博碩士論文 110223038 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.149.229.255
姓名 郭旻慈(Min-Tzu Kuo)  查詢紙本館藏   畢業系所 化學學系
論文名稱 氣相層析質譜儀之離子源特性對於長期揮發性有機化合物監測穩定性的影響
相關論文
★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發★ 以逆吹式氣相層析法分析氣體成份
★ 氣相層析法應用於工業排放連續監測★ 煙道氣揮發性有機化合物連續監測方法開發
★ 自製新型除水及熱脫附濃縮裝置用於GC/MS線上分析揮發性有機汙染物★ 觸媒式非甲烷總碳氫分析儀開發與驗證
★ 自製除水器及熱脫附儀用於線上GC/MS/FID揮發性有機污染物之分析★ 大氣及水樣中揮發性有機氣體自動化分析技術之建立及應用
★ VOC前濃縮與預警系統之建構★ 建立自動化甲烷連續量測系統與其在指示大氣輻射冷卻之應用
★ 臭氧前趨物連續監測與臭氧生成之光化學探討★ 以近連續方式量測空氣中甲烷與異戊二烯及其生成之季節性探討
★ 自行架設光化學測站與商業化儀器平行比對及所得資料初步分析★ 近地表臭氧前驅物分析之前濃縮技術改良
★ 自動化噴霧捕捉分析系統之建立與研究★ 大體積固相微萃取水中揮發性有機污染物
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-1-1以後開放)
摘要(中) 有害空氣污染物 (Hazardous Air Pollutants, HAPs) 隨著工業發展被大量的排放至環境空氣中,對於人體的健康造成極大的危害。在國際間現行的HAPs中屬於揮發性有機物 (VOC) 的普遍分析方法為U.S. EPA TO-15,台灣環保署參考此方法訂定相關標準方法NIEA A715.16B,使用採樣罐採集樣品,隨後將樣品帶回實驗室進行分析,稱為離線式方法,其數據無法即時反應環境濃度變化。本研究延續前人研究使用線上熱脫附氣相層析質譜技術 (On-line Thermal Desorption GC-MS,簡稱On-line TD-GC-MS),在定點直接連續進樣分析,可以偵測空氣中數十種VOC濃度變化,改善離線式採樣的樣品保存、數據代表性不足、耗費人力之缺點。
根據以往經驗,質譜儀應用於線上分析時離子源劣化速度快,分析周界樣品四至五天感度會下降至80%,導致定量誤差,此時需要將離子源進行替換,更換過程需耗費數小時至十幾小時,造成連續數據中斷。為了改善離子源快速劣化使儀器頻繁停機的問題,觀察長期監測後的離子源表面附著髒污,推測空氣中複雜的基質及水氣容易造成離子源表面上之髒污,進而使其快速劣化。為了減緩離子源汙染速度,本研究針對質譜參數進行測試,藉由質譜燈絲電流強度的調整,使降低樣品離子化程度,以有效減緩離子源汙染速度。研究結果顯示將電流從50 µA降低至15 µA,可有效延長離子源偵測壽命長達至15天以上,降低游離源維護頻率。
利用調控後的參數建立相關品保品管測試,檢量線相對標準偏差 (RSD) 介於0.226~7.204%、R2介於0.993~1.000、精密度RSD介於1.20~11.16%、回收率介於75.95~94.11%、方法偵測極限所有物種皆小於0.1 ppb。使用此系統參數於台灣北部某工業區進行六個月的實場監測,利用內標準品觀察儀器穩定性及感度衰退趨勢,監測期間儀器運轉穩定性皆大於80%,離子源平均壽命長達14天,單次離子源壽命最長可到21天,大幅延長儀器運轉時間,並降低維護保養次數,減少因維護保樣造成的數據損失,對於線上連續監測方法產生十分重要的正面影響。
摘要(英) Hazardous air pollutants (HAPs) are extensively emitted into the ambient air due to industrial development, posing significant risks to human health. The most commonly used analytical method for toxic volatile organic compounds (VOCs) as a class of HAPs is the standard method of U.S. EPA TO-15. Taiwan′s Environmental Protection Administration (EPA) has adopted a similar standard method, i.e., NIEA A715.16B, based on the revision of TO-15. Both methods are offline types which involve sampling VOCs using treated stainless canisters that are brought back from the field to the laboratory for analysis. These offline techniques do not provide real-time data to reveal the instantaneous variation of analytes in ambient air.
