博碩士論文 110324022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:18.222.179.186
姓名 吳越安(Yue-An Wu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 探討以Agaricus blazei Murrill、Lactobacillus buchneri二階段發酵Camellia oleifera及Camellia sinensis生產高GABA發酵茶
(High GABA Fermented Tea of Camellia sinensis and Camellia oleifera by Lactobacillus buchneri and Agaricus blazei Murill using Two-Stage Fermentation)
相關論文
★ 探討菌體形態對於裂褶菌多醣體之影響★ 探討不同培養方式對猴頭菇抗氧化與抗腫瘤性質的影響
★ 探討不同培養溫度Aspergillus niger 對丹參之機能性影響★ 光合菌在光生物反應器產氫之研究
★ 探討培養溫度對巴西蘑菇液態醱酵之影響★ 利用批式液態培養來探討檸檬酸對裂褶菌生長及其多醣體生成影響之研究
★ 探討不同培養基組成對光合菌Rhodobacter sphaeroides生產Coenzyme Q10之研究★ 利用混合特定菌種生產氫氣之研究
★ 探討氧化還原電位作為Clostridium butyricum連續產氫之研究★ 探討培養基之pH值與Xanthan gum的添加對巴西蘑菇多醣體生產之影響
★ 探討麩胺酸的添加和供氧量對液態發酵生產裂褶菌多醣體之研究★ 探討以兩水相系統提昇Clostridium butyricum產氫之研究
★ 探討通氣量對於樟芝醱酵生產生物鹼之影響★ 探討深層發酵中環境因子對巴西洋菇生產多醣之影響
★ 探討通氣量對於樟芝發酵生產與純化脂解酵素之研究★ 探討以活性碳吸附酸來提昇Clostridium butyricum產氫之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-20以後開放)
摘要(中) 飲茶文化發源自中國,已有上千年歷史。茶文化影響範圍不單受限於亞洲
地區,十七世紀初荷蘭、葡萄牙兩國透過海上貿易,將中國茶文化帶入西方世
界,引發一股巨大的飲茶風潮。直至今日,茶飲品受普羅大眾所喜愛,在飲品
圈內需求量僅次於水。已有許多研究證實茶對於人體健康保健具有不容小覷的
功效,如增強身體免疫力、降低膽固醇等。茶葉中含有大量多酚類化合物,它
的存在讓茶有著很優秀的抗氧化活性。 γ-氨基丁酸 (GABA) ——一種廣泛存
在於動植物中的胺基酸,在人體中存在於大腦及神經系統,主要功能為鎮靜神
經及調適情緒,近年來人們透過 GABA 改善失眠症狀。在這項研究中,利用
巴西蘑菇 (Agaricus blazei Murill) TITC1 以及布氏乳桿菌 (Lactobacillus
buchneri) BCE119151 做為發酵之菌種,在本實驗室過往研究所得之最適化培
養基條件下,對綠茶 (Camellia sinensis) 及油茶 (Camellia oleifera) 萃取液進
行二階段發酵,目的在於生產高 GABA 含量之發酵茶飲品並探討影響 GABA
產量的操作條件及細節。巴西蘑菇中富含多種胺基酸成分,又以其中的麩胺酸
(Glutamic acid) 最為重要,其做為 γ-氨基丁酸的前驅物能夠刺激布氏乳桿菌中
的 GABA 轉化酶生產高濃度 GABA。在這些菌種之二階段發酵下,使得後發
酵茶飲品能夠有更高的保健價值。
在第一階段巴西蘑菇發酵過程中,發現培養基中茶粉固體存在與否會影響
GABA 產物濃度。將實驗過程中茶葉萃取液和茶粉固體分離後做為培養基使
用,其最終 GABA 產物濃度高於含茶粉固體之培養基所得產物濃度。在第二
階段布氏乳桿菌發酵過程中,試驗巴西蘑菇之存活與否對最終 GABA 產物濃
度產生影響,實驗結果為第一階段之巴西蘑菇在第二階段布氏乳桿菌發酵過程
中無論是活菌抑或是死菌其結果無明顯差異。比較以各式茶作為底物,分別為
油茶、綠茶、紅茶和烏龍茶,分別得出最終 GABA 產量為 25.94 g/L、28.62 g/L、
ii
29.18 g/L 和 29.55 g/L。若將咖啡因也考慮進來,比較每克 GABA 所含每毫克咖
啡因 (YC/G),油茶將是首選。
摘要(英) The culture of drinking tea originated in China, it has history of thousands of years.
