博碩士論文 110621019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:97 、訪客IP:18.221.93.167
姓名 李泓寬(Hung-Kuan Li)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 利用模糊邏輯法預報臺灣地區午後對流肇始事件
(A Fuzzy Logic Algorithm for Convection Initiation Forecast in Taiwan)
相關論文
★ 雙偏極化雷達參數變分法定量降水估計評估:五分山S波段與C波段★ 統計分析2008年西南氣流實驗期間對流系統的雙偏極化雷達拉格朗日特徵
★ 使用Morrison方案和雙偏極化雷達進行中尺度對流系統雲物理特性上的模擬和驗證★ 台灣周邊中尺度對流系統及綜觀環境特徵統計分析
★ 使用X與K波段雷達衰減差反演液態水含量與雷達估計粒徑:模擬實驗與個案研究★ 評估北台灣S波段雙偏極化雷達定量降水估計垂直修正之效益
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究使用2011-2021年七至九月之中央氣象局全臺地面氣象站觀測資料,研究弱綜觀條件下之午後對流肇始(convection initiation,CI)事件環境特徵,並建立模糊邏輯法午後對流肇始事件(cluster of convection initiation,CCI)之預報。一般而言,對流肇始(CI)表示單一對流被雷達偵測到的時空間資訊,但臺灣地區的CI常以成群的方式在相似的時空間發生,故本研究將時空間相近之CI是為群體事件,即對流肇始事件(CCI)。

研究中使用Storm Motion Analysis by Radar Tracking (SMART)系統找出午後對流肇始資訊,以群體事件之角度審視當日午後對流之肇始,若有群體的午後對流發生,則該日視為午後對流肇始事件(CCI),反之為空事件(Null)。統計結果顯示CCI事件發生時間落在午後時段(13-17 LST),並以14-16 LST為主要發生時段,並以中臺灣有最高之發生頻率。地面環境分析顯示水氣相關的變數與東西風分量(U風)有較明顯的差異。以北部區域為例,午後對流肇始事件中,水氣較多且隨海風向內陸傳播,使相當位溫較高。U風則反映海風特徵,不論在CCI事件或Null事件中,皆有明顯的邊界存在。該邊界在CCI事件中較為北邊,Null事件則較為南邊,顯示海風在Null事件被侷限南邊的區域。探空資料則顯示CCI事件中,中低層風向為西南風與較高的水氣混合比(簡稱混合比)約0.5-1.5 g/kg與相當位溫約1.5-3.4 K,顯示環境較為潮濕並具有較多能量,有利於對流發展。

將模糊邏輯法與全臺地面氣象站及地面分析所看到之特徵差異結合,計算機率密度函數(probability of density function,PDF)與標準化機率密度函數(normalized probability of density function,NPDF),並以PDF重疊面積之倒數為權重進行午後對流肇始事件的預報。結果具有較高的臨界成功指數(critical success index,CSI)約0.63-0.83、偵測率(probability of detection,POD)約0.73-0.96與公正預兆得分(equitable threat score,ETS)約0.16-0.53,以及較低的誤報率(false alarm ratio,FAR)約0.14-0.25與接近1的偏倚得分(bias score,BS),顯示透過模糊邏輯法簡單地結合大量地面觀測資料進行預報有其實用價值與發展潛力。

取用頻率較高的測站與變數顯示中臺灣與北臺灣之水氣相關變數為模糊邏輯法判斷是否CCI事件的主要依據,代表中臺灣與北臺灣之水氣相關變數對於CCI事件有重大的影響力。而其他變數則扮演輔助的角色,其中又以與風有關之變數如U風分量、V風分量、風速與風向等較為重要。
摘要(英) A fuzzy logic algorithm for convection initiation (CI) forecast utilizing 11-year surface observation data in July, August, and September in Taiwan is developed and investigated. The location and time of 10-year (2011-2020) weak-synoptic CI and non-CI events were identified by the tracking results of convective thunderstorms by Storm Motion Analysis by Radar Tracking (SMART). The surface characteristics from 191-232 automatic weather stations, namely temperature, relative humidity, water vapor mixing ratio (mixing ratio), equivalent potential temperature (θ_e), U-wind, V-wind, wind speed and wind direction, for CI and non-CI events were investigated.