In this study, we build upon previous research and utilize online thermal desorption gas chromatography/mass spectrometry (TD-GC-MS) technology. This method enables direct and continuous analysis at fixed locations, allowing direct near real-time analysis of numerous VOCs in the air. The online TD-GC-MS method greatly improves the drawbacks of offline methods in terms of sample preservation, data representativeness, and the.
From the past experience, when MS are used for online analysis, the ion source could degrade rapidly by as much as 80% in sensitivity in 4 days. Maintenance usually takes several hours, causing interruptions in continuous data collection. Observations have revealed that the surface of the ion source becomes contaminated with presumably oxides and carbon residues after a period of usage. Moisture and oxygen in the air are likely the cause for contamination, leading to rapid degradation.
To reduce the rate of contamination of the ion source, this study conducted tests on the optimization of MS parameters. By adjusting the emission current of the ion source, which reduces the intensity of ionization, the contamination rate can be effectively reduced. When reducing the emission current from 50 µA to 15 µA, the effective runtime of the ion source can significantly extend to 15 days or more, thereby greatly reducing the frequency of ion source maintenance.
By using the optimized parameters, the quality assurance/control (QA/QC) results are as follows: the relative standard deviation (RSD) of the calibration curves ranging from 0.226% to 7.204%, linearity (R2) ranging from 0.993 to 1.000, recoveries between 75.95% to 94.11%, the precision (RSD) results between 1.20% to 11.16%, and MDL for all species between below 0.1 ppb. All the QA/QC results complied with the requirements set by the NIEA A715.16B method.
With the optimized parameters, field monitoring was conducted for six months. The instrument′s stability and sensitivity trend were closely monitored using internal standards. Throughout the monitoring period, the instrument′s data completeness exceeded 80%. The average runtime of the ion source was 14 days, with the most extended single continuous runtime reaching up to 21 days. This study significantly prolonged the instrument′s runtime, reduced maintenance frequency, and minimized data loss caused by maintenance. These results have a positive impact on the online continuous monitoring method.
關鍵字(中) ★ 線上熱脫附-氣相層析/質譜儀
★ 有害空氣污染物
★ 離子源壽命
關鍵字(英) ★ On-line TD-GC/MS
★ hazardous air pollutants (HAPs)
★ Ion source lifetime
論文目次 摘要 i
Abstract iii
目錄 vi
圖目錄 x
表目錄 xiv
第一章 前言 1
1-1 研究背景 1
1-1-1 空氣污染物 1
1-1-2 揮發性有機物 (VOCs) 2
1-1-3 有害空氣污染物 (HAPs) 5
1-2 美國針對有害空氣污染物管制方法 7
1-3 國內針對有害空氣污染物管制方法 8
1-4 揮發性有機化合物監測技術 11
1-4-1 離線分析方法 13
1-4-2 線上連續分析方法 24
1-5 研究動機 25
第二章 實驗方法 27
2-1 研究架構 27
2-2 實驗設備與原理 32
2-2-1 除水儀 (Dewater, DW) 32
2-2-2 熱脫附儀 (Thermal Desorption, TD) 38
2-2-3 氣相層析質譜儀 (GC-MS) 41
2-3 系統流路與功能 43
2-4 內標準品 (Internal Standard, IS) 45
第三章 分析方法與條件建立 49
3-1 連續監測系統建立 49
3-2 品保品管 53
3-2-1 檢量線建立 (Calibration curve) 53
3-2-2 精密度與準確度 (Precision and Accuracy) 59
3-2-3 方法偵測極限建立 63
3-2-4 每日查核 (Daily check) 68
第四章 研究結果與討論 69
4-1 儀器性能比較 69
4-2 離子源感度衰退測試 80
4-2-1 進樣體積對離子源感度衰退影響 84
4-2-2 燈絲發射電流對離子源感度衰退影響 88
4-2-3 離子源溫度對離子源感度衰退影響 105
4-3 實場監測結果 116
4-3-1 測站架設地點 116
4-3-2 實場測試結果-測站地點A 119
4-3-3 實場測試結果-測站地點B 129
4-3-4 監測結果比較 138
4-4 質譜感度校正實驗 148
4-4-1 Case 1:2022/11/02~2022/11/24 150
4-4-2 Case 2:2022/12/12~2022/12/26 154
4-4-3 Case 3:2023/01/11~2023/01/26 160
第五章 結論 166
第六章 參考文獻 168
參考文獻 Edokpolo, B., Yu, Q. J. & Connell, D. Health Risk Assessment for Exposure to Benzene in Petroleum Refinery Environments. International Journal of Environmental Research and Public Health 12, 595-610 (2015).