The influence of tea culture is not only in the Asia, but also in the Europe. In the early
17th century, the Netherlands and Portugal brought Chinese tea culture to the Western
world through trade, triggering a huge wave of tea drinking. Nowadays, drinks of tea
are loved by the general public, and its consumption is merely second to water. Many
studies have confirmed that tea has various health effects on the human body, such as
enhancing the body′s immunity and lowering cholesterol. Tea contains a large amount
of polyphenolic compounds, and it makes tea have excellent antioxidant activity. γaminobutyric acid (GABA)—an amino acid that widely exists in animals and plants. It
exists in the brain and nervous system in the human body. Its main function is to calm
the nerves and adjust emotions. Recently, people have used GABA to improve insomnia.
In this study, Agaricus blazei Murill TITC1 and Lactobacillus buchneri BCE119151
were used as our fermentation strains. Under the optimal medium conditions obtained
in previous research in our laboratory, the extracts of green tea (Camellia sinensis) and
oil camellia (Camellia oleifera) are used into two-stage fermentation, the purpose is to
produce fermented tea with high GABA content and also to explore the operating
conditions and details that affect GABA production. Agaricus blazei Murill are rich in
different amino acids. One of them, glutamic acid is the most important. As a precursor
of γ-aminobutyric acid, it can stimulate the glutamic acid decarboxylase, GAD in
Lactobacillus buchneri to produce a lot of GABA. Under the two-stage fermentation of
these strains, the fermented tea can be more beneficial for human body.
During the first stage of Agaricus blazei Murill fermentation, it was found that the
presence or absence of tea powder in the culture affected the GABA concentration in
iv
final product. During the experiment, the tea extract and tea powder were separated and
only used extract into culture. The final GABA concentration of product was higher than
the product that was from the culture containing tea powder. In the second stage of
fermentation of Lactobacillus buchneri, whether the survival of Agaricus blazei Murill
affected the concentration of final GABA products was tested. There was no significant
difference in the results of the two conditions. Tried to compare with oiltea Camellia、
green tea、black tea and oolong tea for fermentation culture, finally I get the final GABA
concentration for them with 25.94 g/L、28.62 g/L、29.18 g/L 和 29.55 g/L. Considering
the caffeine by YC/G (Caffeine per milligram / GABA per gram), oiltea Camellia will be
the best fermentation culture.
