博碩士論文 111223005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.145.87.213
姓名 王若晴(Jo-Chin Wang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 對稱 Pyrazole 為架構之配位基與其硼錯合物之液晶性質探討與以四氧化三鐵修飾有序中孔洞之碳氮材 N-CMK-9 應用於高效能鋰離子電池負極材料
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-6-30以後開放)
摘要(中) 本篇論文有兩個系列所組成,系列一為設計出中心為吡唑 (pyrazole),兩端為對稱長碳鏈之有機液晶材料;以及其二氟化硼 (BF2) 錯合物之材料。藉此探討五員雜環以及含硼錯合物對於液晶性質的影 響,並觀察在不同側鏈基長短下對其液晶性質之影響。利用偏光顯微 鏡觀察液晶相之偏光紋理、熱微差掃描分析儀觀察相變化之熱焓值, 藉此得知其液晶相在不同溫度下的性質表現,經過偏光紋理圖,判定 化合物 1a、2a、1a-BF2 及 2a-BF2 部分為 SmA 以及 SmC 型桿狀液 晶。
並以紫外光/可見光光譜以及螢光光譜,探討該分子的光學性質, 從結果得知將配位基 1a、2a 改為含二氟化硼 (BF2) 之錯合物 1a-BF2 及 2a-BF2 時,可使最大放光波長紅移。並利用熱重分析儀所得之數據, 了解化合物之熱穩定性,得知吡唑 (pyrazole) 配位基以及含二氟化硼 (BF2) 之錯合物在 270 C 以下均有良好的熱穩定性。
本篇論文之系列二為利用含浸法將過渡金屬氧化物 Fe3O4 修飾於 中孔洞碳氮材 N-CMK-9,並應用於高效能鋰(鈉)離子電池之負極材料。 利用氮氣吸脫附分析儀得知 N-CMK-9 具有高比表面積以及多孔之特 性,而修飾上過渡金屬之 Fe3O4@N-CMK-9 則有比表面積降低的趨勢, 藉此可以證明含浸法的成功,而本篇論文亦進一步利用 ICP-MS、XPS
i
以及 TEM Mapping 來證明材料中具有氮、鐵元素,而氮元素的異原 子摻雜以及鐵元素的高理論電容量皆有助於電性表現的提升。
Fe3O4@N-CMK-9-30 在鋰離子電池系統以電流密度 100 mA/g 進 行充放電循環測試,經過 50 圈循環後仍保持 1779 mAh/g 的電容量 表現,在電流密度提升到 1000 mA/g 進行充放電循環測試,經過 100 圈循環後仍得到 895 mAh/g 的比電容,顯示此材料不僅擁有相當高的 電容量表現外,也具有良好的循環穩定性。
摘要(英) There are two parts of study in this paper, the first part was designing and synthesizing organic liquid crystal material with pyrazole at the center, and symmetrically flexible side chains on both sides. Another material with pyrazole at the center and coordinated with boron difluoride were also designed. The five-membered heterocyclic ring and boron difluoride complexes in these materials were used to explore the effect on the properties of the liquid crystal. The effects of different numbers of alkoxy groups on the liquid crystals’ properties were also observed. All compounds were characterized by 1H and 13C-NMR spectroscopy, while their phase properties of these mesogenic compounds were characterized and studied by polarized optical microscope (POM) and differential scanning calorimeter (DSC).
Results appeared that some of the compounds were Smectic liquid crystals, which were observed by polarized optical microscope (POM). The optical properties of these compounds were investigated by UV-Vis spectroscopy and fluorescence spectroscopy. Results showed that complexes which were coordinated with boron difluoride can cause the emission wavelength redshift.
