參考文獻 |
Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 2884-2903.
Brandes, E. A., G. Zhang, and J. Vivekanandan, 2002: Experiments in Rainfall Estimation with a Polarimetric Radar in a Subtropical Environment. Journal of Applied Meteorology, 41,674-685.
Chang, W., K.-S. Chung, L. Fillion, and S.-J. Baek, 2014: Radar Data Assimilation in the Canadian High-Resolution Ensemble Kalman Filter System: Performance and Verification with Real Summer Cases. Monthly Weather Review, 142, 2118-2138.
Chen, C. S. and Y. L. Chen, 2003: The Rainfall Characteristics of Taiwan. Monthly Weather Review, 131,1323-1341.
Chen, C. S., Y. L. Lin, H. T. Zheng, C. Y. Chen and C. L. Liu, 2013: Orographic effects on heavy rainfall events over northeastern Taiwan during the northeasterly monsoon season. Atmosphere Research, 122, 310-335.
Chen, C., K. Chung, S. Yang, L. Chen, P. Lin, and R. D. Torn, 2021: Sensitivity of Forecast Uncertainty to Different Microphysics Schemes within a Convection-Allowing Ensemble during SoWMEX-IOP8. Mon. Wea. Rev., 149, 4145–4166
Chung, K.-S., I. Zawadzki, M. K. Yau, and L. Fillion, 2009: Short-Term Forecasting of a Midlatitude Convective Storm by the Assimilation of Single–Doppler Radar Observations. Monthly Weather Review, 137, 4115-4135.
Dolan, B., B. Fuchs, S. A. Rutledge, E. A. Barnes, and E. J. Thompson, 2018: Primary Modes of Global Drop Size Distributions. Journal of the Atmospheric Sciences, 75, 1453-1476.
Green, A. W., 1975: An Approximation for the Shapes of Large Raindrops. Journal of Applied Meteorology, 14,1578–1583.
Hong, S.-Y., J.-H. Kim, J.-o. Lim, and J. Dudhia, 2006: The WRF single moment microphysics scheme (WSM). Journal of the Korean Meteorological Society, 42, 129-151.
Houtekamer, P. L., Mitchell, H. L. & Deng, X. ,2009: Model error representation in an operational ensemble Kalman filter. Monthly Weather Review, 137(7), 2126–2143.
Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D: Nonlinear Phenomena, 230, 112-126.
Jung, Y., G. Zhang, and M. Xue, 2008a: Assimilation of Simulated Polarimetric Radar Data for a Convective Storm Using the Ensemble Kalman Filter. Part I: Observation Operators for Reflectivity and Polarimetric Variables. Monthly Weather Review, 136, 2228-2245.
Jung, Y., M. Xue, G. Zhang, and J. M. Straka, 2008b: Assimilation of Simulated Polarimetric Radar Data for a Convective Storm Using the Ensemble Kalman Filter. Part II: Impact of Polarimetric Data on Storm Analysis. Monthly Weather Review, 136, 2246-2260.
Jung, Y., M. Xue, and G. Zhang, 2010: Simulations of Polarimetric Radar Signatures of a Supercell Storm Using a Two-Moment Bulk Microphysics Scheme. Journal of Applied Meteorology and Climatology, 49, 146-163.
Kumjian, M. R., and A. V. Ryzhkov, 2012: The Impact of Size Sorting on the Polarimetric Radar Variables. Journal of Atmospheric sciences, 69, 2042-2060.
Kumjian, M.R.; Martinkus, C.P.; Prat, O.P.; Collis, S.; van Lier-Walqui, M.; Morrison, H.C., 2019: A moment-based polarimetric radar forward operator for rain microphysics. J. Appl. Meteorol. Climatol., 58, 113–130.
Labriola, J., Snook, N., Jung, Y., & Xue, M., 2020: Evaluating Ensemble Kalman Filter Analyses of Severe Hailstorms on 8 May 2017 in Colorado: Effects of State Variable Updating and Multimoment Microphysics Schemes on State Variable Cross Covariances, Monthly Weather Review, 148(6), 2365-2389.
