleifera shell biochar)
相關論文
★ 探討菌體形態對於裂褶菌多醣體之影響★ 探討不同培養方式對猴頭菇抗氧化與抗腫瘤性質的影響
★ 探討不同培養溫度Aspergillus niger 對丹參之機能性影響★ 光合菌在光生物反應器產氫之研究
★ 探討培養溫度對巴西蘑菇液態醱酵之影響★ 利用批式液態培養來探討檸檬酸對裂褶菌生長及其多醣體生成影響之研究
★ 探討不同培養基組成對光合菌Rhodobacter sphaeroides生產Coenzyme Q10之研究★ 利用混合特定菌種生產氫氣之研究
★ 探討氧化還原電位作為Clostridium butyricum連續產氫之研究★ 探討培養基之pH值與Xanthan gum的添加對巴西蘑菇多醣體生產之影響
★ 探討麩胺酸的添加和供氧量對液態發酵生產裂褶菌多醣體之研究★ 探討以兩水相系統提昇Clostridium butyricum產氫之研究
★ 探討通氣量對於樟芝醱酵生產生物鹼之影響★ 探討深層發酵中環境因子對巴西洋菇生產多醣之影響
★ 探討通氣量對於樟芝發酵生產與純化脂解酵素之研究★ 探討以活性碳吸附酸來提昇Clostridium butyricum產氫之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-20以後開放)
摘要(中) 隨著全球對能源需求的增加,開發生質能源已成為當今重要課題,厭氧發酵是利用微生物在無氧環境下將廢棄物轉換為沼氣的技術。在台灣,每年產生超過150萬噸的菇類和20萬噸的廢棄太空包,而這些菇包木屑通常以野外焚燒或堆置方式處理,造成環境汙染。然而,菇包木屑中的纖維素可以進行厭氧發酵,產生沼氣用於工業發電,達到廢棄物轉換為生質能源的循環經濟目的。厭氧發酵中菌落所適合的環境大不相同,因此本研究開發兩階段式反應器,使不同菌落在合適的環境下生長,解決微生物間互相抑制問題,分別為1st-stage 酸化/產氫氣製程,發酵溫度35°C、起始pH5.5,2nd-stage甲烷化/產甲烷製程,發酵溫度50°C,來改善傳統單階段發酵穩定性不足之缺點。
菇包木屑中碳含量較高,但若直接投入厭氧發酵中會造成碳氮比失衡,抑制產酸菌及產甲烷菌的活性,因此本研究透過共消化建立最佳碳氮比,並選用畜牧業廢棄物為氮源(如: 雞糞、尿素及雞羽毛等)來解決系統營養源不足問題,本研究結果顯示選用雞糞作為氮源可獲得最高揮發性脂肪酸(Volatile Fatty Acid ,VFA)濃度25.1g/L及氫氣和甲烷產量分別為151mL及370mL,為三組氮源中產氫產甲烷效率最高。
本研究同時開發乾式厭氧發酵來提高廢棄物處理之含量,乾式厭氧發酵所需反應體積較低,可減少人力及時間成本,缺點為會有過多抑制物的累積,及產甲烷時間滯後和產率降低等問題。本研究透過添加油茶果殼生物碳(Camellia Oleifera Shell Biochar ,COSBC)於厭氧發酵系統中,並且探討油茶果殼生物碳最佳製備參數,如熱裂解溫度及時間以尋求最適化製程,其中發現在1st-stage 酸化/產氫氣製程中以COSBC 700°C,1HR有最高VFA濃度可高達28.8 g/L,氨氮抑制物下降21.2%,累積氫氣產量提高72.2%。最後探討COSBC添加量對第一階段影響,當添加量提高至20%時,VFA濃度提升至31.1 g/L,氨氮抑制物下降33.9%,累積氫氣產量提高106.6%。將條件COSBC 700°C,1HR,1.5g、3.0及4.5g投入2nd-stage中,發現COSBC 4.5g可提高25.1%甲烷產量,氨氮濃度下降44.9%,甲烷含量約佔42-71%。綜合以上厭氧發酵因素,觀察到COSBC的添加可加速酸化/產氫氣階段VFA的產生,在產甲烷化階段加速VFA降解,解決產甲烷滯後問題,提供緩衝能力及鹼度使發酵系統中抑制物降低來提升整體沼氣產量,以解決高固體濃度下所遇問題,提高了兩階段厭氧發酵之效率。
摘要(英) With the increasing global energy demand, the development of sustainable energy sources has become a crucial task. Anaerobic fermentation, a microbial process that converts waste into biogas in an oxygen-deprived environment, holds promise for addressing this challenge. In Taiwan, large quantities of spent mushroom substrate (SMS) and waste space bags are generated annually, posing environmental pollution issues when disposed of through incineration or landfilling. However, the cellulose-rich SMS can undergo anaerobic digestion to produce biogas for industrial power generation, promoting the conversion of waste into bioenergy within a circular economy framework.
