博碩士論文 110621017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:96 、訪客IP:18.216.174.32
姓名 張沁全(Chin-Chuan Chang)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 同化雙偏極化雷達差異反射率之方法與影響評估:2021 年宜蘭降雨觀測實驗 IOP2 個案分析
(Impact of Assimilating Differential Reflectivity with Different Approaches: 2021YESR #IOP2 Wintertime Rainfall Case Study)
相關論文
★ McGill Algorithm for Precipitation nowcasting using Lagrangian Extrapolation(MAPLE)即時預報系統在臺灣複雜地形之可行性評估:颱風與梅雨鋒面個案分析★ 利用系集法估計與檢驗對流尺度之預報誤差:SoWMEX IOP8 個案分析
★ 不同微物理方案在雲可解析模式的系集預報分析: SoWMEX-IOP8 個案★ 藉由數值模式水平風場改善雷達回波外延即時預報系統:16個颱風個案統計分析
★ 分析不同微物理參數化之系集預報誤差: SoWMEX-IOP8 對流個案★ 利用雙偏極化雷達觀測資料進行極短期天氣預報評估─2008年西南氣流實驗IOP8期間颮線系統個案
★ 台灣地區對流胞特性統計分析與即時路徑預報之改善★ 評估TAHOPE觀測實驗同化S-PolKa徑向風、回波與折射指數對短期降雨預報的影響:觀測系統模擬實驗(OSSE)之測試
★ 利用多頻道衛星觀測評估WRF數值模式於不同微物理方案之雲特性:以梅雨鋒面降水系統個案為例★ 使用局地系集轉換卡爾曼濾波器同化雙偏極化參數的全新方法:夏季真實個案中的分析場與預報場
★ 台灣地區強對流胞即時預報與冰雹預警能力之分析與改善★ Extreme Heavy Rainfall Event on 01-02 June 2017 over Northern Taiwan Area: Analysis of Radar Observation and Ensemble Simulations
★ WRF-LETKF系統同化反演熱動力場與雷達資料:鋒面雨帶個案之分析探討★ Investigating hygroscopic cloud-seeding effects in liquid-water clouds in northern Taiwan: in-situ measurements and model simulation
★ 利用三維回波移動場改善即時降雨預報並建構系集即時預報系統:臺灣梅雨鋒面及秋季降水個案分析★ 1950至2020全球海溫分布模式及其氣候影響:東部型與中部型ENSO的比較分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用WRF-LETKF Radar Assimilation System (WLRAS, Tsai et al., 2014)分析場與預報場結果,評估宜蘭冬季降水個案同化差異反射率觀測之效益,並比較莊(2021)提出的新更新法:Mean Diameter Update (MDU) Approach,與傳統變數更新法的異同,以尋找最佳的微物理分析場。同化實驗共有四組設置,第一組(VrZ)僅同化傳統雷達觀測資料(ZH, Vr),第二組(VrZZ)則多同化差異反射率(ZDR)並用傳統方法進行更新,其餘兩組(NwDm與qrDm)則多同化ZDR並使用MDU Approach中兩種不同設定進行變數更新。研究結果顯示,同化ZDR觀測資料能調整模式分析場雨水混合比與水氣混合比,並改變整體雨滴平均粒徑大小,改善分析場微物理結構與近地表水氣表現,但仍存在參數化方案與觀測算符造成的偏差。使用新方法進行變數更新時,微物理結構調整更多且更快速,使得回波與差異反射率更加接近真實觀測表現。短期定量降水預報分析上,未同化的系集(noDA)有一定的能力描述降雨分佈與極值位置,但無法描述降雨生成、消散與移動的過程。同化傳統雷達觀測時,能改善第一個小時的降水表現,但嚴重低估第二個小時降水,使得2~6小時累積降水表現較noDA差。相較之下,同化ZDR在分析場增加的近地表水氣、平均雨滴粒徑與雨水混合比,其效益能維持至預報第2~3小時,並大幅改善定量降水預報表現。此外使用qrDm法更新模式變數,在預報表現上能調整局部降水強度,增加降水表現改善幅度。綜合所有研究結果,在2021YESR IOP2冬季個案中同化ZDR資料,能改善分析場微物理與熱力結構,提升短期定量降水預報能力,並且利用MDU Approach更新模式變數,能有更好的分析場微物理結構,減少與觀測之差異。
摘要(英) In this study, the WRF-LETKF Radar Assimilation System (WLRAS, Tsai et al., 2014) analyses and forecasts of the wintertime rainfall case have been evaluated and confirmed the impact of assimilating differential reflectivity (ZDR) with different approaches. Two sets of experiments that VrZ assimilates reflectivity and radial velocity, and VrZZ assimilates reflectivity, radial velocity and ZDR are examined. In addition, the impact of assimilating ZDR with the two updating strategies in the Mean Diameter Update (MDU) approach, NwDm and qrDm, has been investigated to validate the performance between different update methods.
