參考文獻 |
林熺閔、郭鴻基,1996:「1994年南台灣夏季午後對流之研究」,大氣科學,24卷,249–280。
陳泰然、周鴻祺、廖珮娟及楊進賢,2009a:「暖季台灣中北部午後連續對流的氣候特徵研究」,大氣科學,37卷,49–86。
陳泰然、周鴻祺、廖珮娟及楊進賢,2009b:「暖季弱綜觀強迫下中北臺灣午後熱對流的氣候特徵」,大氣科學,37卷,155–194。
林品芳、張保亮、周仲島,2012:「弱綜觀環境下臺灣午後熱對流特徵及其客觀預報」,大氣科學,40卷,77–108。
吳冠伯,2019:「2015-2015年暖季弱綜觀環境下對流降水系統之特徵統計」,中國文化大學碩士論文,87頁。
葉玉婕,2021:「統計分析2008年西南氣流實驗期間對流系統的雙偏極化雷達拉格朗日特徵」,國立中央大學碩士論文,109頁。
楊承泰,2022:「台灣周邊中尺度對流系統及綜觀環境特徵統計分析」,國立中央大學碩士論文,103頁。
Baker, R. D., B. H. Lynn, A. Boone, W. Tao, and J. Simpson, 2001: The Influence of Soil Moisture, Coastline Curvature, and Land-Breeze Circulations on Sea-Breeze-Initiated Precipitation. J. Hydrometeor., 2(2), 193–211.
Banta, R. M., and C. Barker Schaaf, 1987: Thunderstorm Genesis Zones in the Colorado Rocky Mountains as Determined by Traceback of Geosynchronous Satellite Images. Mon. Wea. Rev., 115(2), 463–476.
Burghardt, B. J., C. Evans, and P. J. Roebber, 2014: Assessing the Predictability of Convection Initiation in the High Plains Using an Object-Based Approach. Wea. Forecasting, 29(2), 403–418.
Byers, H. R., and H. R. Rodebush, 1948: CAUSES OF THUNDERSTORMS OF THE FLORIDA PENINSULA. J. Atmos. Sci., 5(6), 275–280
Cai, H., W.-C. Lee, T. M. Weckwerth, C. Flamant, and H. V. Murphey, 2006: Observations of the 11 June Dryline during IHOP_2002—A Null Case for Convection Initiation. Mon. Wea. Rev., 134(1), 336–354.
Carbone, R. E., J. W. Conway, N. A. Crook, and M. W. Moncrieff, 1990: The Generation and Propagation of a Nocturnal Squall Line. Part I: Observations and Implications for Mesoscale Predictability. Mon. Wea. Rev., 118(1), 26–49.
Chang, H.-L., B. G. Brown, P.-S. Chu, Y.-C. Liou, and W.-H. Wang, 2017: Nowcast Guidance of Afternoon Convection Initiation for Taiwan. Wea. Forecasting, 32(5), 1801–1817.
Chang, P.-L., P.-F. Lin, B. J.-D Jou, and J. Zhang, 2009: An Application of Reflectivity Climatology in Constructing Radar Hybrid Scans over Complex Terrain. J. Atmos. Oceanic Technol, 26(7), 1315–1327.
Chang, P.-L., J. Zhang, Y.-S. Tang, T. Lin, P.-F. Lin, C. Langston, B. Kaney, C.-R. Chen, and K. Howard, 2021: An Operational Multi-Radar Multi-Sensor QPE System in Taiwan. Bull. Amer. Meteor. Soc., 102(3), E555–E577.
Chen, T.-C., M.-C. Yen, J.-D. Tsay, C.-C. Liao, and E. S. Takle, 2014: Impact of Afternoon Thunderstorms on the Land–Sea Breeze in the Taipei Basin during Summer: An Experiment. J. Appl. Meteor. Climatol., 53(7), 1714–1738.