To optimize the fermentation process, a two-stage reactor system was developed to accommodate different microbial communities and alleviate microbial inhibition. The first stage involved acidogenesis and hydrogen production at 35°C and pH 5.5, while the second stage focused on methanogenesis at 50°C. This approach aimed to overcome stability issues observed in traditional single-stage fermentation.The carbon-to-nitrogen ratio imbalance in SMS hampers fermentation by inhibiting acidogenic and methanogenic bacteria. To address this, co-digestion strategies incorporating livestock waste as a nitrogen source (e.g., chicken manure, urea, and chicken feathers) were investigated. Results demonstrated that using chicken manure as a nitrogen source achieved the highest volatile fatty acid (VFA) concentration of 25.1 g/L, along with hydrogen and methane yields of 151 mL and 370 mL, respectively, outperforming other nitrogen sources.
Furthermore, dry anaerobic fermentation was employed to increase waste treatment capacity, reducing labor and time requirements. However, challenges such as inhibitory substance accumulation and reduced methane production were observed. This study addressed these issues by adding Camellia Oleifera Shell Biochar (COSBC) to the anaerobic fermentation system and investigated the optimal preparation parameters for COSBC, such as pyrolysis temperature and time, to optimize the process. It was found that in the first stage of acidification/hydrogen production, COSBC prepared at 700°C for 1 hour achieved the highest VFA concentration of up to 28.8 g/L, a 21.2% decrease in ammonia nitrogen inhibitors, and a 72.2% increase in cumulative hydrogen production. The study also examined the effect of COSBC addition on the first stage. When the addition amount was increased to 20%, the VFA concentration increased to 31.1 g/L, the ammonia nitrogen inhibitors decreased by 33.9%, and the cumulative hydrogen production increased by 106.6%. In the second stage, introducing COSBC at dosages of 1.5 g, 3.0 g, and 4.5 g reveals that COSBC 4.5 g results in a 25.1% increase in methane production, a 44.9% decrease in ammonia nitrogen concentration. In conclusion, the two-stage anaerobic fermentation of SMS, combined with nutrient optimization and the use of COSBC, demonstrated improved biogas production. This approach offers a solution for converting high-solid waste into bioenergy efficiently and sustainably.