The statistical results show that the CI event, under the weak-synoptic condition, mainly occurred during the afternoon hours (13-17 LST) with a peak occurrence between 14-16 LST with the highest occurrence frequency in the central Taiwan regions in Chiayi, Yunlin, and Changhua. The surface environment analysis revealed significant differences in moisture-related variables and the zonal wind component (U-wind). In north Taiwan, CI events have higher moisture propagated inland with the sea breeze, resulting in higher equivalent potential temperature (θ_e). Both CI and non-CI events have evident boundaries of the U-wind, indicating the confinement of sea breeze to the southern region during null events. Sounding data show that during CI events, the lower to mid-level winds were southwest winds, the water vapor mixing ratio was ~0.5-1.5 g/kg higher and the equivalent potential temperature was ~1.5-3.4 K higher. These indicate a more humid environment with higher energy that favors convection initiations.

The probability density functions (PDFs) of all variables were calculated for CI and non-CI events. The normalized PDFs of each variable are derived as membership functions. The weighting of each membership function is determined by the reciprocal of the overlapping area of PDF. The self-check results from the fuzzy logic algorithm show high value of probability of detection (POD), success ratio (SR), and critical success ratio (CSI), as well as low probability of false detection (POFD). An independent year (2021) of CI and non-CI events was applied to examine the applicability of the fuzzy logic algorithm. The results indicate that the scores gradually increase as the time approaching to afternoon (CSI: 0.60~0.70, POD: 0.76~0.84, FAR: 0.25~0.18). The results suggest the potential of utilizing the fuzzy logic algorithm for the CI forecast.

Additionally, the usage frequency of each station of each variable demonstrated that water vapor the mixing ratio and the θ_e in central and northern Taiwan were the primary variables for the fuzzy logic algorithm to determine CI events. This suggests that moisture-related variables in central and northern Taiwan have a significant influence on CI events. Other variables played auxiliary roles, with wind-related variables such as the U-wind component, V-wind component, wind speed, and wind direction.
關鍵字(中) ★ 對流肇始事件
★ 對流肇始
★ 模糊邏輯法
關鍵字(英) ★ Cluster of convection initiation (CCI)
★ Convection initiation (CI)
★ Fuzzy Logic Algorithm
論文目次 摘要 i
Abstract iii
表目錄 v
圖目錄 vi
誌謝 xi
目錄 xii
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 1
1.3 研究目的 3
第二章 資料與研究方法 5
2.1 使用資料 5
2.1.1 中央氣象局QPESUM雷達資料 5
2.1.2 中央氣象局地面氣象站 5
2.1.3 探空資料 6
2.1.4 對流胞辨識與追蹤 6
2.2 弱綜觀定義與篩選 6
2.3 午後對流肇始事件(CCI)之定義 9
2.3.1 對流肇始(CI)與分區 9
2.3.2 對流肇始事件(CCI事件)之定義與判斷 10