Cho, Y.-H., G. W. Lee, K.-E. Kim, and I. Zawadzki, 2006: Identification and Removal of Ground Echoes and Anomalous Propagation Using the Characteristics of Radar Echoes. J. Atmos. Oceanic Technol., 23(9), 1206–1222.
Clark, A. J., R. G. Bullock, T. L. Jensen, M. Xue, and F. Kong, 2014: Application of Object-Based Time-Domain Diagnostics for Tracking Precipitation Systems in Convection-Allowing Models. Wea. Forecasting, 29(3), 517–542.
Cooper, H. J., M. Garstang, and J. Simpson, 1982: The Diurnal Interaction Between Convection and Peninsular-Scale Forcing Over South Florida. Mon. Wea. Rev., 110(6), 486–503.
Crook, N. A., 1996: Sensitivity of Moist Convection Forced by Boundary Layer Processes to Low-Level Thermodynamic Fields. Mon. Wea. Rev., 124(8), 1767–1785.
Dabberdt, W. F., T. W. Schlatter, and with contributions from the rest of the PDT-2, 1996: Research Opportunities from Emerging Atmospheric Observing and Modeling Capabilities. Bull. Amer. Meteor. Soc., 77(2), 305–324.
Davini, P., R. Bechini, R. Cremonini, and C. Cassardo, 2012: Radar-Based Analysis of Convective Storms over Northwestern Italy. Atmosphere, 3(1), 33–58.
Dixon, M., and G. Wiener, 1993: TITAN: Thunderstorm Identification, Tracking, Analysis, and Nowcasting—A Radar-based Methodology. J. Atmos. Oceanic Technol., 10(6), 785–797.
Dixon, P. G., and T. L. Mote, 2003: Patterns and Causes of Atlanta′s Urban Heat Island–Initiated Precipitation. J. Appl. Meteor. Climatol., 42(9), 1273–1284.
Duda, J. D., and W. A. Gallus, 2013: The Impact of Large-Scale Forcing on Skill of Simulated Convective Initiation and Upscale Evolution with Convection-Allowing Grid Spacings in the WRF. Wea. Forecasting, 28(4), 994–1018.
Fritsch, J. M., and R. E. Carbone, 2004: Improving Quantitative Precipitation Forecasts in the Warm Season: A USWRP Research and Development Strategy. Bull. Amer. Meteor. Soc., 85(7), 955–966.
Frye, J. D., and T. L. Mote, 2010: Convection Initiation along Soil Moisture Boundaries in the Southern Great Plains. Mon. Wea. Rev., 138(4), 1140–1151.
Gasperoni, N. A., M. Xue, R. D. Palmer, and J. Gao, 2013: Sensitivity of Convective Initiation Prediction to Near-Surface Moisture When Assimilating Radar Refractivity: Impact Tests Using OSSEs. J. Atmos. Oceanic Technol., 30(10), 2281–2302.
Gentry, R. C., and P. L. Moore, 1954: RELATION OF LOCAL AND GENERAL WIND INTERACTION NEAR THE SEA COAST TO TIME AND LOCATION OF AIR-MASS SHOWERS. J. Atmos. Sci., 11(6), 507–511.
Haberlie, A. M., W.S. Ashley, and T. J. Pingel, 2015: The effect of urbanisation on the climatology of thunderstorm initiation. Q.J.R. Meteorol. Soc, 141(688), 663–675.
Huang, Y., Z. Meng, J. Li, W. Li, L. Bai, M. Zhang, and X. Wang, 2017: Distribution and variability of satellite‐derived signals of isolated convection initiation events over central Eastern China. J. Geophys. Res. Atmos.,122(21), 11–357.
Johnson, R. H., and J. F. Bresch, 1991: Diagnosed Characteristics of Precipitation Systems over Taiwan during the May–June 1987 TAMEX. Mon. Wea. Rev., 119(11), 2540–2557.