Liou, Y.-C., Chiou, J.-L., Chen, W.-H., & Yu, H.-Y. (2014). Improving the Model Convective Storm Quantitative Precipitation Nowcasting by Assimilating State Variables Retrieved from Multiple-Doppler Radar Observations. Monthly Weather Review, 142(11), 4017- 4035.
Lim, K. S. S., and S.-Y. Hong, 2010: Development of an Effective Double-Moment Cloud Microphysics Scheme with Prognostic Cloud Condensation Nuclei (CCN) for Weather and Climate Models. Monthly Weather Review, 138, 1587-1612.
Milbrandt, J. A., and M. K. Yau, 2005: A Multimoment Bulk Microphysics Parameterization. Part I: Analysis of the Role of the Spectral Shape Parameter. Journal of the Atmospheric Sciences, 62, 3051-3064.
Ott, E., and Coauthors, 2004: A local ensemble Kalman filter for atmospheric data assimilation. Tellus A, 56, 415-428.
Park, H. S., A. V. Ryzhkov, D. S. Zrnić, and K.-E. Kim, 2009: The Hydrometeor Classification Algorithm for the Polarimetric WSR-88D: Description and Application to an MCS. Weather and Forecasting, 24, 730-748.
Pfeifer, M., G. C. Craig, M. Hagen, and C. Keil, 2008: A polarimetric radar forward operator for model evaluation. Journal of Applied Meteorology and Climatology, 47, 3202–3220
Putnam, B., M. Xue, Y. Jung, N. Snook, and G. Zhang, 2019: Ensemble Kalman Filter Assimilation of Polarimetric Radar Observations for the 20 May 2013 Oklahoma Tornadic Supercell Case. Monthly Weather Review, 147, 2511-2533.
Putnam, B. J., Jung, Y., Yussouf, N., Stratman, D., Supinie, T. A., Xue, M., Kuster, C. and Labriola, J. (2021). The Impact of Assimilating ZDR Observations on Storm-Scale Ensemble Forecasts of the 31 May 2013 Oklahoma Storm Event, Monthly Weather Review, 149(6), 1919-1942
Ryzhkov, A., and D. Zrnić, 1996: Assessment of Rainfall Measurement That Uses Specific Differential Phase. Journal of Applied Meteorology and Climatology, 35, 2080-2090.
Ryzhkov, A., M. Pinsky, A. Pokrovsky, and A. Khain, 2011: Polarimetric Radar Observation Operator for a Cloud Model with Spectral Microphysics. Journal of Applied Meteorology and Climatology, 50, 873-894.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J., W. Wang., J. G. Powers., M. G. Duda., D. M. Barker., X. Y. Huang, 2019: A Description of the Advanced Research WRF Model Version 4.1. NCAR Tech. Note NCAR/TN-556+STR, 162 pp.
Sandu, A., Constantinescu, E. M., Carmichael, G. R., Chai, T., Seinfeld, J. H. & Daescu, D. ,2007: Localized ensemble kalman dynamics data assimilation for atmospheric chemistry. Lecture Notes Comput. Sci. 4487, 1018–1490.
Snyder, C., and F. Zhang, 2003: Assimilation of Simulated Doppler Radar Observations with an Ensemble Kalman Filter. Monthly Weather Review, 131, 1663-1677.
Su, S.H., Y. H. Chang, C. H. Liu, W. T. Chen, W. Y. Chang, J. P. Chen, W. N. Chen, K. S. Chung, J. P. Hou, M. K. Hsieh, Y. S. Jang, H. C. Kuo, Y. C. Lee, P. Liam. Lin, P. Y. Lin, P. H Lin, M. H. Lo, S. H. Wang, C. M. Wu, J. H. Yang, M. J. Yang, 2022: Observing severe precipitation near complex topography during the Yilan Experiment of Severe Rainfall in 2020 (YESR2020). Q J R Meteorol Soc., 2022, 1–20.
Sun, J., and N. A. Crook, 1997: Dynamical and Microphysical Retrieval from Doppler Radar Observations Using a Cloud Model and Its Adjoint. Part I: Model Development and Simulated Data Experiments. Journal of the Atmospheric Sciences, 54, 1642-1661.
