博碩士論文 110223060 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:126 、訪客IP:18.119.136.235
姓名 賴思萍(Ssu-Ping Lai)  查詢紙本館藏   畢業系所 化學學系
論文名稱 利用光固化材料調控R3CE的界面共價修飾及其對三維細胞培養的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著癌症以及各種慢性病的盛行率逐漸增長,在藥物的測試以及精準下藥的需求也逐漸增加,因此發展出三為細胞培養的技術。目前常見的三維細胞培養技術有支架型(例如:水凝膠、含孔洞固態支架)與無支架型(例如:懸滴培養盤、低附著盤),在市售上常見的則是Matrigel以及Ultra-low培養盤,在實驗室的研究中也使用了許多天然聚合物或合成聚合物來當作三維細胞培養的材料。在本篇論文中,使用Kollicaot@IR 此種具有聚乙烯醇(PVA)以及聚乙二醇(PEG)結構之高分子材料來當作表面材料,且將4-azidobenzoic acid此種光固化官能基利用共價鍵結連接於聚乙烯醇的羥基(-OH)上,經由紫外線波長365nm的照射後使N2離去後產生活化機構,光固化官能基能夠固定在細胞培養板上,應用在R3CE(Rapid, Reproducible, Rare Cell 3D Expansion)細胞培養技術上,觀察此光固化共聚合物材料對於R3CE平台的連結以及此種材料所帶來的功效是否影響原本的R3CE平台。實驗中使用HCT-116細胞,觀察到細胞依然會形成球體,還可以將球體細胞大小控制在100 μm左右,可利於後續下藥實驗的分析。
摘要(英) With the increasing prevalence of cancer and various chronic diseases, the demand for drug testing and precise drug delivery has been steadily rising, leading to the development of three-dimensional cell culture techniques. Currently, common three-dimensional cell culture techniques include scaffold-based approaches (such as hydrogels and porous solid scaffolds) and scaffold-free approaches (such as hanging drop culture and low-attachment plates). The commonly used commercial options include Matrigel and Ultra-low culture plates, while in laboratory research, many natural or synthetic polymers have been used as materials for three-dimensional cell culture. In this paper, we utilized a material called Kollicaot@IR, which consists of polyvinyl alcohol (PVA) and polyethylene glycol (PEG), as the surface material. We connected a photocurable functional group, 4-azidobenzoic acid, to the hydroxyl groups (-OH) of polyvinyl alcohol. By irradiating it with ultraviolet light at a wavelength of 365nm, nitrogen gas (N2) is removed, allowing the photocurable functional group to be immobilized on the cell culture plate. This light-curable copolymer material was applied to the Rapid, Reproducible, Rare Cell 3D Expansion (R3CE) cell culture technique to investigate its impact on the R3CE platform and whether it offers advantages over the original R3CE platform. HCT-116 cells were used in the experiments, and it was observed that the cells still formed spheres, with the size of the spherical cells controlled at approximately 100 μm, facilitating subsequent analysis in drug testing experiments.
關鍵字(中) ★ 光固化修飾
★ 調控界面
★ 對基質與三維細胞培養材料連結能力
★ 對三維細胞培養影響
關鍵字(英)
論文目次 目錄
摘要 i
Abstract ii
目錄 iii
圖目錄 iv
表目錄 v
附錄圖目錄 vi
符號說明 vii
一、 緒論 1
1-1前言 1
1-1-1 細胞培養發展 1
1-1-2 3D細胞培養 3
1-1-3 2D細胞培養與3D細胞培養比較 3
1-1-4 3D細胞培養技術與R3CE 5
1-2 研究動機 7
1-3 生物相容性材料 7
1-3-1 生物相容性材料介紹 7
1-3-2 Kollicoat@IR的介紹與結構組成 11
1-3-3 Kollicoat@IR的應用 13
1-4 官能基表面修飾 14
1-4-1 電漿改質 15
1-4-2 化學表面修飾 15
1-4-3 光固化官能基介紹與應用 15
1-5 實驗設計 19
二、實驗部分 21
2-1實驗藥品 21
2-2實驗使用儀器 22
2-3 光固化共聚合物製備 22
2-4 橢圓偏光儀 24
2-5 R3CE-Photoactive Kollicoat@IR細胞培養盤的置備 26
2-6 HCT-116細胞培養 27
2-7 R3CE-Kollicoat@IR上的HCT-116細胞培養測試 27
三、結果與討論 28
3-1 光固化Kollicoat@IR NMR圖譜探討 28
3-2 光固化Kollicoat@IR FTIR圖譜 30
3-3 光固化Kollicoat@IR 接觸角量測與吸水能力 33
3-4 光固化Kollicoat@IR 薄膜厚度 36
3-5 R3C-Photoactive Kollicoat@IR細胞培養 38
3-5-1 不同細胞密度的細胞培養 38
3-5-2 不同厚度的R3CE-Photoactive Kollicoat@IR的細胞培養 41
3-6 R3CE-Photoactive Kollicoat@IR 對於球體細胞型態的控制 42
四、結論 44
五、參考文獻 45
六、附錄 49
參考文獻 1. Lerman, M. J.; Lembong, J.; Muramoto, S.; Gillen, G.; Fisher, J. P. J. T. E. P. B. R., The evolution of polystyrene as a cell culture material. Tissue Engineering Part B: Reviews 2018, 24 (5), 359-372.