關鍵字(中) ★ 兩階段厭氧發酵
★ 菇包木屑
★ 生質能源
★ 乾式厭氧發酵
★ 油茶果殼生物碳
★ 雞糞
★ 雞羽毛
★ 尿素
關鍵字(英) ★ Two-stage anaerobic fermentation
★ Spent mushroom substrate
★ bioenergy
★ Dry anaerobic fermentation
★ Camellia oleifera shell biochar
★ Chicken manure
★ Chicken feather
★ Urea
論文目次 摘要 I
ABSTRACT III
致謝 V
目錄 VI
圖目錄 X
表目錄 XIV
一、 緒論 1
1-1 研究動機 1
1-2 研究目的 2
二、 文獻回顧 4
2-1 厭氧發酵 4
2-1-1 水解(Hydrolysis) 5
2-1-2 揮發性脂肪酸生成(Acidogenic fermentation) 5
2-1-3 氫氣、乙酸生成(Hydrogen-producing Acetogenesis) 5
2-1-4 甲烷生成(Methanogesis) 5
2-2 厭氧發酵因素 6
2-2-1 溫度 6
2-2-2 pH 7
2-2-3 VFA(Volatile fatty acid) 9
2-2-4 碳氮比C/N ratio 9
2-2-5 共發酵(co-digestion) 11
2-3 兩階段厭氧發酵 12
2-4 乾式厭氧發酵 13
2-5 菇包木屑(SMS:SPENT MUSHROOM SUBSTRATE) 15
2-6 氮源選擇 17
2-6-1 雞糞(CM: Chicken Manure) 17
2-6-2 雞羽毛(Chicken Feather) 18
2-6-3 尿素(Urea) 20
2-7 生物碳(BIOCHAR) 21
2-7-1 吸附抑制物 22
2-7-2 緩衝能力 23
2-7-3 電子轉移機制 25
2-8 油茶果殼(CAMELLIA OLEIFERA SHELL, COS) 27
三、 材料與方法 29
3-1 實驗規劃 29
3-2 實驗材料 30
3-2-1 太空包菇包木屑(SMS) 30
3-2-2 雞糞(CM) 30
3-2-3 雞羽毛(CF) 30
3-2-4 尿素(UREA) 30
3-2-5 油茶果殼生物碳(COS BC) 31
3-2-6 厭氧汙泥 31
3-3 實驗藥品 32
3-4 實驗儀器與設備 33
3-5 實驗方法 34
3-5-1 生物碳製備方法 34
3-5-2 菇包木屑製備方法 34
3-5-3 產酸汙泥預處理 34
3-5-4 產甲烷汙泥馴養 34
3-5-5 1st-stage process(酸化/產氫製程) 35
3-5-6 2nd-stage process(甲烷化/產甲烷製程) 35
3-5-7 油茶果殼生物碳的pH值與導電度和時間關係 36
3-6 分析方法 37
3-6-1 總固體含量(TS: Total Solid)測量 37
3-6-2 揮發性固體量(VS: Volatile Solid)測量 37
3-6-3 氨氮含量檢測-靛酚比色法 37
3-6-4 沼氣(Biogas)測量 40
3-6-5 沼氣成分測量-氣相層析儀(GC-TCD) 40
3-6-6 發酵液成分測量-(GC-FID) 44
四、 結果與討論 47
4-1 最適化氮源探討 47
4-1-1 VFA在1st-stage不同氮源下的變化量 47
4-1-2 VFA組成在1st-stage不同氮源下的變化量 49
4-1-3 NH3-N在1st-stage不同氮源下的變化量 51
4-1-4 Biogas/H2/CH4/CO2在1st-stage不同氮源下的變化量 53
4-1-5 pH在1st-stage不同氮源下的變化量 56
4-1-6 VFA在2nd-stage不同氮源下的變化量 57
4-1-7 NH3-N在2nd-stage不同氮源下的變化量 60
4-1-8 Biogas/H2/CH4/CO2在2nd-stage不同氮源下的變化量 61
4-1-9 pH在2nd-stage不同氮源下的變化量 65
4-2 添加不同熱裂解溫度油茶果殼生物碳於1ST-STAGE的影響 66
4-2-1 VFA在1st-stage不同熱裂解溫度COSBC下的變化量 66
4-2-2 VFA組成在1st-stage不同熱裂解溫度COSBC下的變化量 68
4-2-3 NH3-N在1st-stage不同熱裂解溫度COSBC下的變化量 70
4-2-4 Biogas/H2/CH4/CO2在1st-stage不同熱裂解溫度COSBC下的變化量 72
4-2-5 pH在1st-stage不同熱裂解溫度COSBC下的變化量 76
4-3 添加不同熱裂解時間油茶果殼生物碳於1ST-STAGE的影響 77
4-3-1 VFA在1st-stage不同熱裂解時間COSBC下的變化量 77
4-3-2 VFA組成在1st-stage不同熱裂解時間COSBC下的變化量 79
4-3-3 NH3-N在1st-stage不同熱裂解時間COSBC下的變化量 81
4-3-4 Biogas/H2/CH4/CO2在1st-stage不同熱裂解時間COSBC下的變化量 83
4-3-5 pH在1st-stage不同熱裂解時間COSBC下的變化量 87
4-4 不同添加量油茶果殼生物碳於1ST-STAGE的影響 88
4-4-1 VFA在1st-stage不同添加量COSBC下的變化 88
4-4-2 VFA組成在1st-stage不同添加量COSBC下的變化量 90
4-4-3 NH3-N在1st-stage不同添加量COSBC下的變化量 93
4-4-4 Biogas/H2/CH4/CO2在1st-stage不同添加量COSBC下的變化量 95
4-4-5 pH在1st-stage不同添加量COSBC下的變化量 99
4-5 添加油茶果殼生物碳於2ND-STAGE的影響 100