Results of assimilating ZDR show that the water vapor and rain water mixing ratios are enhanced in analyses, which adjust the mean drop size and modify the ZDR structure toward observations. Besides, the MDU approach has much more improvement than the traditional update method. However, due to configuration of the observation operator and double-moment microphysics scheme, the bias of the ZH-ZDR structure still remains. The first hour Quantitative Precipitation Forecast (QPF) has been improved after assimilating traditional radar data; however, the underestimation in the second hour causes a the worse accumulated rainfall performance than ensemble forecasts without data assimilation (noDA) after the first hour. By contrast, after ZDR assimilation, the enhancement of water vapor and rain water mixing ratios continues to the second hour in the forecasts, which leads to a better Probabilistic QPF (PQPF) and a lower underestimation. Also, using the qrDm strategy may enhance partial rainfall. To sum up, properly assimilating additional ZDR observations can not only have a better description of the uniform ZDR structure but lead to a better precipitation forecast in the wintertime rainfall case.
關鍵字(中) ★ 雙偏極化雷達參數
★ 資料同化
★ 系集卡爾曼濾波器
★ 冬季降水
關鍵字(英)
論文目次 摘要................i
Abstract............ii
致謝................iii
目錄.................v
表目錄...............vii
圖目錄................viii
一、緒論................1
二、資料與個案回顧................7
2.1 2021YESR IOP2 個案回顧................7
2.2 模式設定................8
2.3 雷達資料使用與品質管理(Quality Control)................8
2.4 WDM6 雙矩量微物理參數化方案................10
三、同化方法與實驗設計................12
3.1 WRF-LETKF Radar Assimilation System (WLRAS)................12
3.2 觀測算符................13
3.3 Mean Diameter Update approach................16
3.4 實驗設計................18
四、驗證方法................19
4.1 分析場驗證................19
4.1.1 方均根餘量(Root Mean Square Residual)................19
4.1.2 ZH – ZDR 差異聯合機率分布圖................19
4.2 QPESUMS 降雨資料概述與驗證................20
4.2.1 PQPF 與 QPFP................20
4.2.2 客觀分數與性能圖................21
五、實驗結果與討論................23
5.1 資料同化分析場驗證與表現................23
5.1.1 雙偏極化雷達參數表現................23
5.1.2 分析場動力與熱力表現................26
5.1.3 分析場微物理表現................28
5.2 資料同化預報場表現................30
5.2.1 六小時定量降水預報表現................30
5.2.2 各小時定量降水預報表現................32
5.2.3 預報場水氣與微物理表現................34
5.3 ZDR地面水氣更新敏感度實驗................35
六、結論與未來展望................37
參考文獻................40
附表................46
附圖................52
參考文獻 Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 2884-2903.
Brandes, E. A., G. Zhang, and J. Vivekanandan, 2002: Experiments in Rainfall Estimation with a Polarimetric Radar in a Subtropical Environment. Journal of Applied Meteorology, 41,674-685.
Chang, W., K.-S. Chung, L. Fillion, and S.-J. Baek, 2014: Radar Data Assimilation in the Canadian High-Resolution Ensemble Kalman Filter System: Performance and Verification with Real Summer Cases. Monthly Weather Review, 142, 2118-2138.