2. Merck ECM Gel Matrix: Protocols Using EHS Basement Membrane Extracts. https://www.sigmaaldrich.com/TW/en/technical-documents/technical-article/cell-culture-and-cell-culture-analysis/3d-cell-culture/ecm-gel-product-protocols.
3. UPM Biomedicals What is the difference between 2D versus 3D cell culture? https://www.upmbiomedicals.com/resource-center/learning-center/what-is-3d-cell-culture/2d-versus-3d-cell-culture/.
4. Costa, E. C.; Moreira, A. F.; de Melo-Diogo, D.; Gaspar, V. M.; Carvalho, M. P.; Correia, I. J. J. B. a., 3D tumor spheroids: an overview on the tools and techniques used for their analysis. Biotechnology Advances 2016, 34 (8), 1427-1441.
5. Langhans, S. A. J. F. i. p., Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. 2018, 9, 6.
6. Ravi, M.; Paramesh, V.; Kaviya, S.; Anuradha, E.; Solomon, F. P. J. J. o. c. p., 3D cell culture systems: advantages and applications. Journal of Cellular Physiology 2015, 230 (1), 16-26.
7. Haisler, W. L.; Timm, D. M.; Gage, J. A.; Tseng, H.; Killian, T.; Souza, G. R. J. N. p., Three-dimensional cell culturing by magnetic levitation. Nature protocols 2013, 8 (10), 1940-1949.
8. Imamura, Y.; Mukohara, T.; Shimono, Y.; Funakoshi, Y.; Chayahara, N.; Toyoda, M.; Kiyota, N.; Takao, S.; Kono, S.; Nakatsura, T. J. O. r., Comparison of 2D-and 3D-culture models as drug-testing platforms in breast cancer. Oncology Reports 2015, 33 (4), 1837-1843.
9. Kapałczyńska, M.; Kolenda, T.; Przybyła, W.; Zajączkowska, M.; Teresiak, A.; Filas, V.; Ibbs, M.; Bliźniak, R.; Łuczewski, Ł.; Lamperska, K. J. A. o. M. S., 2D and 3D cell cultures–a comparison of different types of cancer cell cultures. State of the art paper 2018, 14 (4), 910-919.
10. AXION BIOSYSTEMS Spheroids: properties, image analysis, and culture methods. https://cytosmart.com/resources/resources/spheroids-properties-image-analysis-and-culture-methods#applicationsculture.
11. Ryu, N.-E.; Lee, S.-H.; Park, H. J. C., Spheroid culture system methods and applications for mesenchymal stem cells. MDPI cells 2019, 8 (12), 1620.
12. Fennema, E.; Rivron, N.; Rouwkema, J.; van Blitterswijk, C.; De Boer, J. J. T. i. b., Spheroid culture as a tool for creating 3D complex tissues. Trends in biotechnology 2013, 31 (2), 108-115.
13. Want, A. J.; Nienow, A. W.; Hewitt, C. J.; Coopman, K. J. R. m., Large-scale expansion and exploitation of pluripotent stem cells for regenerative medicine purposes: beyond the T flask. REGENERATIVE MEDICINEVOL. 2012, 7 (1), 71-84.
14. Corning Incorporated Life Sciences Corning Matrigel Matrix Frequently Asked Questions. https://www.corning.com/catalog/cls/documents/faqs/CLS-DL-CC-026.pdf.
15. Aisenbrey, E. A.; Murphy, W. L. J. N. R. M., Synthetic alternatives to Matrigel. Nature Reviews Materials 2020, 5 (7), 539-551.