4-5-1 添加COSBC對2nd-stage VFA 的影響 101
4-5-2 添加COSBC對2nd-stage NH3-N的影響 105
4-5-3 添加COSBC對2nd-stage Biogas/H2/CH4/CO2的影響 107
4-5-4 添加COSBC對2nd-stage pH的影響 111
4-6 時間對油茶果殼生物碳PH與導電度的影響 112
五、 結果討論與建議 115
5-1 結果討論 115
5-2 建議 117
六、 參考文獻 118
參考文獻 [1] 呂昀陞, 陳美杏, 李瑋崧, 吳寬澤, and 簡宣裕, "菇類栽培後介質之再利用," 菇類產業發展研討會專刊, 2011.
[2] 行政院農業委員會, "雞糞堆肥製作及施用技術手冊," pp. 1-2, 2016.
[3] P. Bajpai and P. Bajpai, "Basics of anaerobic digestion process," Anaerobic technology in pulp and paper industry, pp. 7-12, 2017.
[4] T. Menzel, P. Neubauer, and S. Junne, "Role of microbial hydrolysis in anaerobic digestion," Energies, vol. 13, no. 21, p. 5555, 2020.
[5] S. Behera, K. Konde, and S. Patil, "Methods for bio-butanol production and purification," in Advances and Developments in Biobutanol Production: Elsevier, 2023, pp. 279-301.
[6] S. Wainaina, Lukitawesa, M. Kumar Awasthi, and M. J. Taherzadeh, "Bioengineering of anaerobic digestion for volatile fatty acids, hydrogen or methane production: a critical review," Bioengineered, vol. 10, no. 1, pp. 437-458, 2019.
[7] L. Yang et al., "Enhancing biogas generation performance from food wastes by high-solids thermophilic anaerobic digestion: Effect of pH adjustment," International Biodeterioration & Biodegradation, vol. 105, pp. 153-159, 2015.
[8] J. Liu et al., "Effect of temperature on fermentative VFAs production from waste sludge stimulated by riboflavin and the shifts of microbial community," Water Science and Technology, vol. 85, no. 4, pp. 1191-1201, 2022.
[9] X. Yan, P. Deng, T. Ding, Z. Zhang, X. Li, and Z. Wu, "Effect of Temperature on Anaerobic Fermentation of Poplar Ethanol Wastewater: Performance and Microbial Communities," ACS omega, vol. 8, no. 6, pp. 5486-5496, 2023.
[10] R. Nandi, C. K. Saha, S. Sarker, M. S. Huda, and M. M. Alam, "Optimization of reactor temperature for continuous anaerobic digestion of cow manure: Bangladesh perspective," Sustainability, vol. 12, no. 21, p. 8772, 2020.
[11] Z. Li et al., "Metabolic regulation of ethanol-type fermentation of anaerobic acidogenesis at different pH based on transcriptome analysis of Ethanoligenens harbinense," Biotechnology for biofuels, vol. 13, no. 1, pp. 1-15, 2020.
[12] H.-Q. Yu and H. Fang, "Acidogenesis of dairy wastewater at various pH levels," Water Science and Technology, vol. 45, no. 10, pp. 201-206, 2002.
[13] S. Nagarajan, R. J. Jones, L. Oram, J. Massanet-Nicolau, and A. Guwy, "Intensification of Acidogenic Fermentation for the Production of Biohydrogen and Volatile Fatty Acids—A Perspective," Fermentation, vol. 8, no. 7, p. 325, 2022.