關鍵字(中) ★ 巴西蘑菇
★ 布氏乳桿菌
★ 油茶
★ 茶葉
★ γ-胺基丁酸
關鍵字(英) ★ Agaricus blazei Murrill
★ Lactobacillus buchneri
★ Camellia oleifera
★ Camellia sinensis
★ γ-Aminobutyric acid
論文目次 摘要 i
Abstract iii
致謝 v
目錄 vi
圖目錄 ix
表目錄 xi
一、緒論 1
1-1研究動機 1
1-2 研究目的 2
二、文獻回顧 3
2-1 巴西蘑菇 (Agaricus blazei Murrill) 3
2-1-1 巴西蘑菇的基本介紹 3
2-1-2 巴西蘑菇的組成成分 5
2-1-3 巴西蘑菇的生物活性物質 6
2-1-4 巴西蘑菇的醫學價值 12
2-2 乳酸菌 (Lactic acid bacteria, LAB) 13
2-2-1乳酸菌的基本介紹 13
2-2-2 乳酸菌的生物活性物質 16
2-2-3 布氏乳桿菌 (Lactobacillus buchneri) 19
2-2-4 乳酸菌發酵飲品 19
2-3 油茶 (Camellia oleifera) 20
2-3-1 油茶的基本介紹 20
2-3-2 油茶的成分介紹 21
2-4 茶 (Camellia sinensis) 23
2-4-1 茶樹的基本介紹 23
2-4-2 茶 (Tea) 24
2-4-3 康普茶(Kombucha) 26
三、材料與方法 29
3-1 實驗架構 29
3-2 實驗材料 30
3-2-1 實驗菌株 30
3-2-2 實驗樣品 31
3-2-3 實驗藥品 31
3-2-4 實驗儀器與設備 33
3-3 實驗方法 35
3-3-1 巴西蘑菇菌株保存 35
3-3-2 巴西蘑菇菌株之液態搖瓶發酵 35
3-3-3 布氏乳桿菌菌株短期保存與活化 36
3-3-4 布氏乳桿菌菌株之液態種瓶培養 37
3-3-5 第一階段之巴西蘑菇搖瓶發酵 38
3-3-6 第二階段之布氏乳桿菌厭氧發酵 38
3-4 分析方法 39
3-4-1 還原醣濃度分析 39
3-4-2 GABA含量和MSG殘量分析 41
3-4-3 總可溶醣濃度分析 44
3-4-4 兒茶素濃度分析 45
3-4-5 茶色素含量分析 47
3-4-6 總多酚含量分析 49
3-4-7 咖啡因含量分析 50
四、結果與討論 51
4-1 巴西蘑菇、布氏乳桿菌二階段發酵之操作優化 51
4-1-1 發酵培養基中茶粉渣存在對發酵產物之影響 51
4-1-2 第二階段培養基中巴西蘑菇存活與否對發酵產物之影響 52
4-2 各種不同茶底物之發酵結果 54
4-2-1 各種不同發酵茶之最終GABA產量 54
4-2-2 各種不同發酵茶之最終MSG剩餘量 55
4-2-3 各種不同發酵茶之最終咖啡因含量 56
4-3 各種不同發酵茶之生物活性物質含量 58
4-3-1 各種不同發酵茶之總兒茶素含量 58
4-3-2 各種不同發酵茶之茶色素含量 59
4-3-3 各種不同發酵茶之總多酚含量 60
4-4 各種不同發酵茶之菌種活性變化 61
4-5 各發酵茶之發酵結果比較 61
4-6 利用茶渣為底物之發酵茶 63
五、結論 64
參考文獻 66
參考文獻 [1] 自由健康網, "自殺防治學會最新調查:25%民眾有睡眠困擾," 2008.
[2] 彭文正, "探討以Lactobacillus buchneri發酵巴西蘑菇並產生γ-氨基丁酸之研究," 2020.
[3] 盧威韶, "探討以Lactobacillus buchneri 發酵Camellia sinensis生產γ-胺基丁酸與抗氧化活性之影響," 2022.
[4] C. G. T. Wong, T. Bottiglieri, O C. Snead 3rd, "GABA, gamma-hydroxybutyric acid, and neurological disease," Ann Neurol, 54 Suppl 6:S3-12, 2003.
[5] 王福闓, "全台超過26000家手搖飲料店、近10年成長3倍!看似競爭又充滿需求的手搖飲市場 業者如何脫穎而出?," 2022.
[6] T. Takaku, Y. Kimura, and H. Okuda, "Isolation of an antitumor compound from Agaricus blazei Murrill and its mechanism of action," The Journal of 109 nutrition, vol. 131, no. 5, pp. 1409-1413, 2001.
[7] J.-M. Tangen, A. Tierens, J. Caers, M. Binsfeld, O. K. Olstad, A.-M. S. Trøseid, J. Wang, G. E. Tjønnfjord, and G. Hetland, "Immunomodulatory effects of the Agaricus blazei Murrill-based mushroom extract AndoSan in patients with multiple myeloma undergoing high dose chemotherapy and autologous stem cell transplantation: a randomized, double blinded clinical study," BioMed Research International, vol. 2015, Article ID 718539, 11 pages, 2015.