2 Smith, M. T. Advances in Understanding Benzene Health Effects and Susceptibility. Annual Review of Public Health 31, 133-148 (2010). https://doi.org:10.1146/annurev.publhealth.012809.103646
3 Snyder, R., Lee, E. W., Kocsis, J. J. & Witmer, C. M. Bone marrow depressant and leukemogenic actions of benzene. Life Sciences 21, 1709-1721 (1977). https://doi.org:https://doi.org/10.1016/0024-3205(77)90149-7
4 Rajabi, H., Hadi Mosleh, M., Mandal, P., Lea-Langton, A. & Sedighi, M. Emissions of volatile organic compounds from crude oil processing – Global emission inventory and environmental release. Science of The Total Environment 727, 138654 (2020). https://doi.org:https://doi.org/10.1016/j.scitotenv.2020.138654
5 Lewtas, J. Air pollution combustion emissions: Characterization of causative agents and mechanisms associated with cancer, reproductive, and cardiovascular effects. Mutation Research-Reviews in Mutation Research 636, 95-133 (2007). https://doi.org:10.1016/j.mrrev.2007.08.003
6 Agency, U. S. E. P. Technical Overview of Volatile Organic Compounds, https://www.epa.gov/indoor-air-quality-iaq/technical-overview-volatile-organic-compounds#3 (2023).
7 行政院環境保護署環境檢驗所. 揮發性有機物空氣污染管制及排放標準, 2013).
8 Ryerson, T. B. et al. Observations of ozone formation in power plant plumes and implications for ozone control strategies. Science 292, 719-723 (2001). https://doi.org:10.1126/science.1058113
9 Agency, U. S. E. P. Health Effects of Ozone in the General Population, https://www.epa.gov/ozone-pollution-and-your-patients-health/health-effects-ozone-general-population (2023).
10 Agency, U. S. E. P. Pollution Control Innovations and The Clean Air Act of 1990. (1990).
11 Hahad, O. et al. Ambient Air Pollution Increases the Risk of Cerebrovascular and Neuropsychiatric Disorders through Induction of Inflammation and Oxidative Stress. International Journal of Molecular Sciences 21 (2020). https://doi.org:10.3390/ijms21124306
12 Agency, U. S. E. P. Air Quality, Infant Mortality, and The Clean Air Act of 1970. (1970).
13 Agency, U. S. E. P. Progress Cleaning the Air and Improving People′s Health, https://www.epa.gov/clean-air-act-overview/progress-cleaning-air-and-improving-peoples-health (2023).
14 行政院環境保護署. 固定污染源空氣污染物危害影響評估暨消費性產品揮發性有機物管制推動計畫. (2014).
15 行政院環境保護署. 固定污染源空氣污染防制費收費費率修正草案. (2023).
16 行政院環境保護署環境檢驗所. 中華民國108年8月5日環署空字第1080056049號公告. (2019).
17 行政院環境保護署環境檢驗所. 固定污染源有害空氣污染物排放管道之排放限值. (2019).
18 行政院環境保護署環境檢驗所. 固定污染源有害空氣污染物種類. (2019).
19 行政院環境保護署. 固定污染源有害空氣污染物排放標準. (2021).
20 行政院環境保護署. 固定污染源空氣污染物排放標準. (2021).
21 行政院環境保護署. 固定污染源空氣污染物排放標準附表一. (2021).
22 行政院環境保護署. 固定污染源空氣污染物排放標準附表二. (2021).
23 Agency, U. S. E. P. TO-1,method for the determination of volatile organic compounds in ambient air using Tenax® adsorption and gas chromatography/mass spectrometry (GC/MS). (1984).
24 Agency, U. S. E. P. Method for the determination of volatile organic compounds in ambient air by carbon molecular sieve adsorption and gas chromatography/mass spectrometry (GC/MS). (1984).