Chen, C. S. and Y. L. Chen, 2003: The Rainfall Characteristics of Taiwan. Monthly Weather Review, 131,1323-1341.
Chen, C. S., Y. L. Lin, H. T. Zheng, C. Y. Chen and C. L. Liu, 2013: Orographic effects on heavy rainfall events over northeastern Taiwan during the northeasterly monsoon season. Atmosphere Research, 122, 310-335.
Chen, C., K. Chung, S. Yang, L. Chen, P. Lin, and R. D. Torn, 2021: Sensitivity of Forecast Uncertainty to Different Microphysics Schemes within a Convection-Allowing Ensemble during SoWMEX-IOP8. Mon. Wea. Rev., 149, 4145–4166
Chung, K.-S., I. Zawadzki, M. K. Yau, and L. Fillion, 2009: Short-Term Forecasting of a Midlatitude Convective Storm by the Assimilation of Single–Doppler Radar Observations. Monthly Weather Review, 137, 4115-4135.
Dolan, B., B. Fuchs, S. A. Rutledge, E. A. Barnes, and E. J. Thompson, 2018: Primary Modes of Global Drop Size Distributions. Journal of the Atmospheric Sciences, 75, 1453-1476.
Green, A. W., 1975: An Approximation for the Shapes of Large Raindrops. Journal of Applied Meteorology, 14,1578–1583.
Hong, S.-Y., J.-H. Kim, J.-o. Lim, and J. Dudhia, 2006: The WRF single moment microphysics scheme (WSM). Journal of the Korean Meteorological Society, 42, 129-151.
Houtekamer, P. L., Mitchell, H. L. & Deng, X. ,2009: Model error representation in an operational ensemble Kalman filter. Monthly Weather Review, 137(7), 2126–2143.
Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D: Nonlinear Phenomena, 230, 112-126.
Jung, Y., G. Zhang, and M. Xue, 2008a: Assimilation of Simulated Polarimetric Radar Data for a Convective Storm Using the Ensemble Kalman Filter. Part I: Observation Operators for Reflectivity and Polarimetric Variables. Monthly Weather Review, 136, 2228-2245.
Jung, Y., M. Xue, G. Zhang, and J. M. Straka, 2008b: Assimilation of Simulated Polarimetric Radar Data for a Convective Storm Using the Ensemble Kalman Filter. Part II: Impact of Polarimetric Data on Storm Analysis. Monthly Weather Review, 136, 2246-2260.
Jung, Y., M. Xue, and G. Zhang, 2010: Simulations of Polarimetric Radar Signatures of a Supercell Storm Using a Two-Moment Bulk Microphysics Scheme. Journal of Applied Meteorology and Climatology, 49, 146-163.
Kumjian, M. R., and A. V. Ryzhkov, 2012: The Impact of Size Sorting on the Polarimetric Radar Variables. Journal of Atmospheric sciences, 69, 2042-2060.
Kumjian, M.R.; Martinkus, C.P.; Prat, O.P.; Collis, S.; van Lier-Walqui, M.; Morrison, H.C., 2019: A moment-based polarimetric radar forward operator for rain microphysics. J. Appl. Meteorol. Climatol., 58, 113–130.
Labriola, J., Snook, N., Jung, Y., & Xue, M., 2020: Evaluating Ensemble Kalman Filter Analyses of Severe Hailstorms on 8 May 2017 in Colorado: Effects of State Variable Updating and Multimoment Microphysics Schemes on State Variable Cross Covariances, Monthly Weather Review, 148(6), 2365-2389.
Liou, Y.-C., Chiou, J.-L., Chen, W.-H., & Yu, H.-Y. (2014). Improving the Model Convective Storm Quantitative Precipitation Nowcasting by Assimilating State Variables Retrieved from Multiple-Doppler Radar Observations. Monthly Weather Review, 142(11), 4017- 4035.