[14] M. A. Latif, C. M. Mehta, and D. J. Batstone, "Influence of low pH on continuous anaerobic digestion of waste activated sludge," Water Research, vol. 113, pp. 42-49, 2017.
[15] S. Jayaraj, B. Deepanraj, and V. Sivasubramanian, "Study on the effect of pH on biogas production from food waste by anaerobic digestion," in Proceedings of the 9th Annual Green Energy Conference, Tianjin, China, 2014, pp. 25-28.
[16] C. Mamimin et al., "Two-stage thermophilic fermentation and mesophilic methanogen process for biohythane production from palm oil mill effluent," International Journal of Hydrogen Energy, vol. 40, no. 19, pp. 6319-6328, 2015.
[17] G. Strazzera, F. Battista, N. H. Garcia, N. Frison, and D. Bolzonella, "Volatile fatty acids production from food wastes for biorefinery platforms: A review," Journal of environmental management, vol. 226, pp. 278-288, 2018.
[18] A. Patel et al., "Volatile fatty acids (VFAs) generated by anaerobic digestion serve as feedstock for freshwater and marine oleaginous microorganisms to produce biodiesel and added-value compounds," Frontiers in Microbiology, vol. 12, p. 614612, 2021.
[19] I. N. Al-Sulaimi, J. K. Nayak, H. Alhimali, A. Sana, and A. Al-Mamun, "Effect of volatile fatty acids accumulation on biogas production by sludge-feeding thermophilic anaerobic digester and predicting process parameters," Fermentation, vol. 8, no. 4, p. 184, 2022.
[20] Lukitawesa, R. J. Patinvoh, R. Millati, I. Sárvári-Horváth, and M. J. Taherzadeh, "Factors influencing volatile fatty acids production from food wastes via anaerobic digestion," Bioengineered, vol. 11, no. 1, pp. 39-52, 2020.
[21] J. A. Magdalena, S. Greses, and C. González-Fernández, "Impact of organic loading rate in volatile fatty acids production and population dynamics using microalgae biomass as substrate," Scientific reports, vol. 9, no. 1, pp. 1-11, 2019.
[22] O. P. Karthikeyan and C. Visvanathan, "Bio-energy recovery from high-solid organic substrates by dry anaerobic bio-conversion processes: a review," Reviews in Environmental Science and Bio/Technology, vol. 12, pp. 257-284, 2013.
[23] Y. Chen, J. J. Cheng, and K. S. Creamer, "Inhibition of anaerobic digestion process: a review," Bioresource technology, vol. 99, no. 10, pp. 4044-4064, 2008.
[24] G. K. Latinwo and S. E. Agarry, "Modelling the Kinetics of Biogas Production from Mesophilic Anaerobic Co-Digestion of Cow Dung with Plantain Peels," International Journal of Renewable Energy Development, vol. 4, no. 1, 2015.
[25] Y. Zhang, C. J. Banks, and S. Heaven, "Co-digestion of source segregated domestic food waste to improve process stability," Bioresource technology, vol. 114, pp. 168-178, 2012.
[26] M. Ferdeș, G. Paraschiv, M. Ionescu, M. N. Dincă, G. Moiceanu, and B. Ș. Zăbavă, "Anaerobic Co-Digestion: A Way to Potentiate the Synergistic Effect of Multiple Substrates and Microbial Diversity," Energies, vol. 16, no. 5, p. 2116, 2023.
[27] X. Gao, X. Tang, K. Zhao, V. Balan, and Q. Zhu, "Biogas production from anaerobic co-digestion of spent mushroom substrate with different livestock manure," Energies, vol. 14, no. 3, p. 570, 2021.
[28] A. H. Salem, T. Mietzel, R. Brunstermann, and R. Widmann, "Two-stage anaerobic fermentation process for bio-hydrogen and bio-methane production from pre-treated organic wastes," Bioresource technology, vol. 265, pp. 399-406, 2018.
[29] G. Srisowmeya, M. Chakravarthy, and G. N. Devi, "Critical considerations in two-stage anaerobic digestion of food waste–A review," Renewable and Sustainable Energy Reviews, vol. 119, p. 109587, 2020.