16. Shen, M.; Horbett, T. A. J. J. o. B. M. R. A. O. J. o. T. S. f. B., The Japanese Society for Biomaterials,; Biomaterials, T. A. S. f.; Biomaterials, t. K. S. f., The effects of surface chemistry and adsorbed proteins on monocyte/macrophage adhesion to chemically modified polystyrene surfaces. Journal of Biomedical Materials Research 2001, 57 (3), 336-345.
17. Merck, Evolution of Cell Culture Surfaces.
18. Zhang, L. F.; Sun, R.; Xu, L.; Du, J.; Xiong, Z. C.; Chen, H. C.; Xiong, C. D. J. M. S.; C, E., Hydrophilic poly (ethylene glycol) coating on PDLLA/BCP bone scaffold for drug delivery and cell culture. 2008, 28 (1), 141-149.
19. Rajan, S.; Marimuthu, K.; Ayyanar, C. B.; Hoque, M. E. J. J. o. M. R.; Technology, Development and in-vitro characterization of HAP blended PVA/PEG bio-membrane. 2022, 18, 4956-4964.
20. Zhan, H.; Löwik, D. W. J. A. F. M., A hybrid peptide amphiphile fiber PEG hydrogel matrix for 3D cell culture. 2019, 29 (16), 1808505.
21. Branch, D. W.; Wheeler, B. C.; Brewer, G. J.; Leckband, D. E. J. B., Long-term stability of grafted polyethylene glycol surfaces for use with microstamped substrates in neuronal cell culture. 2001, 22 (10), 1035-1047.
22. BROADPHARM What is Polyethylene Glycol? https://broadpharm.com/blog/what-is-polyethylene-glycol.
23. Nkhwa, S.; Lauriaga, K. F.; Kemal, E.; Deb, S. In Poly (vinyl alcohol): physical approaches to designing biomaterials for biomedical applications, Conference Papers in Science, Hindawi: 2014.
24. Molyneaux, K.; Wnek, M. D.; Craig, S. E.; Vincent, J.; Rucker, I.; Wnek, G. E.; Brady‐Kalnay, S. M. J. J. o. B. M. R. P. B. A. B., Physically‐cross‐linked poly (vinyl alcohol) cell culture plate coatings facilitate preservation of cell–cell interactions, spheroid formation, and stemness. 2021, 109 (11), 1744-1753.
25. Dou, X.; Li, P.; Schönherr, H. J. B., Three-dimensional microstructured poly (vinyl alcohol) hydrogel platform for the controlled formation of multicellular cell spheroids. 2018, 19 (1), 158-166.
26. Gao, C.; Gao, Q.; Li, Y.; Rahaman, M. N.; Teramoto, A.; Abe, K. J. J. o. B. M. R. P. A., Preparation and in vitro characterization of electrospun PVA scaffolds coated with bioactive glass for bone regeneration. 2012, 100 (5), 1324-1334.
27. Kamoun, E. A.; Chen, X.; Eldin, M. S. M.; Kenawy, E.-R. S. J. A. J. o. c., Crosslinked poly (vinyl alcohol) hydrogels for wound dressing applications: A review of remarkably blended polymers. 2015, 8 (1), 1-14.
28. Jiang, S.; Liu, S.; Feng, W. J. J. o. t. m. b. o. b. m., PVA hydrogel properties for biomedical application. 2011, 4 (7), 1228-1233.
29. Mansur, H. S.; Costa Jr, E. d. S.; Mansur, A. A.; Barbosa-Stancioli, E. F. J. M. S.; C, E., Cytocompatibility evaluation in cell-culture systems of chemically crosslinked chitosan/PVA hydrogels. Materials Science and Engineering: C 2009, 29 (5), 1574-1583.
30. Kumar, A.; Han, S. S. J. I. j. o. p. m.; biomaterials, p., PVA-based hydrogels for tissue engineering: A review. 2017, 66 (4), 159-182.
31. Kamoun, E. A.; Kenawy, E.-R. S.; Chen, X. J. J. o. a. r., A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. 2017, 8 (3), 217-233.
32. Almany, L.; Seliktar, D. J. B., Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures. Biomaterials 2005, 26 (15), 2467-2477.
33. BASF The Chemical Company, Kollicoat@IR.
34. Mittwollen, T. C. J.-P., Coating mit Kollicoat®. Easy Coating, pp 135–151.
35. Ehab A Fouad , M. E.-B., Steven H Neau, Fars K Alanazi, Ibrahim A Alsarra, Technology evaluation: Kollicoat IR. Expert Opinion on Drug Delivery 2011, Volume 8 (Issue 5), Pages 693-703.