[8] K. Wisitrassameewong et al., "Agaricus subrufescens: a review," Saudi Journal of Biological Sciences, vol. 19, no. 2, pp. 131-146, 2012.
[9] S.-M. Cho, K.-Y. Jang, H. J. Park, and J.-S. Park, "Analysis of the chemical constituents of Agaricus brasiliensis," Mycobiology, vol. 36, no. 1, pp. 50- 54, 2008.
[10] O. Taofiq, et al., "Agaricus blazei Murrill from Brazil: an ingredient for nutraceutical and cosmeceutical applications," Food & function, vol. 10, no. 2, pp. 565-572, 2019.
[11] S.-Y. Tsai, H.-L. Tsai, and J.-L. Mau, "Non-volatile taste components of Agaricus blazei, Agrocybe cylindracea and Boletus edulis," Food Chemistry, vol. 107, no. 3, pp. 977-983, 2008.
[12] R. Biedron, J. M. Tangen, K. Maresz, and G. Hetland, "Agaricus blazei Murrill -immunomodulatory properties and health benefits," Functional Foods in Health and Disease, vol. 2, no. 11, pp. 428-447, 2012.
[13] K.-I. Oshiman, Y. Fujimiya, T. Ebina, I. Suzuki, and M. Noji, "Orally administered β-1, 6-D-polyglucose extracted from Agaricus blazei results in tumor regression in tumor-bearing mice," Planta medica, vol. 68, no. 07, pp. 610-614, 2002.
[14] H. Wang, Z. Fu, and C. Han, "The medicinal values of culinary-medicinal royal sun mushroom (Agaricus blazei Murrill)," Evidence-Based Complementary and Alternative Medicine, vol. 2013, 2013.
[15] S.-Y. Chen, K.-J. Ho, Y.-J. Hsieh, L.-T. Wang, and J.-L. Mau, "Contents of lovastatin, γ-aminobutyric acid and ergothioneine in mushroom fruiting bodies and mycelia," LWT, vol. 47, no. 2, pp. 274-278, 2012.
[16] A. Upadrasta and R. S. Madempudi, "Probiotics and blood pressure: current insights," Integrated blood pressure control, vol. 9, p. 33, 2016.
[17] P. Mattila, A.-M. Lampi, R. Ronkainen, J. Toivo, and V. Piironen, "Sterol and vitamin D2 contents in some wild and cultivated mushrooms," Food Chemistry, vol. 76, no. 3, pp. 293-298, 2002.
[18] T. Takaku, Y. Kimura, and H. Okuda, "Isolation of an antitumor compound from Agaricus blazei Murill and its mechanism of action," The Journal of 109 nutrition, vol. 131, no. 5, pp. 1409-1413, 2001.
[19] Z.-Y. Su, L. S. Hwang, Y.-H. Kuo, C.-H. Shu, and L.-Y. Sheen, "Black soybean promotes the formation of active components with antihepatoma activity in the fermentation product of Agaricus blazei," Journal of agricultural and food chemistry, vol. 56, no. 20, pp. 9447-9454, 2008.
[20] C.-H. Shu and K.-J. Lin, "Effects of aeration rate on the production of ergosterol and blazeispirol A by Agaricus blazei in batch cultures," Journal of the Taiwan Institute of Chemical Engineers, vol. 42, no. 2, pp. 212-216, 2011.
[21] H. Kawagishi et al., "Fractionation and antitumor activity of the water-in-soluble residue of Agaricus blazei fruiting bodies," Carbohydrate Research, vol. 186, no. 2, pp. 267-273, 1989.
[22] B. Wu, et al., "A polysaccharide from Agaricus blazei inhibits proliferation and promotes apoptosis of osteosarcoma cells," International Journal of Biological Macromolecules, pp. 1116-1120, 2012.
[23] S. Bernardshaw, E. Johnson, and G. Hetland, "An extract of the mushroom Agaricus blazei Murill administered orally protects against systemic Streptococcus pneumoniae infection in mice," Scandinavian Journal of Immunology, vol. 62, no. 4, pp. 393-398, 2005.