The second part was to synthesis anode materials in lithium ion batteries. First, we designed 3-D hollow-type ordered mesoporous carbon with nitrogen-dpoed material, N-CMK-9. It’s high specific surface area and porosity can provide a lot of space for Li+ during insertion-extraction process, and it can also improve the electrochemical performance. In the second step, we introduced Fe3O4 into N-CMK-9. Fe3O4 not only has high
iii
theoretical capacity (925 mAh/g), but is also naturally abundant and cost-effectiveness. Fe3O4@N-CMK-9-30 displayed a high reversible capacity of 1738 mAh/g after 50 cycles at a current density of 100 mA/g, and 895 mAh/g after 100 cycles at a current density of 1000 mA/g. Fe3O4@N-CMK-9-30 has an very outstanding specific capacity and good rate performance.
關鍵字(中) ★ 中孔洞材料
★ 鋰離子電池
關鍵字(英) ★ Mesoporous material
★ Lithium ion battery
論文目次 目錄
系列一 .........................................................................................................1 第一章 緒論.............................................................................................. 2
1-1 液晶簡介.........................................................................................2 1-2 液晶分子架構.................................................................................3 1-3 液晶作用力.....................................................................................4 1-4 液晶分類.........................................................................................4
1-4-1 桿狀型液晶..............................................................................5
1-4-2 盤狀型液晶..............................................................................7 1-5 五員雜環.........................................................................................9 1-6 BF2 錯合物簡介............................................................................ 11 1-7 文獻回顧與探討...........................................................................12 1-8 研究動機.......................................................................................15
第二章 實驗............................................................................................ 17
2-1 實驗藥品.......................................................................................17
2-2 儀器設備.......................................................................................19
2-3 實驗流程.......................................................................................24 v
2-3-1 系列一之實驗流程..............................................................24
2-3-2 系列二之實驗流程..............................................................25
2-4 實驗步驟.......................................................................................26
2-4-1 系列一之實驗步驟..............................................................26
2-4-2 系列二之實驗步驟..............................................................31
第三章 結果與討論................................................................................ 36
3-1 系列一之探討...............................................................................36
3-1-1 系列一之結構與代號..........................................................36
3-1-2 系列一之 1H NMR 以及 19F 核磁共振光譜圖分析........ 37 3-1-3 系列一之偏光紋理圖..........................................................39
3-1-4 系列一之熱微差掃描分析..................................................42 3-1-5 系列一之X-射線繞射分析與分子模擬排列....................45 3-1-6 系列一之光物理性質分析.................................................50
3-2 系列二之探討...............................................................................52
3-2-1 系列二之結構與代號..........................................................52
3-2-2 系列二之 1H NMR 以及 19F 核磁共振光譜圖分析........ 53 3-2-3 系列二之偏光紋理圖..........................................................55
vi

3-2-4 系列二之熱微差掃描分析..................................................57 3-2-5 系列二之X-射線繞射分析與分子模擬排列....................61 3-2-6 系列二之光物理性質分析.................................................63 3-2-7 系列一與系列二之熱重分析.............................................65
第四章 結論............................................................................................ 67 系列二 .......................................................................................................68
第一章 緒論............................................................................................ 69 1-1 前言...............................................................................................69 1-2 鋰離子電池...................................................................................70 1-3 金屬離子電池...............................................................................74 1-4 研究目的.......................................................................................76
第二章 文獻回顧.................................................................................... 78
2-1 負極材料.......................................................................................78
2-2 碳材...............................................................................................79
2-3 非碳材...........................................................................................81