2.4 模糊邏輯法之架構 11
2.4.1 隸屬函數(membership function,MF) 11
2.4.2 權重(weight,w) 12
2.4.3 閾值 13
2.5 預報驗證 13
第三章 臺灣地區CCI事件統計特性 16
第四章 N1區氣象特徵分析 19
4.1 地面特徵 19
4.2 高空特徵 21
第五章 模糊邏輯法預報午後對流肇始事件 23
5.1 自我驗證 23
5.2 實際驗證 24
5.3 關鍵測站 25
5.4 模糊邏輯法表現之探討 27
5.4.1 遙相關效應 27
5.4.2 分區之影響 28
5.4.3 資料樣本數之影響 28
第六章 結論與未來展望 29
6.1 結論 29
6.1.1 臺灣地區CCI事件統計特性 29
6.1.2 地面與高空之氣象特徵 30
6.1.3 模糊邏輯法之表現 30
6.2 未來展望 31
參考文獻 32
附表 39
附圖 41
參考文獻 林熺閔、郭鴻基,1996:「1994年南台灣夏季午後對流之研究」,大氣科學,24卷,249–280。
陳泰然、周鴻祺、廖珮娟及楊進賢,2009a:「暖季台灣中北部午後連續對流的氣候特徵研究」,大氣科學,37卷,49–86。
陳泰然、周鴻祺、廖珮娟及楊進賢,2009b:「暖季弱綜觀強迫下中北臺灣午後熱對流的氣候特徵」,大氣科學,37卷,155–194。
林品芳、張保亮、周仲島,2012:「弱綜觀環境下臺灣午後熱對流特徵及其客觀預報」,大氣科學,40卷,77–108。
吳冠伯,2019:「2015-2015年暖季弱綜觀環境下對流降水系統之特徵統計」,中國文化大學碩士論文,87頁。
葉玉婕,2021:「統計分析2008年西南氣流實驗期間對流系統的雙偏極化雷達拉格朗日特徵」,國立中央大學碩士論文,109頁。
楊承泰,2022:「台灣周邊中尺度對流系統及綜觀環境特徵統計分析」,國立中央大學碩士論文,103頁。
Baker, R. D., B. H. Lynn, A. Boone, W. Tao, and J. Simpson, 2001: The Influence of Soil Moisture, Coastline Curvature, and Land-Breeze Circulations on Sea-Breeze-Initiated Precipitation. J. Hydrometeor., 2(2), 193–211.
Banta, R. M., and C. Barker Schaaf, 1987: Thunderstorm Genesis Zones in the Colorado Rocky Mountains as Determined by Traceback of Geosynchronous Satellite Images. Mon. Wea. Rev., 115(2), 463–476.
Burghardt, B. J., C. Evans, and P. J. Roebber, 2014: Assessing the Predictability of Convection Initiation in the High Plains Using an Object-Based Approach. Wea. Forecasting, 29(2), 403–418.
Byers, H. R., and H. R. Rodebush, 1948: CAUSES OF THUNDERSTORMS OF THE FLORIDA PENINSULA. J. Atmos. Sci., 5(6), 275–280
Cai, H., W.-C. Lee, T. M. Weckwerth, C. Flamant, and H. V. Murphey, 2006: Observations of the 11 June Dryline during IHOP_2002—A Null Case for Convection Initiation. Mon. Wea. Rev., 134(1), 336–354.
Carbone, R. E., J. W. Conway, N. A. Crook, and M. W. Moncrieff, 1990: The Generation and Propagation of a Nocturnal Squall Line. Part I: Observations and Implications for Mesoscale Predictability. Mon. Wea. Rev., 118(1), 26–49.
Chang, H.-L., B. G. Brown, P.-S. Chu, Y.-C. Liou, and W.-H. Wang, 2017: Nowcast Guidance of Afternoon Convection Initiation for Taiwan. Wea. Forecasting, 32(5), 1801–1817.
Chang, P.-L., P.-F. Lin, B. J.-D Jou, and J. Zhang, 2009: An Application of Reflectivity Climatology in Constructing Radar Hybrid Scans over Complex Terrain. J. Atmos. Oceanic Technol, 26(7), 1315–1327.
Chang, P.-L., J. Zhang, Y.-S. Tang, T. Lin, P.-F. Lin, C. Langston, B. Kaney, C.-R. Chen, and K. Howard, 2021: An Operational Multi-Radar Multi-Sensor QPE System in Taiwan. Bull. Amer. Meteor. Soc., 102(3), E555–E577.
Chen, T.-C., M.-C. Yen, J.-D. Tsay, C.-C. Liao, and E. S. Takle, 2014: Impact of Afternoon Thunderstorms on the Land–Sea Breeze in the Taipei Basin during Summer: An Experiment. J. Appl. Meteor. Climatol., 53(7), 1714–1738.