Lim, K. S. S., and S.-Y. Hong, 2010: Development of an Effective Double-Moment Cloud Microphysics Scheme with Prognostic Cloud Condensation Nuclei (CCN) for Weather and Climate Models. Monthly Weather Review, 138, 1587-1612.
Milbrandt, J. A., and M. K. Yau, 2005: A Multimoment Bulk Microphysics Parameterization. Part I: Analysis of the Role of the Spectral Shape Parameter. Journal of the Atmospheric Sciences, 62, 3051-3064.
Ott, E., and Coauthors, 2004: A local ensemble Kalman filter for atmospheric data assimilation. Tellus A, 56, 415-428.
Park, H. S., A. V. Ryzhkov, D. S. Zrnić, and K.-E. Kim, 2009: The Hydrometeor Classification Algorithm for the Polarimetric WSR-88D: Description and Application to an MCS. Weather and Forecasting, 24, 730-748.
Pfeifer, M., G. C. Craig, M. Hagen, and C. Keil, 2008: A polarimetric radar forward operator for model evaluation. Journal of Applied Meteorology and Climatology, 47, 3202–3220
Putnam, B., M. Xue, Y. Jung, N. Snook, and G. Zhang, 2019: Ensemble Kalman Filter Assimilation of Polarimetric Radar Observations for the 20 May 2013 Oklahoma Tornadic Supercell Case. Monthly Weather Review, 147, 2511-2533.
Putnam, B. J., Jung, Y., Yussouf, N., Stratman, D., Supinie, T. A., Xue, M., Kuster, C. and Labriola, J. (2021). The Impact of Assimilating ZDR Observations on Storm-Scale Ensemble Forecasts of the 31 May 2013 Oklahoma Storm Event, Monthly Weather Review, 149(6), 1919-1942
Ryzhkov, A., and D. Zrnić, 1996: Assessment of Rainfall Measurement That Uses Specific Differential Phase. Journal of Applied Meteorology and Climatology, 35, 2080-2090.
Ryzhkov, A., M. Pinsky, A. Pokrovsky, and A. Khain, 2011: Polarimetric Radar Observation Operator for a Cloud Model with Spectral Microphysics. Journal of Applied Meteorology and Climatology, 50, 873-894.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J., W. Wang., J. G. Powers., M. G. Duda., D. M. Barker., X. Y. Huang, 2019: A Description of the Advanced Research WRF Model Version 4.1. NCAR Tech. Note NCAR/TN-556+STR, 162 pp.
Sandu, A., Constantinescu, E. M., Carmichael, G. R., Chai, T., Seinfeld, J. H. & Daescu, D. ,2007: Localized ensemble kalman dynamics data assimilation for atmospheric chemistry. Lecture Notes Comput. Sci. 4487, 1018–1490.
Snyder, C., and F. Zhang, 2003: Assimilation of Simulated Doppler Radar Observations with an Ensemble Kalman Filter. Monthly Weather Review, 131, 1663-1677.
Su, S.H., Y. H. Chang, C. H. Liu, W. T. Chen, W. Y. Chang, J. P. Chen, W. N. Chen, K. S. Chung, J. P. Hou, M. K. Hsieh, Y. S. Jang, H. C. Kuo, Y. C. Lee, P. Liam. Lin, P. Y. Lin, P. H Lin, M. H. Lo, S. H. Wang, C. M. Wu, J. H. Yang, M. J. Yang, 2022: Observing severe precipitation near complex topography during the Yilan Experiment of Severe Rainfall in 2020 (YESR2020). Q J R Meteorol Soc., 2022, 1–20.
Sun, J., and N. A. Crook, 1997: Dynamical and Microphysical Retrieval from Doppler Radar Observations Using a Cloud Model and Its Adjoint. Part I: Model Development and Simulated Data Experiments. Journal of the Atmospheric Sciences, 54, 1642-1661.
Tsai, C.-C., S.-C. Yang, and Y.-C. Liou, 2014: Improving quantitative precipitation nowcasting with a local ensemble transform Kalman filter radar data assimilation system: observing system simulation experiments. Tellus A, 66, 21804.