[24] N. Ohno, M. Furukawa, N. N. Miura, Y. Adachi, M. Motoi, and T. Yadomae, "Antitumor β-glucan from the cultured fruit body of Agaricus blazei," Biological and Pharmaceutical Bulletin, vol. 24, no. 7, pp. 820-828, 2001.
[25] Q. Wei, Y. Zhan, B. Chen, B. Xie, T. Fang, S. Ravishankar, and Y. Jiang, "Assessment of antioxidant and antidiabetic properties of Agaricus blazei Murill extracts," Food Science & Nutrition, pp. 332-339, 2019.
[26] M. Vincent, et al, "Dietary supplementation with Agaricus blazei murill extract prevents diet-induced obesity and insulin resistance in rats," Obesity Biology and Integrated Physiology, 2013.
[27] F. A. C. Martinez, E. M. Balciunas, J. M. Salgado, J. M. D. González, A. Converti, and R. P. de Souza Oliveira, "Lactic acid properties, applications and production: a review," Trends in food science & technology, vol. 30, no. 1, pp. 70-83, 2013.
[28] R. Dhakal, V. K. Bajpai, and K.-H. Baek, "Production of GABA (γ-aminobutyric acid) by microorganisms: a review," Brazilian Journal of Microbiology, vol. 43, no. 4, pp. 1230-1241, 2012.
[29] N. Tajabadi, et al., "Optimization of γ-aminobutyric acid production by Lactobacillus plantarum Taj-Apis362 from honeybees," Molecules, vol. 20, no. 4, pp. 6654-6669, 2015.
[30] J.-H. Ye, L.-Y. Huang, N. S. Terefe, and M. A. Augustin, "Fermentation-based biotransformation of glucosinolates, phenolics and sugars in retorted broccoli puree by lactic acid bacteria," Food chemistry, vol. 286, pp. 616-623, 2019.
[31] S. Kosemura, S. Yamamura, and K. Hasegawa, "Chemical studies on 4- methylthio-3-butenyl isothiocyanate from roots of Japanese radish (Raphanus sativus L.) in connection with raphanusanins, phototropism-regulating substances of radish hypocotyls," Tetrahedron Letters, vol. 34, no. 3, pp. 481-484, 1993.
[32] Y. Tanizawa, et al., "Lactobacillus buchneri subsp. silagei subsp. nov., isolated from rice grain silage," International Journal of Systematic and Evolutionary Microbiology, vol. 70, no. 5, pp. 3111-3116, 2020.
[33] 黃宜稜, "發酵乳與乳酸飲料到底有什麼差別?," 2017.
[34] D. M. Linares, et al., "Lactic acid bacteria and bifidobacteria with potential 110 to design natural biofunctional health-promoting dairy foods," Frontiers in microbiology, vol. 8, p. 846, 2017.
[35] 油茶主題館-農業知識入口網, "油茶小知識:種與品種," 2013.
[36] W.-T. Lan, X.-H. Wu, and W. Zhang, "Optimization of purification process of polyphenols from Camellia oleifera Abel leaves and its antioxidant activity in oils," Journal of Southern Agriculture, pp. 2058-2064, 2019.
[37] J. Ma, H. Ye, Y. Rui, G. Chen, and N. Zhang, "Fatty acid composition of Camellia oleifera oil," Journal für Verbraucherschutz und Lebensmittelsicherheit, pp. 9-12, 2010.
[38] Y. Tai, et al., "Transcriptomic and phytochemical analysis of the biosynthesis of characteristic constituents in tea (Camellia sinensis) compared with oil tea (Camellia oleifera)," BMC Plant Biology, 2015.
[39] F. Luan, J. Zeng, Y. Yang, X. He, B. Wang, Y. Gao, and N. Zeng, "Recent advances in Camellia oleifera Abel: A review of nutritional constituents, biofunctional properties, and potential industrial applications," Journal of Functional Foods, 2020.