[30] V. T. Mota and M. Zaiat, "Two-vs. single-stage anaerobic reactors: evaluation of effluent quality and energy production potential using sucrose-based wastewater," Water Science and Technology, vol. 78, no. 9, pp. 1966-1979, 2018.
[31] O. Sompong, C. Mamimin, P. Kongjan, and A. Reungsang, "Two-stage fermentation process for bioenergy and biochemicals production from industrial and agricultural wastewater," in Advances in Bioenergy, vol. 5: Elsevier, 2020, pp. 249-308.
[32] S. Riya et al., "Dry anaerobic digestion for agricultural waste recycling," in Biogas-Recent Advances and Integrated Approaches: IntechOpen, 2020, p. 43.
[33] E. Angelonidi and S. R. Smith, "A comparison of wet and dry anaerobic digestion processes for the treatment of municipal solid waste and food waste," Water and environment journal, vol. 29, no. 4, pp. 549-557, 2015.
[34] Z. Wang, Y. Hu, S. Wang, G. Wu, and X. Zhan, "A critical review on dry anaerobic digestion of organic waste: Characteristics, operational conditions, and improvement strategies," Renewable and Sustainable Energy Reviews, vol. 176, p. 113208, 2023.
[35] I. Rocamora, S. T. Wagland, R. Villa, E. W. Simpson, O. Fernández, and Y. Bajón-Fernández, "Dry anaerobic digestion of organic waste: A review of operational parameters and their impact on process performance," Bioresource technology, vol. 299, p. 122681, 2020.
[36] 陳美杏, 呂昀陞, and 石信德, "新興菇類的栽培與發展," 出自" 科學發展期刊, no. 446, pp. P10-11, 2010.
[37] X.-S. Shi et al., "Modeling of the methane production and pH value during the anaerobic co-digestion of dairy manure and spent mushroom substrate," Chemical Engineering Journal, vol. 244, pp. 258-263, 2014.
[38] Z. Xiao, M. Lin, J. Fan, Y. Chen, C. Zhao, and B. Liu, "Anaerobic digestion of spent mushroom substrate under thermophilic conditions: performance and microbial community analysis," Applied microbiology and biotechnology, vol. 102, pp. 499-507, 2018.
[39] F. Wang, M. Pei, L. Qiu, Y. Yao, C. Zhang, and H. Qiang, "Performance of anaerobic digestion of chicken manure under gradually elevated organic loading rates," International journal of environmental research and public health, vol. 16, no. 12, p. 2239, 2019.
[40] M. Westerholm, B. Müller, S. Isaksson, and A. Schnürer, "Trace element and temperature effects on microbial communities and links to biogas digester performance at high ammonia levels," Biotechnology for biofuels, vol. 8, pp. 1-19, 2015.
[41] Z. Yang, W. Wang, Y. He, R. Zhang, and G. Liu, "Effect of ammonia on methane production, methanogenesis pathway, microbial community and reactor performance under mesophilic and thermophilic conditions," Renewable Energy, vol. 125, pp. 915-925, 2018.
[42] A. Ahmad, I. Othman, B. L. Tardy, S. W. Hasan, and F. Banat, "Enhanced lactic acid production with indigenous microbiota from date pulp waste and keratin protein hydrolysate from chicken feather waste," Bioresource Technology Reports, vol. 18, p. 101089, 2022.
[43] G. Forgács, M. Lundin, M. J. Taherzadeh, and I. Sárvári Horváth, "Pretreatment of chicken feather waste for improved biogas production," Applied biochemistry and biotechnology, vol. 169, pp. 2016-2028, 2013.
[44] M. Saba et al., "Microbial Pretreatment of Chicken Feather and Its Co-digestion With Rice Husk and Green Grocery Waste for Enhanced Biogas Production," Frontiers in Microbiology, vol. 13, 2022.
[45] Q. Li, F. Yang, G. Zheng, and Z. Guan, "Effects of urea ammonia pretreatment on the batch anaerobic fermentation efficiency of corn stovers," International Journal of Agricultural and Biological Engineering, vol. 12, no. 4, pp. 169-173, 2019.