Cho, Y.-H., G. W. Lee, K.-E. Kim, and I. Zawadzki, 2006: Identification and Removal of Ground Echoes and Anomalous Propagation Using the Characteristics of Radar Echoes. J. Atmos. Oceanic Technol., 23(9), 1206–1222.
Clark, A. J., R. G. Bullock, T. L. Jensen, M. Xue, and F. Kong, 2014: Application of Object-Based Time-Domain Diagnostics for Tracking Precipitation Systems in Convection-Allowing Models. Wea. Forecasting, 29(3), 517–542.
Cooper, H. J., M. Garstang, and J. Simpson, 1982: The Diurnal Interaction Between Convection and Peninsular-Scale Forcing Over South Florida. Mon. Wea. Rev., 110(6), 486–503.
Crook, N. A., 1996: Sensitivity of Moist Convection Forced by Boundary Layer Processes to Low-Level Thermodynamic Fields. Mon. Wea. Rev., 124(8), 1767–1785.
Dabberdt, W. F., T. W. Schlatter, and with contributions from the rest of the PDT-2, 1996: Research Opportunities from Emerging Atmospheric Observing and Modeling Capabilities. Bull. Amer. Meteor. Soc., 77(2), 305–324.
Davini, P., R. Bechini, R. Cremonini, and C. Cassardo, 2012: Radar-Based Analysis of Convective Storms over Northwestern Italy. Atmosphere, 3(1), 33–58.
Dixon, M., and G. Wiener, 1993: TITAN: Thunderstorm Identification, Tracking, Analysis, and Nowcasting—A Radar-based Methodology. J. Atmos. Oceanic Technol., 10(6), 785–797.
Dixon, P. G., and T. L. Mote, 2003: Patterns and Causes of Atlanta′s Urban Heat Island–Initiated Precipitation. J. Appl. Meteor. Climatol., 42(9), 1273–1284.
Duda, J. D., and W. A. Gallus, 2013: The Impact of Large-Scale Forcing on Skill of Simulated Convective Initiation and Upscale Evolution with Convection-Allowing Grid Spacings in the WRF. Wea. Forecasting, 28(4), 994–1018.
Fritsch, J. M., and R. E. Carbone, 2004: Improving Quantitative Precipitation Forecasts in the Warm Season: A USWRP Research and Development Strategy. Bull. Amer. Meteor. Soc., 85(7), 955–966.
Frye, J. D., and T. L. Mote, 2010: Convection Initiation along Soil Moisture Boundaries in the Southern Great Plains. Mon. Wea. Rev., 138(4), 1140–1151.
Gasperoni, N. A., M. Xue, R. D. Palmer, and J. Gao, 2013: Sensitivity of Convective Initiation Prediction to Near-Surface Moisture When Assimilating Radar Refractivity: Impact Tests Using OSSEs. J. Atmos. Oceanic Technol., 30(10), 2281–2302.
Gentry, R. C., and P. L. Moore, 1954: RELATION OF LOCAL AND GENERAL WIND INTERACTION NEAR THE SEA COAST TO TIME AND LOCATION OF AIR-MASS SHOWERS. J. Atmos. Sci., 11(6), 507–511.
Haberlie, A. M., W.S. Ashley, and T. J. Pingel, 2015: The effect of urbanisation on the climatology of thunderstorm initiation. Q.J.R. Meteorol. Soc, 141(688), 663–675.
Huang, Y., Z. Meng, J. Li, W. Li, L. Bai, M. Zhang, and X. Wang, 2017: Distribution and variability of satellite‐derived signals of isolated convection initiation events over central Eastern China. J. Geophys. Res. Atmos.,122(21), 11–357.
Johnson, R. H., and J. F. Bresch, 1991: Diagnosed Characteristics of Precipitation Systems over Taiwan during the May–June 1987 TAMEX. Mon. Wea. Rev., 119(11), 2540–2557.