[40] H. Lu, J. Zhang, Y. Yang, X. Yang, B. Xu, W. Yang, T. Tong, S. Jin, C. Shen, H. Rao, X. Li, H. Lu, D. Q. Fuller, L. Wang, C. Wang, D. Xu, and N. Wu, "Earliest tea as evidence for one branch of the Silk Road across the Tibetan Plateau," Scientific Reports, vol. 6, no. 1, p. 18955, 2016.
[41] M.-Z. Zhu, et al., "Microbial bioconversion of the chemical components in dark tea," Food Chemistry, vol. 312, p. 126043, 15 May 2020.
[42] J. Dong, X. Xu, Y. Liang, R. Head, and L. Bennett, "Inhibition of angiotensin converting enzyme (ACE) activity by polyphenols from tea (Camellia sinensis) and links to processing method," Food & Function, vol. 2, no. 6, p. 310, 2011.
[43] R. M. D. Coelho, et al., "Kombucha: Review," International Journal of Gastronomy and Food Science, vol. 22, p. 100272, 2020.
[44] Z.-J. Zhao, Y.-C. Sui, H.-W. Wu, C.-B. Zhou, X.-C. Hu, and J. Zhang, "Flavour chemical dynamics during fermentation of kombucha tea," Emirates Journal of Food and Agriculture, p. 732, 2018.
[45] K. E. Emiljanowicz, and E. Malinowska-Pańczyk, "Kombucha from alternative raw materials - The review," Critical Reviews in Food Science and Nutrition, vol. 60, no. 19, pp. 3185-3194, 2020.
[46] M. J. Santos, "Kombucha: caracterização da microbiota e desenvolvimento de novos produtos alimentares para uso em restauração," Ciências Gastronómicas, 2016
[47] 鄒昊倫, "探討以Agaricus blazei Murrill與Lactobacillus buchneri發酵Camellia oleifera及穀物並產高GABA之飲品," 2022.
[48] G. L. Miller, "Use of dinitrosalicylic acid reagent for determination of reducing sugar," Analytical chemistry, vol. 31, no. 3, pp. 426-428, 1959.
[49] M. R. Rover, P. A. Johnston, B. P. Lamsal and R. C. Brown, "Total water-soluble sugars quantification in bio-oil using the phenol–sulfuric acid assay," Journal of Analytical and Applied Pyrolysis, vol. 104, pp. 194-201, 2013.
[50] E. Roberts and R. Smith, "Spectrophotometric measurements of theaflavins and thearubigins in black tea liquors in assessments of quality in teas," Analyst, vol. 86, no. 1019, pp. 94-98, 1961.
[51] L. Yao, Y. Jiang, N. Caffin, B. D’arcy, N. Datta, X. Liu, et al., "Phenolic compounds in tea from Australian supermarkets," Food Chemistry, vol. 96, no. 4, pp. 614- 620, 2006.
[52] O. H. Lowry, "Protein measurement with the Folin phenol reagent," J Biol Chem, vol. 193, no. 1, pp. 265-275, 1951.
[53] A. Gramza, J. Korczak and R. Amarowicz, "Tea polyphenols - Their antioxidant properties and biological activity - A review," Polish Journal of Food and Nutrition Sciences, vol. 14/55, no. 3, pp. 219-235, 2005.
[54] Y. Lee, Z. Lin, G. Du, Z. Deng, H. Yang and W. Bai, "The fungal laccase-catalyzed oxidation of EGCG and the characterization of its products," Journal of the Science of Food and Agriculture, vol. 95, no. 13, pp. 2686-2692, 2014.
[55] G. Li, L. Ma, Z. Yan, Q. Zhu, J. Cai, S. Wang, Y. Yuan, Y. Chen, S. Deng, "Extraction of Oils and Phytochemicals from Camellia oleifera Seeds: Trends, Challenges, and Innovations," Processes, 2022.
指導教授 徐敬衡(Chin-Hang Shu) 審核日期 2023-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明