Tsai, C.-C., and K.-S. Chung, 2020: Sensitivities of Quantitative Precipitation Forecasts for Typhoon Soudelor (2015) near Landfall to Polarimetric Radar Data Assimilation. Remote Sensing, 12, 3711.
Ulbrich, C. W., 1983: Natural Variations in the Analytical Form of the Raindrop Size Distribution. Journal of Applied Meteorology and Climatology, 22, 1764-1775.
Xiao, Q., Y.-H. Kuo, J. Sun, W.-C. Lee, E. Lim, Y.-R. Guo, and D. M. Barker, 2005: Assimilation of Doppler Radar Observations with a Regional 3DVAR System: Impact of Doppler Velocities on Forecasts of a Heavy Rainfall Case. Journal of Applied Meteorology and Climatology, 44, 768-788.
Yang, S.-C., E. Kalnay, and T. Enomoto, 2015: Ensemble singular vectors and their use as additive inflation in EnKF. Tellus, 67A, 26536.
Ying, Y., and F. Zhang, 2015: An adaptive covariance relaxation method for ensemble data assimilation. Quart. J. Roy. Meteor. Soc., 141, 2898–2906.
You, C. R., K. S. Chung, and C. C. Tsai, 2020: Evaluating the Performance of a Convection-Permitting Model by Using Dual-Polarimetric Radar Parameters: Case Study of SoWMEX IOP8. Remote Sensing, 12, 3004.
Whitaker, J.S. and Hamill, T.M., 2012: Evaluating methods to account for system errors in ensemble data assimilation. Monthly Weather Review, 140(9), 3078–3089.
Zhang, G., J. Vivekanandan and E. Brandes, 2001: A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Transactions on Geoscience and Remote Sensing, 39(4), 830-841.
Zhang, F., C. Snyder, and J. Sun, 2004: Impacts of Initial Estimate and Observation Availability on Convective-Scale Data Assimilation with an Ensemble Kalman Filter. Monthly Weather Review, 132, 1238-1253.
樺澤實,1950:第 2 種地形性降雨の實例について,気象庁研究時報,第二卷,第三號,p65-69。

陳盈曄,2000:宜蘭地區秋冬季降雨特性之研究,碩士論文,國立中央大學大氣物理研究所,118頁。
葉嘉靜,2003:宜蘭地區秋冬季豪大雨特性之研究,碩士論文,國立中央大學大氣物理研究所,137頁。
蔡直謙,2014:利用局地系集轉換卡爾曼濾波器雷達資料同化系統改善定量降水即時預報:莫拉克颱風(2009),博士論文,國立中央大學大氣物理研究所,85頁。
蘇亦叡、洪景山、李志昕,2016:系集機率擬合平均定量降水預報產品之特性分析:以 2014 年梅雨季為例。大氣科學,44(2),113-134。
黃椿喜、葉世瑄、呂國臣、洪景山,2016:系集定量降水預報方法之探討與分析-系集平均、機率擬合平均與超越機率之定量降水預報。大氣科學,44(2),173-196。
林沛練、李孟澤、張偉裕、Balaji Kumar Seela,2019:臺灣北部雨滴粒徑與雷達回波氣候統計分析與定量降水估計研究,中央氣象局108年天氣分析與預報研討會。
陳如瑜、張偉裕、陳台琦,2017:北台灣S與C波段雙偏極化雷達定量降雨估計之比較,大氣科學,45(1),57-80。
游承融,2019:利用雙偏極化雷達觀測資料進行極短期天氣預報評估─2008 年西南氣流實驗 IOP8 期間颮線系統個案,碩士論文,國立中央大學大氣物理研究所,105頁。
莊秉學,2021:使用局地系集轉換卡爾曼濾波器同化雙偏極化參數的全新方法:夏季真實個案中的分析場與預報場,碩士論文,國立中央大學大氣物理研究所,155頁。
吳若瑜,2022:東北季風環境下宜蘭冬季降雨特徵之地形效應,碩士論文,國立臺灣大學理學院大氣科學研究所,101頁。
指導教授 鍾高陞 審核日期 2023-8-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明