2-4 碳材-非碳材複合材料..................................................................82
2-5 氮摻雜碳材之負極材料 ............................................................... 83 vii

2-6 有序中孔洞碳材...........................................................................85 2-6-1 中孔洞碳材之奈米模鑄法合成機制..................................87 第三章 實驗方法與儀器........................................................................ 89 3-1 實驗藥品.......................................................................................89 3-2 實驗儀器設備以及儀器原理....................................................... 91
3-2-1 3-2-2 3-2-3 3-2-4 3-2-5 3-2-6 3-2-7 3-2-8 3-2-9
同步輻射中心光束線 (NSRRC)........................................ 91
X-射線粉末繞射儀 .............................................................. 93
氮氣吸脫附分析儀..............................................................94
熱重分析儀..........................................................................99
穿透式電子顯微鏡............................................................100
掃描式電子顯微鏡............................................................101
X-射線光電子能譜儀 ........................................................ 102
感應耦合電將質譜儀........................................................103
拉曼光譜分析儀................................................................104
3-3 負極材料之製備方法.................................................................106
3-3-1 三維空間群 Ia3d 中孔洞矽材 KIT-6 合成..................106 3-3-2 三維空間群 Ia3d 中孔洞管狀碳材 N-CMK-9 合成....107
viii

3-3-3 含浸法合成 Fe3O4@N-CMK-9 ...................................... 108 3-4 電化學測試材料之製備方法..................................................... 109
3-4-1 負極極片製作 ................................................................... 109
3-4-2 正極極片製作 ................................................................... 109 3-5 硬幣型電池組裝方法.................................................................110
3-5-1 半電池組裝方法 ............................................................... 110
3-5-2 全電池組裝方法 ............................................................... 111 3-6 電化學性能測試方法.................................................................112
3-6-1 定(變)電流充放電循環壽命測試 .................................... 112
3-6-2 循環伏安法 (CV) ............................................................. 113 第四章 結果與討論.............................................................................. 114
4-1 材料鑑定.....................................................................................114
4-1-1 小角度 X 光繞射分析 (SAXRD) .................................. 114 4-1-2 大角度 X 光繞射分析 (PXRD) ..................................... 116 4-1-3 氮氣吸脫附結果分析 ....................................................... 118 4-1-4 熱重分析............................................................................122 4-1-5 ICP-MS 以及 EA 元素分析 ........................................... 124 4-1-6X 光電子能譜 (XPS) 分析..............................................126
ix

4-1-7 掃描式電子顯微鏡 (SEM) 結果分析 ............................ 129 4-1-8 穿透式電子顯微鏡 (TEM) 結果分析.............................134 4-1-9 拉曼光譜分析....................................................................139
4-2 電化學鑑定.................................................................................142
4-2-1 循環伏安法 (CV) 分析 ................................................... 142 4-2-2 充放電曲線分析 ............................................................... 145 4-2-3 電性分析 ........................................................................... 147 4-2-4 交流阻抗分析 ................................................................... 153 4-2-5 電容貢獻度計算 ............................................................... 158 4-2-6 應用於鈉離子電池與全電池 ........................................... 162
4-3 相關文獻比較.............................................................................166
第五章 結論.......................................................................................... 167
參考文獻 .................................................................................................168 附圖 .........................................................................................................174
參考文獻 1. Weiss, R. G., Thermotropic liquid crystals as reaction media for mechanistic investigations1. Tetrahedron 1988, 44 (12), 3413-3475.
2. Janiak, C., A critical account on π–π stacking in metal complexes with aromatic nitrogen-containing ligands. Journal of the Chemical Society, Dalton Transactions 2000, (21), 3885-3896.
3. Liu, J.; Murray, E. M.; Young, J. V. G., π-Stacking interactions in some crystalline cisoid E,E-1,4-diaryl-1,3-butadienes. Chemical Communications 2003, (15), 1904-1905.
4. Percec, V.; Sahoo, D., Discotic liquid crystals 45 years later. Dendronized discs and crowns increase liquid crystal complexity to columnar from spheres, cubic Frank-Kasper, liquid quasicrystals and memory-effect induced columnar-bundles. Giant 2022, 12, 100127.
5. Foster, E. J.; Lavigueur, C.; Ke, Y.-C.; Williams, V. E., Self-assembly of hydrogen-bonded molecules: discotic and elliptical mesogens. Journal of Materials Chemistry 2005, 15 (37), 4062-4068.