Kain, J. S., and Coauthors, 2013: A Feasibility Study for Probabilistic Convection Initiation Forecasts Based on Explicit Numerical Guidance. Bull. Amer. Meteor. Soc., 94(8), 1213–1225.
Karr, T. W., and R. L. Wooten, 1976: Summer Radar Echo Distribution Around Limon, Colorado. Mon. Wea. Rev., 104(6), 728–734.
Kuo, J.-T., and H. D. Orville, 1973: A Radar Climatology of Summertime Convective Clouds in the Black Hills. J. Appl. Meteor. Climatol., 12(2), 359–368.
Lima, M. A., and J. W. Wilson, 2008: Convective Storm Initiation in a Moist Tropical Environment. Mon. Wea. Rev., 136(6), 1847–1864.
Lin, C.-Y., and C.-S. Chen, 2002: A study of orographic effects on mountain-generated precipitation systems under weak synoptic forcing. Meteorol. Atmos. Phys, 81, 1–25.
Lin, P.-F., P.-L. Chang, B. J.-D. Jou, J. W. Wilson, and R. D. Roberts, 2011: Warm Season Afternoon Thunderstorm Characteristics under Weak Synoptic-Scale Forcing over Taiwan Island. Wea. Forecasting, 26(1), 44–60.
Lin, P.-F., P.-L. Chang, B. J.-D. Jou, J. W. Wilson, and R. D. Roberts, 2012: Objective Prediction of Warm Season Afternoon Thunderstorms in Northern Taiwan Using a Fuzzy Logic Approach. Wea. Forecasting, 27(5), 1178–1197.
Lock, N. A., and A. L. Houston, 2014: Empirical Examination of the Factors Regulating Thunderstorm Initiation. Mon. Wea. Rev., 142(1), 240–258.
Mecikalski, J. R., and K. M. Bedka, 2006: Forecasting Convective Initiation by Monitoring the Evolution of Moving Cumulus in Daytime GOES Imagery. Mon. Wea. Rev., 134(1), 49–78.
Mendel, J. M., 1995: Fuzzy logic systems for engineering: A tutorial. Proc. IEEE, 83, 345–377.
Medlin, J. M., and P. J. Croft, 1998: A Preliminary Investigation and Diagnosis of Weak Shear Summertime Convective Initiation for Extreme Southwest Alabama. Wea. Forecasting, 13(3), 717–728.
Mueller, C., T. Saxen, R. Roberts, J. Wilson, T. Betancourt, S. Dettling, N. Oien, and J. Yee, 2003: NCAR Auto-Nowcast System. Wea. Forecasting, 18(4), 545–561.
Outlaw, D. E., and M. P. Murphy, 2000: A Radar-Based Climatology of July Convective Initiation in Georgia and Surrounding Area. NOAA Eastern Region Technical Attachment No. 2000-04. US National Weather Service: Greenville-Spartanburg, SC.
Owen, J., 1966: A Study of Thunderstorm Formation Along Dry Lines. J. Appl. Meteor. Climatol., 5(1), 58–63.
Roberts, R. D., and S. Rutledge, 2003: Nowcasting Storm Initiation and Growth Using GOES-8 and WSR-88D Data. Wea. Forecasting, 18(4), 562–584.
Roebber, P. J., 2009: Visualizing Multiple Measures of Forecast Quality. Wea. Forecasting, 24(2), 601–608.
Romatschke, U., and Houze, R. A., Jr., 2010: Extreme Summer Convection in South America. J. Climate, 23(14), 3761-3791.
Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A Theory for Strong, Long-Lived Squall Lines. J. Atmos. Sci., 45(3), 463–485.
Schaefer, J. T., 1990: The Critical Success Index as an Indicator of Warning Skill. Wea. Forecasting, 5(4), 570–575.
Soderholm, J. S., H. A. McGowan, H. Richter, K. Walsh, T. Wedd, and T. M. Weckwerth, 2017: Diurnal Preconditioning of Subtropical Coastal Convective Storm Environments. Mon. Wea. Rev., 145(9), 3839-3859.