Kain, J. S., and Coauthors, 2013: A Feasibility Study for Probabilistic Convection Initiation Forecasts Based on Explicit Numerical Guidance. Bull. Amer. Meteor. Soc., 94(8), 1213–1225.
Karr, T. W., and R. L. Wooten, 1976: Summer Radar Echo Distribution Around Limon, Colorado. Mon. Wea. Rev., 104(6), 728–734.
Kuo, J.-T., and H. D. Orville, 1973: A Radar Climatology of Summertime Convective Clouds in the Black Hills. J. Appl. Meteor. Climatol., 12(2), 359–368.
Lima, M. A., and J. W. Wilson, 2008: Convective Storm Initiation in a Moist Tropical Environment. Mon. Wea. Rev., 136(6), 1847–1864.
Lin, C.-Y., and C.-S. Chen, 2002: A study of orographic effects on mountain-generated precipitation systems under weak synoptic forcing. Meteorol. Atmos. Phys, 81, 1–25.
Lin, P.-F., P.-L. Chang, B. J.-D. Jou, J. W. Wilson, and R. D. Roberts, 2011: Warm Season Afternoon Thunderstorm Characteristics under Weak Synoptic-Scale Forcing over Taiwan Island. Wea. Forecasting, 26(1), 44–60.
Lin, P.-F., P.-L. Chang, B. J.-D. Jou, J. W. Wilson, and R. D. Roberts, 2012: Objective Prediction of Warm Season Afternoon Thunderstorms in Northern Taiwan Using a Fuzzy Logic Approach. Wea. Forecasting, 27(5), 1178–1197.
Lock, N. A., and A. L. Houston, 2014: Empirical Examination of the Factors Regulating Thunderstorm Initiation. Mon. Wea. Rev., 142(1), 240–258.
Mecikalski, J. R., and K. M. Bedka, 2006: Forecasting Convective Initiation by Monitoring the Evolution of Moving Cumulus in Daytime GOES Imagery. Mon. Wea. Rev., 134(1), 49–78.
Mendel, J. M., 1995: Fuzzy logic systems for engineering: A tutorial. Proc. IEEE, 83, 345–377.
Medlin, J. M., and P. J. Croft, 1998: A Preliminary Investigation and Diagnosis of Weak Shear Summertime Convective Initiation for Extreme Southwest Alabama. Wea. Forecasting, 13(3), 717–728.
Mueller, C., T. Saxen, R. Roberts, J. Wilson, T. Betancourt, S. Dettling, N. Oien, and J. Yee, 2003: NCAR Auto-Nowcast System. Wea. Forecasting, 18(4), 545–561.
Outlaw, D. E., and M. P. Murphy, 2000: A Radar-Based Climatology of July Convective Initiation in Georgia and Surrounding Area. NOAA Eastern Region Technical Attachment No. 2000-04. US National Weather Service: Greenville-Spartanburg, SC.
Owen, J., 1966: A Study of Thunderstorm Formation Along Dry Lines. J. Appl. Meteor. Climatol., 5(1), 58–63.
Roberts, R. D., and S. Rutledge, 2003: Nowcasting Storm Initiation and Growth Using GOES-8 and WSR-88D Data. Wea. Forecasting, 18(4), 562–584.
Roebber, P. J., 2009: Visualizing Multiple Measures of Forecast Quality. Wea. Forecasting, 24(2), 601–608.
Romatschke, U., and Houze, R. A., Jr., 2010: Extreme Summer Convection in South America. J. Climate, 23(14), 3761-3791.
Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A Theory for Strong, Long-Lived Squall Lines. J. Atmos. Sci., 45(3), 463–485.
Schaefer, J. T., 1990: The Critical Success Index as an Indicator of Warning Skill. Wea. Forecasting, 5(4), 570–575.
Soderholm, J. S., H. A. McGowan, H. Richter, K. Walsh, T. Wedd, and T. M. Weckwerth, 2017: Diurnal Preconditioning of Subtropical Coastal Convective Storm Environments. Mon. Wea. Rev., 145(9), 3839-3859.