6. Morale, F., Date, R. W., Guillon, D., Bruce, D. W., Finn, R. L., Wilson, C., ... Donnio, B., Columnar Mesomorphism from Hemi-Disklike Metallomesogens Derived
from 2,6-Bis[3,4,5-tri(alkoxy)phenyliminomethyl]pyridines (L):
Crystal and Molecular Structures of [M(L)Cl2](M Mn, Ni, Zn). Chemistry - A European Journal 2003, 9, 2484–2501.
7. Schmidt-Mende, L., Self-Organized Discotic Liquid Crystals for High-Efficiency Organic Photovoltaics. . Science 2001, 293(5532), 1119– 1122.
8. Lin, K. T.; Lee, G. H.; Lai, C., Mesogenic heterocycles formed by bis−pyrazoles and bis−1,3,4−oxadiazoles. Tetrahedron 2015, 71.
9. Ikeda, T.; Iijima, T.; Sekiya, R.; Takahashi, O.; Haino, T., Cooperative Self-Assembly of Carbazole Derivatives Driven by Multiple Dipole–Dipole Interactions. The Journal of Organic Chemistry 2016, 81 (15), 6832-6837.
10. Qian, C.; Liu, M.; Hong, G.; Xue, P.; Gong, P.; Lu, R., Luminescent organogels based on triphenylamine functionalized β-diketones and their difluoroboron complexes. Organic & Biomolecular Chemistry 2015, 13 (10), 2986-2998.
11. Santra, M.; Moon, H.; Park, M.-H.; Lee, T.-W.; Kim, Y. K.; Ahn, K. H., Dramatic substituent effects on the photoluminescence of boron
complexes of 2-(benzothiazol-2-yl)phenols. Chemistry 2012, 18 (32), 9886-9893.
12. Giordani, S.; Bartelmess, J.; Frasconi, M.; Biondi, I.; Cheung, S.; Grossi, M.; Wu, D.; Echegoyen, L.; O′Shea, D. F., NIR fluorescence labelled carbon nano-onions: synthesis, analysis and cellular imaging. Journal of Materials Chemistry B 2014, 2 (42), 7459-7463.
13. Chapran, M.; Angioni, E.; Findlay, N. J.; Breig, B.; Cherpak, V.; Stakhira, P.; Tuttle, T.; Volyniuk, D.; Grazulevicius, J. V.; Nastishin, Y. A.; Lavrentovich, O. D.; Skabara, P. J., An Ambipolar BODIPY Derivative for a White Exciplex OLED and Cholesteric Liquid Crystal Laser toward Multifunctional Devices. ACS Applied Materials & Interfaces 2017, 9 (5), 4750-4757.
14. Tang, Q.; Si, W.; Huang, C.; Ding, K.; Huang, W.; Chen, P.; Zhang, Q.; Dong, X., An aza-BODIPY photosensitizer for photoacoustic and photothermal imaging guided dual modal cancer phototherapy. Journal of Materials Chemistry B 2017, 5 (8), 1566-1573.
15. Mamiya, M., Suwa, Y., Okamoto, H., & Yamaji, M. , Photochemically-assisted synthesis and photophysical properties of difluoroboronated β-diketones with fused four-benzene-ring chromophores, chrysene and pyrene. Photochemical & Photobiological Sciences 2016, 15(7), 928–936.
16. Singh, R. S.; Yadav, M.; Gupta, R. K.; Pandey, R.; Pandey, D. S., Luminescent N,O-chelated chroman-BF2 complexes: structural variants of BODIPY. Dalton Transactions 2013, 42 (5), 1696-1707.
17. Liu, Q.; Wang, X.; Yan, H.; Wu, Y.; Li, Z.; Gong, S.; Liu, P.; Liu, Z., Benzothiazole-enamide-based BF2 complexes: luminophores exhibiting aggregation-induced emission, tunable emission and highly efficient solid-state emission. Journal of Materials Chemistry C 2015, 3 (12), 2953-2959.