Trier, S. B., J. W. Wilson, D. A. Ahijevych, and R. A. Sobash, 2017: Mesoscale Vertical Motions near Nocturnal Convection Initiation in PECAN. Mon. Wea. Rev., 145(8), 2919–2941.
Ulanski, S. L., and M. Garstang, 1978: The Role of Surface Divergence and Vorticity in the Life Cycle of Convective Rainfall. Part I: Observation and Analysis. J. Atmos. Sci., 35(6), 1047–1062.
Wakimoto, R. M., and H. V. Murphey, 2009: Analysis of a Dryline during IHOP: Implications for Convection Initiation. Mon. Wea. Rev., 137(2), 912–936.
Wang, C.-C., D. J. Kirshbaum, and D. M. L. Sills, 2019: Convection Initiation Aided by Lake-Breeze Convergence over the Niagara Peninsula. Mon. Wea. Rev., 147(11), 3955–3979.
Watson, A. I., and D. O. Blanchard, 1984: The Relationship between Total Area Divergence and Convective Precipitation in South Florida. Mon. Wea. Rev., 112(4), 673–685.
Weckwerth, T. M., Wilson J. W., and Wakimoto R. M., 1996: Thermodynamic variability within the convective boundary layer due to horizontal convective rolls. Mon. Wea. Rev., 124(5), 769–784.
Weckwerth, T. M., 2000: The Effect of Small-Scale Moisture Variability on Thunderstorm Initiation. Mon. Wea. Rev., 128(12), 4017–4030.
Weckwerth, T. M., and Coauthors, 2004: An Overview of the International H2O Project (IHOP_2002) and Some Preliminary Highlights. Bull. Amer. Meteor. Soc., 85(2), 253–278.
Weckwerth, T. M., J. W. Wilson, M. Hagen, T. J. Emerson, J. O. Pinto, D. L. Rife, and L. Grebe, 2011: Radar climatology of the COPS region. Q.J.R. Meteorol. Soc., 137(S1), 31–41.
Weckwerth, T. M., L. J. Bennett, L. Jay Miller, J. Van Baelen, P. Di Girolamo, A. M. Blyth, and T. J. Hertneky, 2014: An Observational and Modeling Study of the Processes Leading to Deep, Moist Convection in Complex Terrain. Mon. Wea. Rev., 142(8), 2687–2708.
Wilson, J. W., and W. E. Schreiber, 1986: Initiation of convective storms at radar-observed boundary-layer convergence lines. Mon. Wea. Rev., 114(12), 2516–2536.
Wilson, J. W., and C. K. Mueller, 1993: Nowcasts of Thunderstorm Initiation and Evolution. Wea. Forecasting, 8(1), 113–131.
Wilson, J. W., N. A. Crook, C. K. Mueller, J. Sun, and M. Dixon, 1998: Nowcasting Thunderstorms: A Status Report. Bull. Amer. Meteor. Soc., 79(10), 2079–2100.
Wilson, J. W., and R. D. Roberts, 2006: Summary of Convective Storm Initiation and Evolution during IHOP: Observational and Modeling Perspective. Mon. Wea. Rev., 134, 23–47.
Xue, M., and W. J. Martin, 2006a: A High-Resolution Modeling Study of the 24 May 2002 Dryline Case during IHOP. Part I: Numerical Simulation and General Evolution of the Dryline and Convection. Mon. Wea. Rev., 134(1), 149–171.
Xue, M., and W. J. Martin, 2006b: A High-Resolution Modeling Study of the 24 May 2002 Dryline Case during IHOP. Part II: Horizontal Convective Rolls and Convective Initiation. Mon. Wea. Rev., 134(1), 172–191.
Ziegler, C. L., and E. N. Rasmussen, 1998: The Initiation of Moist Convection at the Dryline: Forecasting Issues from a Case Study Perspective. Wea. Forecasting, 13(4), 1106–1131. |