Trier, S. B., J. W. Wilson, D. A. Ahijevych, and R. A. Sobash, 2017: Mesoscale Vertical Motions near Nocturnal Convection Initiation in PECAN. Mon. Wea. Rev., 145(8), 2919–2941.
Ulanski, S. L., and M. Garstang, 1978: The Role of Surface Divergence and Vorticity in the Life Cycle of Convective Rainfall. Part I: Observation and Analysis. J. Atmos. Sci., 35(6), 1047–1062.
Wakimoto, R. M., and H. V. Murphey, 2009: Analysis of a Dryline during IHOP: Implications for Convection Initiation. Mon. Wea. Rev., 137(2), 912–936.
Wang, C.-C., D. J. Kirshbaum, and D. M. L. Sills, 2019: Convection Initiation Aided by Lake-Breeze Convergence over the Niagara Peninsula. Mon. Wea. Rev., 147(11), 3955–3979.
Watson, A. I., and D. O. Blanchard, 1984: The Relationship between Total Area Divergence and Convective Precipitation in South Florida. Mon. Wea. Rev., 112(4), 673–685.
Weckwerth, T. M., Wilson J. W., and Wakimoto R. M., 1996: Thermodynamic variability within the convective boundary layer due to horizontal convective rolls. Mon. Wea. Rev., 124(5), 769–784.
Weckwerth, T. M., 2000: The Effect of Small-Scale Moisture Variability on Thunderstorm Initiation. Mon. Wea. Rev., 128(12), 4017–4030.
Weckwerth, T. M., and Coauthors, 2004: An Overview of the International H2O Project (IHOP_2002) and Some Preliminary Highlights. Bull. Amer. Meteor. Soc., 85(2), 253–278.
Weckwerth, T. M., J. W. Wilson, M. Hagen, T. J. Emerson, J. O. Pinto, D. L. Rife, and L. Grebe, 2011: Radar climatology of the COPS region. Q.J.R. Meteorol. Soc., 137(S1), 31–41.
Weckwerth, T. M., L. J. Bennett, L. Jay Miller, J. Van Baelen, P. Di Girolamo, A. M. Blyth, and T. J. Hertneky, 2014: An Observational and Modeling Study of the Processes Leading to Deep, Moist Convection in Complex Terrain. Mon. Wea. Rev., 142(8), 2687–2708.
Wilson, J. W., and W. E. Schreiber, 1986: Initiation of convective storms at radar-observed boundary-layer convergence lines. Mon. Wea. Rev., 114(12), 2516–2536.
Wilson, J. W., and C. K. Mueller, 1993: Nowcasts of Thunderstorm Initiation and Evolution. Wea. Forecasting, 8(1), 113–131.
Wilson, J. W., N. A. Crook, C. K. Mueller, J. Sun, and M. Dixon, 1998: Nowcasting Thunderstorms: A Status Report. Bull. Amer. Meteor. Soc., 79(10), 2079–2100.
Wilson, J. W., and R. D. Roberts, 2006: Summary of Convective Storm Initiation and Evolution during IHOP: Observational and Modeling Perspective. Mon. Wea. Rev., 134, 23–47.
Xue, M., and W. J. Martin, 2006a: A High-Resolution Modeling Study of the 24 May 2002 Dryline Case during IHOP. Part I: Numerical Simulation and General Evolution of the Dryline and Convection. Mon. Wea. Rev., 134(1), 149–171.
Xue, M., and W. J. Martin, 2006b: A High-Resolution Modeling Study of the 24 May 2002 Dryline Case during IHOP. Part II: Horizontal Convective Rolls and Convective Initiation. Mon. Wea. Rev., 134(1), 172–191.
Ziegler, C. L., and E. N. Rasmussen, 1998: The Initiation of Moist Convection at the Dryline: Forecasting Issues from a Case Study Perspective. Wea. Forecasting, 13(4), 1106–1131.
指導教授 張偉裕(Wei-Yu Chang) 審核日期 2023-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明