18. Sun, Y.; Rohde, D.; Liu, Y.; Wan, L.; Wang, Y.; Wu, W.; Di, C.; Yu, G.; Zhu, D., A novel air-stable n-type organic semiconductor: 4,4′-bis[(6,6′-diphenyl)-2,2-difluoro-1,3,2-dioxaborine] and its application in organic ambipolar field-effect transistors. Journal of Materials Chemistry 2006, 16 (46), 4499-4503.
19. DeRosa, C. A.; Samonina-Kosicka, J.; Fan, Z.; Hendargo, H. C.; Weitzel, D. H.; Palmer, G. M.; Fraser, C. L., Oxygen Sensing Difluoroboron Dinaphthoylmethane Polylactide. Macromolecules 2015, 48 (9), 2967-2977.
20. Yoshii R, N. A., Tanaka K, Chujo Y. , Highly emissive boron ketoiminate derivatives as a new class of aggregation-induced emission fluorophores. Chemistry. . Chemistry - A European Journal 2013, 19(14), 4506-4512.
21. Denißen, M.; Nordmann, J.; Dziambor, J.; Mayer, B.; Frank, W.; Müller, T. J. J., Sequential palladium catalyzed coupling– cyclocondensation–coupling (C3) four-component synthesis of intensively blue luminescent biarylsubstituted pyrazoles. RSC Advances 2015, 5 (43), 33838-33854.
22. 何冠廷.陳弘源.陳燦耀.方冠榮.張家欽, 儲能發展的勁旅─鋰 離子電池. 國家實驗研究室 科學發展期刊 2019 年 5 月, 557 期, 61. 23. 黃昱叡、黃俊翰、鄭尹瑋、劉全璞, 鋰離子電池負極材料. 國家實 驗研究室 科學發展期刊 2019 年 12 月, 564 期, 13.
24. Chen Y, F. K., Gao Y, Wang C. , Challenges and Perspectives of Organic Multivalent Metal-Ion Batteries. . Adv Mater. 2022, 34(52).
25. Jazer Jose H. Togonon, Pin-Chieh Chiang, Hong-Jhen Lin, Wei-Che Tsai, Hung-Ju Yen. Pure carbon-based electrodes for metal-ion batteries. Carbon Trends 2021, 3, 100035.
26. Abraham, K. M., How Comparable Are Sodium-Ion Batteries to Lithium-Ion Counterparts? ACS Energy Letters 2020, 5 (11), 3544-3547. 27. Lyu, L.; Seong, K.-d.; Ko, D.; Choi, J.; Lee, C.; Hwang, T.; Cho, Y.; Jin, X.; Zhang, W.; Pang, H.; Piao, Y., Recent development of biomass-derived carbons and composites as electrode materials for supercapacitors. Materials Chemistry Frontiers 2019, 3 (12), 2543-2570. 28. Shen, W.; Fan, W., Nitrogen-containing porous carbons: synthesis and application. Journal of Materials Chemistry A 2013, 1 (4), 999-1013.
29. Xiao, B., Rojo, T., & Li, X., A Minireview on Hard Carbon as Na-ion Battery Anodes: Progresses and Challenges. . ChemSusChem 2018.
30. Bîru, E. I., & Iovu, H., Graphene Nanocomposites Studied by Raman Spectroscopy. . Raman Spectroscopy 2018.
31. Bierdel, M.; Buchholz, S.; Michele, V.; Mleczko, L.; Rudolf, R.; Voetz, M.; Wolf, A., Industrial Production of Multiwalled Carbon Nanotubes. physica status solidi (b) 2007, 244, 3939-3943.
32. Yadav, D.; Amini, F.; Ehrmann, A., Recent advances in carbon
nanofibers and their applications – A review. European Polymer Journal 2020, 138, 109963.
33. Walcarius, A., Recent Trends on Electrochemical Sensors Based on Ordered Mesoporous Carbon. . Sensors 2017, 17(8), 1863.