25 Agency, U. S. E. P. Determination of Volatile Organic Compounds in Ambient Air Using Active Sampling Onto Sorbent Tubes. (1999).
26 行政院環境保護署環境檢驗所. 空氣中氣態有機溶劑檢驗方法—以活性碳吸附之氣相層析⁄火焰離子化偵測法(NIEA A710.10T). (2018).
27 行政院環境保護署環境檢驗所. 空氣中揮發性含鹵素碳氫化合物檢驗方法-以Tenax-TA吸附劑採樣之氣相層析法(NIEA A714.10T). (2018).
28 行政院環境保護署環境檢驗所. 空氣中氣態芳香烴化合物檢驗方法-以活性碳吸附之氣相層析/火焰離子化偵測法(NIEA A719.10T). (2018).
29 行政院環境保護署. 排放管道中氣態有機化合物檢測方法 -採樣袋採樣/氣相層析火焰離子化偵(NIEA A722.76B). (2020).
30 行政院環境保護署. 排放管道中C5-C10非極性氣態有機物檢測方法-採樣袋採樣/氣相層析質譜分析法(NIEA A734.70B). (2007).
31 行政院環境保護署. 排放管道中乙酸正丁酯等氣態有機化合物檢測方法-採樣袋採樣/氣相層析儀火焰離子化偵(NIEA A738.72B). (2021).
32 Agency, U. S. E. P. Determination of Volatile Organic Compounds (VOCs) In Ambient Air Using Specially Prepared Canisters With Subsequent Analysis By Gas Chromatography. (1999).
33 Agency, U. S. E. P. Compendium Method TO-15 Determination of Volatile Organic Compounds In Air Collected In Specially-Prepared Canisters and Analyzed By Gas Chromatography/ Mass Spectrometry (GC/MS). (2002).
34 行政院環境保護署環境檢驗所. 空氣中揮發性有機化合物檢測方法-不銹鋼採樣筒/氣相層析質譜儀法 (NIEA A715.16B). (2021).
35 行政院環境保護署環境檢驗所. 空氣中有機光化前驅物檢測方法-氣相層析/火焰離子化偵測法 (NIEA A505.12B). (2014).
36 朱晨瑄. 以線上熱脫附氣相層析質譜法監測空氣中有害空氣污染物 碩士 thesis, 國立中央大學, (2020).
37 曾美惠. 離子通道孔徑對熱脫附GC-MS連續監測空氣有害物質穩定性的影響 碩士 thesis, 國立中央大學, (2021).
38 楊雅宜. 線上熱脫附-氣相層析/質譜儀技術即時監測工業區空氣中有害揮發性有機化合物 碩士 thesis, 國立中央大學, (2022).
39 王美珠. 針對工業排放之污染性有機氣態物質開發連續監測技術 碩士 thesis, 國立中央大學, (2016).
40 Maceira, A., Vallecillos, L., Borrull, F. & Marce, R. M. New approach to resolve the humidity problem in VOC determination in outdoor air samples using solid adsorbent tubes followed by TD-GC-MS. Sci Total Environ 599-600, 1718-1727 (2017). https://doi.org:10.1016/j.scitotenv.2017.05.141
41 LLC, P. P. MD-Series Gas Dryers, https://www.permapure.com/environmental-scientific/products/gas-sample-dryers/md-gas-dryers/ (2023).
42 李冠均. 自製新型除水及熱脫附濃縮裝置用於GC/MS線上分析揮發性有機汙染物 碩士 thesis, 國立中央大學, (2020).
43 NIST. Methylene chloride Mass Spectrum, https://webbook.nist.gov/cgi/cbook.cgi?ID=C75092&Mask=200 (2023).
44 曾柏勝. 自製除水器及熱脫附儀用於線上GC/MS/FID揮發性有機污染物之分析 碩士 thesis, 國立中央大學, (2021).
45 呂秉祥. 自製除水及熱脫附儀串接氣相層析質譜儀用於連續監測大氣中有機污染物 碩士 thesis, 國立中央大學, (2022).
46 行政院環境保護署. 環境檢驗方法偵測極限測定指引(NIEA-PA107). (2005).
指導教授 王家麟 審核日期 2023-7-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明