Tsai, C.-C., S.-C. Yang, and Y.-C. Liou, 2014: Improving quantitative precipitation nowcasting with a local ensemble transform Kalman filter radar data assimilation system: observing system simulation experiments. Tellus A, 66, 21804.
Tsai, C.-C., and K.-S. Chung, 2020: Sensitivities of Quantitative Precipitation Forecasts for Typhoon Soudelor (2015) near Landfall to Polarimetric Radar Data Assimilation. Remote Sensing, 12, 3711.
Ulbrich, C. W., 1983: Natural Variations in the Analytical Form of the Raindrop Size Distribution. Journal of Applied Meteorology and Climatology, 22, 1764-1775.
Xiao, Q., Y.-H. Kuo, J. Sun, W.-C. Lee, E. Lim, Y.-R. Guo, and D. M. Barker, 2005: Assimilation of Doppler Radar Observations with a Regional 3DVAR System: Impact of Doppler Velocities on Forecasts of a Heavy Rainfall Case. Journal of Applied Meteorology and Climatology, 44, 768-788.
Yang, S.-C., E. Kalnay, and T. Enomoto, 2015: Ensemble singular vectors and their use as additive inflation in EnKF. Tellus, 67A, 26536.
Ying, Y., and F. Zhang, 2015: An adaptive covariance relaxation method for ensemble data assimilation. Quart. J. Roy. Meteor. Soc., 141, 2898–2906.
You, C. R., K. S. Chung, and C. C. Tsai, 2020: Evaluating the Performance of a Convection-Permitting Model by Using Dual-Polarimetric Radar Parameters: Case Study of SoWMEX IOP8. Remote Sensing, 12, 3004.
Whitaker, J.S. and Hamill, T.M., 2012: Evaluating methods to account for system errors in ensemble data assimilation. Monthly Weather Review, 140(9), 3078–3089.
Zhang, G., J. Vivekanandan and E. Brandes, 2001: A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Transactions on Geoscience and Remote Sensing, 39(4), 830-841.
Zhang, F., C. Snyder, and J. Sun, 2004: Impacts of Initial Estimate and Observation Availability on Convective-Scale Data Assimilation with an Ensemble Kalman Filter. Monthly Weather Review, 132, 1238-1253.
樺澤實,1950:第 2 種地形性降雨の實例について,気象庁研究時報,第二卷,第三號,p65-69。
陳盈曄,2000:宜蘭地區秋冬季降雨特性之研究,碩士論文,國立中央大學大氣物理研究所,118頁。
葉嘉靜,2003:宜蘭地區秋冬季豪大雨特性之研究,碩士論文,國立中央大學大氣物理研究所,137頁。
蔡直謙,2014:利用局地系集轉換卡爾曼濾波器雷達資料同化系統改善定量降水即時預報:莫拉克颱風(2009),博士論文,國立中央大學大氣物理研究所,85頁。
蘇亦叡、洪景山、李志昕,2016:系集機率擬合平均定量降水預報產品之特性分析:以 2014 年梅雨季為例。大氣科學,44(2),113-134。
黃椿喜、葉世瑄、呂國臣、洪景山,2016:系集定量降水預報方法之探討與分析-系集平均、機率擬合平均與超越機率之定量降水預報。大氣科學,44(2),173-196。
林沛練、李孟澤、張偉裕、Balaji Kumar Seela,2019:臺灣北部雨滴粒徑與雷達回波氣候統計分析與定量降水估計研究,中央氣象局108年天氣分析與預報研討會。
陳如瑜、張偉裕、陳台琦,2017:北台灣S與C波段雙偏極化雷達定量降雨估計之比較,大氣科學,45(1),57-80。
游承融,2019:利用雙偏極化雷達觀測資料進行極短期天氣預報評估─2008 年西南氣流實驗 IOP8 期間颮線系統個案,碩士論文,國立中央大學大氣物理研究所,105頁。
莊秉學,2021:使用局地系集轉換卡爾曼濾波器同化雙偏極化參數的全新方法:夏季真實個案中的分析場與預報場,碩士論文,國立中央大學大氣物理研究所,155頁。
吳若瑜,2022:東北季風環境下宜蘭冬季降雨特徵之地形效應,碩士論文,國立臺灣大學理學院大氣科學研究所,101頁。 |