34. Sandhya, C.; John, B.; Gouri, C., Lithium titanate as anode material for lithium-ion cells: A review. Ionics 2014, 20, 601-620.
35. Huang, Q.; Song, J.; Gao, Y.; Wang, D.; Liu, S.; Peng, S.; Usher, C.; Goliaszewski, A.; Wang, D., Supremely elastic gel polymer electrolyte enables a reliable electrode structure for silicon-based anodes. Nature Communications 2019, 10.
36. Yu, Y.; He, Y.-C.; Xu, N.; Geng, X.; Wang, L.; Sun, H.-T.; Zhu, L.-H.; Jing, Z., One step synthesis of Fe3O4@C composite as a high performance anode material for Li-ion batteries. Journal of Solid State Chemistry 2019, 271, 121-125.
37. Shaker, M.; Ghazvini, A. A. S.; Shahalizade, T.; Gaho, M. A.; Mumtaz, A.; Javanmardi, S.; Riahifar, R.; Meng, X.-m.; Jin, Z.; Ge, Q., A review of nitrogen-doped carbon materials for lithium-ion battery anodes. New Carbon Materials 2023, 38 (2), 247-278.
38. Sebastián, D.; Nieto-Monge, M.; Pérez-Rodríguez, S.; Pastor, E.; Lázaro, M., Nitrogen Doped Ordered Mesoporous Carbon as Support of PtRu Nanoparticles for Methanol Electro-Oxidation. Energies 2018, 11, 831.
39. Cai, D.; Wang, S.; Lian, P.; Zhu, X.; Li, D.; Yang, W.; Wang, H., Superhigh capacity and rate capability of high-level nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Electrochimica Acta 2013, 90, 492–497.
40. Liang, C.; Li, Z.; Dai, S., Mesoporous Carbon Materials: Synthesis and Modification. Angewandte Chemie (International ed. in English) 2008, 47, 3696-717.
41. Marcos-Hernández, M.; Villagrán, D., 11 - Mesoporous Composite Nanomaterials for Dye Removal and Other Applications. In Composite Nanoadsorbents, Kyzas, G. Z.; Mitropoulos, A. C., Eds. Elsevier: 2019; pp 265-293.
42. Aslam, S.; Subhan, F.; Yan, Z.; Peng, P.; Qiao, K.; Xing, W.; Bai, P.; Ullah, R.; Etim, U. J.; Zeng, J.; Ikram, M., Facile fabrication of Ni-based KIT-6 for adsorptive desulfurization. Chemical Engineering Journal 2016, 302, 239-248.
43. Zhang, Y.; Wu, G.; Yang, Y.; Sun, J.; Zhang, D., Preparation of 171

SBA-15 mesoporous silica grafted with bis-salicylaldehyde Schiff base for uptake of Pb(II) and Cu(II) from water. Journal of Sol-Gel Science and Technology 2021, 98, 1-13.
44. Lu, M., Nanoporous Materials- Science and Engineering. Imperial College Press 2004, 317.
45. Kim, H.-D.; Kim, T.-W.; Park, H. J.; Jeong, K.-E.; Chae, H.-J.; Jeong, S.-Y.; Lee, C.-H.; Kim, C.-U., Hydrogen production via the aqueous phase reforming of ethylene glycol over platinum-supported ordered mesoporous carbon catalysts: Effect of structure and framework-configuration. International Journal of Hydrogen Energy 2012, 37 (17), 12187-12197.
46. Kleitz, F.; Hei Choi, S.; Ryoo, R., Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chemical Communications 2003, (17), 2136-2137.
47. Yurdakal, S.; Garlisi, C.; Özcan, L.; Bellardita, M., (Photo)catalyst Characterization Techniques. 2019; pp 87-152.
48. Wang, H.; Wang, W.; Gui, M.; Asif, M.; Wang, Z.; Yu, Y.; Xiao, J.; Liu, H., Uniform Fe3O4/Nitrogen-Doped Mesoporous Carbon Spheres Derived from Ferric Citrate-Bonded Melamine Resin as an Efficient Synergistic Catalyst for Oxygen Reduction. ACS Applied Materials & Interfaces 2017, 9 (1), 335-344.