36. Tirca, I.; Mitran, V.; Marascu, V.; Brajnicov, S.; Ion, V.; Stokker-Cheregi, F.; Popovici, I.; Cimpean, A.; Dinca, V.; Dinescu, M. J. A. S. S., In vitro testing of curcumin based composites coatings as antitumoral systems against osteosarcoma cells. 2017, 425, 1040-1051.
37. Janssens, S.; de Armas, H. N.; Remon, J. P.; Van den Mooter, G. J. E. j. o. p. s., The use of a new hydrophilic polymer, Kollicoat IR®, in the formulation of solid dispersions of Itraconazole. 2007, 30 (3-4), 288-294.
38. Ikada, Y. J. B., Surface modification of polymers for medical applications. 1994, 15 (10), 725-736.
39. Vogler, E. A. J. A. i. c.; science, i., Structure and reactivity of water at biomaterial surfaces. 1998, 74 (1-3), 69-117.
40. Ma, Z.; Mao, Z.; Gao, C. J. C.; Biointerfaces, S. B., Surface modification and property analysis of biomedical polymers used for tissue engineering. 2007, 60 (2), 137-157.
41. Chan, C.-M.; Ko, T.-M.; Hiraoka, H. J. S. s. r., Polymer surface modification by plasmas and photons. 1996, 24 (1-2), 1-54.
42. Chu, P. K.; Chen, J.; Wang, L.; Huang, N. J. M. S.; Reports, E. R., Plasma-surface modification of biomaterials. 2002, 36 (5-6), 143-206.
43. Mrsic, I.; Baeuerle, T.; Ulitzsch, S.; Lorenz, G.; Rebner, K.; Kandelbauer, A.; Chasse, T. J. A. S. S., Oxygen plasma surface treatment of polymer films—Pellethane 55DE and EPR-g-VTMS. 2021, 536, 147782.
44. Nemani, S. K.; Annavarapu, R. K.; Mohammadian, B.; Raiyan, A.; Heil, J.; Haque, M. A.; Abdelaal, A.; Sojoudi, H. J. A. M. I., Surface modification of polymers: methods and applications. Advanced Materials Interfaces 2018, 5 (24), 1801247.
45. Dong, Y.; Jin, G.; Hong, Y.; Zhu, H.; Lu, T. J.; Xu, F.; Bai, D.; Lin, M. J. A. a. m.; interfaces, Engineering the cell microenvironment using novel photoresponsive hydrogels. 2018, 10 (15), 12374-12389.
46. Singh, N. K.; Lee, D. S. J. J. o. C. R., In situ gelling pH-and temperature-sensitive biodegradable block copolymer hydrogels for drug delivery. 2014, 193, 214-227.
47. Tomatsu, I.; Peng, K.; Kros, A. J. A. d. d. r., Photoresponsive hydrogels for biomedical applications. Advanced Drug Delivery Reviews 2011, 63 (14-15), 1257-1266.
48. Ercole, F.; Davis, T. P.; Evans, R. A. J. P. C., Photo-responsive systems and biomaterials: photochromic polymers, light-triggered self-assembly, surface modification, fluorescence modulation and beyond. Polymer Chemistry 2010, 1 (1), 37-54.
49. Edahiro, J.-i.; Sumaru, K.; Tada, Y.; Ohi, K.; Takagi, T.; Kameda, M.; Shinbo, T.; Kanamori, T.; Yoshimi, Y. J. B., In situ control of cell adhesion using photoresponsive culture surface. 2005, 6 (2), 970-974.
50. Chen, G., Poly (vinyl alcohol)-micropatterned surfaces for manipulation of mesenchymal stem cell functions. In Methods in cell biology, Elsevier: 2014; Vol. 119, pp 17-33.
51. Wu, L.-C.; Tada, S.; Isoshima, T.; Serizawa, T.; Ito, Y. J. J. o. M. C. B., Photo-reactive polymers for the immobilisation of epidermal growth factors. 2023.
52. Yu-Sung Hsieh, Y.-J. L., Yi-San Chang, The Software Module Development of Fast Data Calculation in Ellipsometry for Single Layer Film. 科儀新知第三十三卷第六期 101.6.
指導教授 張瑛芝 謝發坤(Ying-Chih Chang Fa-Kuen Shieh) 審核日期 2023-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明