[46] M. Boncz, E. Formagini, L. d. S. Santos, R. Marques, and P. Paulo, "Application of urea dosing for alkalinity supply during anaerobic digestion of vinasse," Water Science and Technology, vol. 66, no. 11, pp. 2453-2460, 2012.
[47] L. Tian, H. Guo, Y. Wang, X. Wang, T. Zhu, and Y. Liu, "Urine source separation-based pretreatment: A sustainable strategy for improving methane production from anaerobic digestion of waste activated sludge," Sustainable Horizons, vol. 4, p. 100043, 2022.
[48] M. Klimczyk, A. Siczek, and L. Schimmelpfennig, "Improving the efficiency of urea-based fertilization leading to reduction in ammonia emission," Science of the Total Environment, vol. 771, p. 145483, 2021.
[49] I. Ona, N. Surma, H. Agogo, and M. Iorungwa, "EFFECT OF UREA ADDITION ON BIOGAS PRODUCTION FROM THE CO-DIGESTION OF RICE STRAW AND PIGGERY DUNG," Journal of Chemical Society of Nigeria, vol. 47, no. 2, 2022.
[50] N. Jamaludin, S. A. Rashid, and T. Tan, "Natural biomass as carbon sources for the synthesis of photoluminescent carbon dots," in Synthesis, Technology and Applications of Carbon Nanomaterials: Elsevier, 2019, pp. 109-134.
[51] D. Mohan, A. Sarswat, Y. S. Ok, and C. U. Pittman Jr, "Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent–a critical review," Bioresource technology, vol. 160, pp. 191-202, 2014.
[52] M. Tripathi, J. N. Sahu, and P. Ganesan, "Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review," Renewable and sustainable energy reviews, vol. 55, pp. 467-481, 2016.
[53] L. Zhao, X. Cao, O. Mašek, and A. Zimmerman, "Heterogeneity of biochar properties as a function of feedstock sources and production temperatures," Journal of hazardous materials, vol. 256, pp. 1-9, 2013.
[54] A. Méndez, A. Tarquis, A. Saa-Requejo, F. Guerrero, and G. Gascó, "Influence of pyrolysis temperature on composted sewage sludge biochar priming effect in a loamy soil," Chemosphere, vol. 93, no. 4, pp. 668-676, 2013.
[55] P. Oleszczuk, M. Rycaj, J. Lehmann, and G. Cornelissen, "Influence of activated carbon and biochar on phytotoxicity of air-dried sewage sludges to Lepidium sativum," Ecotoxicology and Environmental Safety, vol. 80, pp. 321-326, 2012.
[56] F. Ronsse, S. Van Hecke, D. Dickinson, and W. Prins, "Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions," Gcb Bioenergy, vol. 5, no. 2, pp. 104-115, 2013.
[57] L. Zhou et al., "Investigation of the adsorption-reduction mechanisms of hexavalent chromium by ramie biochars of different pyrolytic temperatures," Bioresource Technology, vol. 218, pp. 351-359, 2016.
[58] A. Bagreev, T. J. Bandosz, and D. C. Locke, "Pore structure and surface chemistry of adsorbents obtained by pyrolysis of sewage sludge-derived fertilizer," Carbon, vol. 39, no. 13, pp. 1971-1979, 2001.
[59] D. Cirne, X. Paloumet, L. Björnsson, M. Alves, and B. Mattiasson, "Anaerobic digestion of lipid-rich waste—effects of lipid concentration," Renewable energy, vol. 32, no. 6, pp. 965-975, 2007.
[60] N. Aramrueang, R. Zhang, and X. Liu, "Application of biochar and alkalis for recovery of sour anaerobic digesters," Journal of Environmental Management, vol. 307, p. 114538, 2022.
[61] N. Koukouzas, J. Hämäläinen, D. Papanikolaou, A. Tourunen, and T. Jäntti, "Mineralogical and elemental composition of fly ash from pilot scale fluidised bed combustion of lignite, bituminous coal, wood chips and their blends," Fuel, vol. 86, no. 14, pp. 2186-2193, 2007.
[62] N. M. Sunyoto, M. Zhu, Z. Zhang, and D. Zhang, "Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates food waste," Bioresource technology, vol. 219, pp. 29-36, 2016.