49. Peng, H.; Mo, Z.; Liao, S.; Liang, H.; Yang, L.; Luo, F.; Song, H.; Zhong, Y.; Zhang, B., High Performance Fe- and N- Doped Carbon Catalyst with Graphene Structure for Oxygen Reduction. Scientific reports 2013, 3, 1765.
50. Guo, C.; He, J.; Wu, X.; Huang, Q.; Wang, Q.; Zhao, X.; Wang, Q., Facile Fabrication of Honeycomb-like Carbon Network-Encapsulated Fe/Fe3C/Fe3O4 with Enhanced Li-Storage Performance. ACS Applied Materials & Interfaces 2018, 10 (42), 35994-36001.
51. Duan, H.; Zhang, S.; Chen, Z.; Xu, A.; Zhan, S.; Wu, S., Self-Formed Channel Boosts Ultrafast Lithium Ion Storage in Fe3O4@Nitrogen-Doped Carbon Nanocapsule. ACS Applied Materials & Interfaces 2020, 12 (1), 527-537.
52. Xie, Q.; Zhang, Y.; Xie, D.; Zhao, P., Nitrogen-enriched graphitic carbon encapsulated Fe3O4/Fe3C/Fe composite derived from EDTA-Fe(III) sodium complex as LiBs anodes with boosted performance. Journal of Electroanalytical Chemistry 2020, 857, 113749.
53. Deshmukh, A.; Dwivedi, P.; Nalawade, A.; Qureshi, M.; Shelke, M., Highly durable Li-ion battery anode from Fe3O4 nanoparticles embedded in nitrogen-doped porous carbon with improved rate capabilities. Journal of Materials Science 2020, 55.
54. Wang, l.; Wu, J.; Chen, Y.; Wang, X.; Zhou, R.; Chen, S.; Guo, Q.; Hou, H.; Song, Y., Hollow Nitrogen-doped Fe3O4/Carbon Nanocages with Hierarchical Porosities as Anode Materials for Lithium-ion Batteries. Electrochimica Acta 2015, 186.
55. Wang, J.; Hu, Q.; Hu, W.; Zhu, W.; Wei, Y.; Pan, K.; Zheng, M.; Pang, H., Preparation of Hollow Core–Shell Fe3O4/Nitrogen-Doped Carbon Nanocomposites for Lithium-Ion Batteries. Molecules 2022, 27, 396.
56. Yang, Z.; Qian, K.; Lv, J.; Yan, W.; Liu, J.; Ai, J.; Zhang, Y.; Guo, T.; Zhou, X.; Xu, S.; Guo, Z., Encapsulation of Fe3O4 Nanoparticles into N, S co-Doped Graphene Sheets with Greatly Enhanced Electrochemical Performance. Scientific Reports 2016, 6, 27957.
57. Li, Y., Meng, Q., Zhu, S., Sun, Z., Yang, H., Chen, Z., Zhu, C., Guo, Z. & Zhang, D., A Fe/Fe3O4/Ncarbon composite with hierarchical porous structure and in situ formed N-doped graphene-like layers for high-performance lithium ion batteries. Dalton Transactions: an international journal of inorganic
chemistry - A European Journal 2015, 44 (10), 4594-4600.
58. Chang, Y.; Li, J.; Wang, B.; Luo, H.; He, H.; Song, Q.; Zhi, L., Synthesis of 3D nitrogen-doped graphene/Fe3O4 by a metal ion induced self-assembly process for high-performance Li-ion batteries. Journal of Materials Chemistry A 2013, 1 (46), 14658-14665.
指導教授 高憲明 賴重光(Hsien-Ming Kao Chung-Kuang Lai) 審核日期 2023-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明