[63] L. Qiu, Y. Deng, F. Wang, M. Davaritouchaee, and Y. Yao, "A review on biochar-mediated anaerobic digestion with enhanced methane recovery," Renewable and Sustainable Energy Reviews, vol. 115, p. 109373, 2019.
[64] M. Manga, C. Aragón-Briceño, P. Boutikos, S. Semiyaga, O. Olabinjo, and C. C. Muoghalu, "Biochar and Its Potential Application for the Improvement of the Anaerobic Digestion Process: A Critical Review," Energies, vol. 16, no. 10, p. 4051, 2023.
[65] F. Shen et al., "Performances of anaerobic co-digestion of fruit & vegetable waste (FVW) and food waste (FW): single-phase vs. two-phase," Bioresource technology, vol. 144, pp. 80-85, 2013.
[66] Y. Wang et al., "Multipathway quantitative assessment of exposure to fecal contamination for young children in low-income urban environments in Accra, Ghana: the SaniPath analytical approach," The American Journal of Tropical Medicine and Hygiene, vol. 97, no. 4, p. 1009, 2017.
[67] K. Paritosh and V. Vivekanand, "Biochar enabled syntrophic action: Solid state anaerobic digestion of agricultural stubble for enhanced methane production," Bioresource technology, vol. 289, p. 121712, 2019.
[68] G. Martins, A. F. Salvador, L. Pereira, and M. M. Alves, "Methane production and conductive materials: a critical review," Environmental science & technology, vol. 52, no. 18, pp. 10241-10253, 2018.
[69] M. Chiappero et al., "Review of biochar role as additive in anaerobic digestion processes," Renewable and Sustainable Energy Reviews, vol. 131, p. 110037, 2020.
[70] Y. Qin, X. Yin, X. Xu, X. Yan, F. Bi, and W. Wu, "Specific surface area and electron donating capacity determine biochar′s role in methane production during anaerobic digestion," Bioresource technology, vol. 303, p. 122919, 2020.
[71] S. Kato and K. Watanabe, "Ecological and evolutionary interactions in syntrophic methanogenic consortia," Microbes and environments, vol. 25, no. 3, pp. 145-151, 2010.
[72] S. R. Shanmugam, S. Adhikari, H. Nam, and S. K. Sajib, "Effect of bio-char on methane generation from glucose and aqueous phase of algae liquefaction using mixed anaerobic cultures," Biomass and Bioenergy, vol. 108, pp. 479-486, 2018.
[73] G. Baek, J. Kim, J. Kim, and C. Lee, "Role and potential of direct interspecies electron transfer in anaerobic digestion," Energies, vol. 11, no. 1, p. 107, 2018.
[74] 張同吳, "臺灣油茶產業概況," 花蓮區農業專訊, vol. 89, pp. 14-17, 2014.
[75] X. Xu et al., "Biochar derived from spent mushroom substrate reduced N2O emissions with lower water content but increased CH4 emissions under flooded condition from fertilized soils in Camellia oleifera plantations," Chemosphere, vol. 287, p. 132110, 2022.
[76] H. Guo et al., "Camellia oleifera seed shell carbon as an efficient renewable bio-adsorbent for the adsorption removal of hexavalent chromium and methylene blue from aqueous solution," Journal of molecular liquids, vol. 249, pp. 629-636, 2018.
[77] H. Ma, Y. Hu, T. Kobayashi, and K.-Q. Xu, "The role of rice husk biochar addition in anaerobic digestion for sweet sorghum under high loading condition," Biotechnology Reports, vol. 27, p. e00515, 2020.
[78] P. Zhao, S. Wang, D. Liu, H. Li, S. Han, and M. Li, "Study on influence mechanism of biochar on soil nitrogen conversion," Environmental Pollutants and Bioavailability, vol. 34, no. 1, pp. 419-432, 2022.
[79] P. He, H. Zhang, H. Duan, L. Shao, and F. Lü, "Continuity of biochar-associated biofilm in anaerobic digestion," Chemical Engineering Journal, vol. 390, p. 124605, 2020.
指導教授 徐敬衡(Chin-Hang Shu) 審核日期 2023-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明