博碩士論文 110324078 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:63 、訪客IP:18.218.169.50
姓名 劉書豪(Shu-Hao Liu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用兩階段真空變壓吸附法捕獲燃煤電廠煙道氣中二氧化碳之實驗設計最佳化研究
(Optimization investigation of experimental design for capturing carbon dioxide from flue gas in coal-fired power plants using a two-stage vacuum swing adsorption method)
相關論文
★ 醫療用氧氣濃縮機之改善與發展★ 變壓吸附法濃縮及回收氣化產氫製程中二氧化碳與氫氣之模擬
★ 變壓吸附法應用於小型化醫療用製氧機及生質酒精脫水產生無水酒精之模擬★ 變壓吸附法濃縮及回收氣化產氫製程中一氧化碳、二氧化碳與氫氣之模擬
★ 利用吸附程序於較小型發電廠煙道氣進氣量下捕獲二氧化碳之模擬★ 利用週期性吸附反應程序製造高純度氫氣並捕獲二氧化碳之模擬
★ 變溫吸附程序分離煙道氣中二氧化碳之連續性探討與實驗設計分析★ 利用PEI/SBA-15於變溫及真空變溫吸附捕獲煙道氣中二氧化碳之模擬
★ PEI/SBA-15固態吸附劑對二氧化碳吸附之實驗研究★ 以變壓吸附法分離汙染空氣中氧化亞氮之模擬
★ 以變壓吸附法分離汙染空氣中氧化亞氮之實驗★ 以變壓吸附法濃縮己二酸工廠尾氣中氧化亞氮之模擬
★ 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗★ 變壓吸附法回收發電廠廢氣與合成氣中二氧化碳之模擬
★ 利用變壓吸附程序分離甲醇裂解產氣中氫氣及一氧化碳之模擬★ 變壓吸附程序捕獲合成氣中二氧化碳之實驗研究與吸附劑之選擇評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著工業革命伴隨著大量化石燃料燃燒,產生出的二氧化碳造成溫室效應增強進而造成氣候變遷,在近年來環保意識增加,如何減少二氧化碳的議題受到密切關注,其中一種方法是變壓吸附法(PSA),透過氣體間不同的吸附性能達到分離混合氣的效果,是一種低投資成本及操作簡單的物理吸附法,本實驗透過此技術捕獲燃煤電廠排放之煙道氣中的二氧化碳。
首先利用高壓氣體分析儀及數位記錄天平量測COSMO 13X在不同溫度下對CO2的等溫吸附曲線,計算不同溫度及不同壓力下的平衡吸附量,確認本實驗選用的吸附劑對二氧化碳有著良好的分離效果。
接著使用兩階段真空變壓吸附程序,並選擇COSMO 13X作為塔內填充物,以分離台中燃煤電廠排放的煙道氣中的氮氣和二氧化碳。首先,透過第一階段實驗(兩塔六步驟)達到高二氧化碳回收率的目標,然後通過第二階段實驗(單塔三步驟)提高二氧化碳的純度。為了探討第一階段實驗結果的影響因素,結合實驗設計和分析,採用兩水準三因子全因子實驗設計。這三個因子分別是步驟1/4的時間、步驟3/6的時間和同向減壓壓力。透過研究這些因子對純度、回收率和能耗對實驗結果的影響,建立各個響應的迴歸模型,找到最佳化的操作條件。目標是在第一階段實驗中獲得80 %以上的二氧化碳回收率。
透過四種不同最適化探討後,比對之後得到當步驟1/4的時間為250秒、步驟3/6的時間為40秒和同向減壓壓力為0.85 bar時,可獲得一階段二氧化碳純度79.11 %及回收率87.08 %之最適化結果。
摘要(英) With the industrial revolution came the burning of large amounts of fossil fuels, resulting in the release of carbon dioxide and intensifying the greenhouse effect, leading to climate change. In recent years, there has been an increased awareness of environmental protection, and the issue of reducing carbon dioxide has received close attention. One method for achieving this is Pressure Swing Adsorption (PSA), which utilizes the different adsorption properties of gases to separate mixed gases. It is a physically-based adsorption method that requires low investment costs and simple operation. In this experiment, PSA method was used to capture carbon dioxide from the flue gas emitted by coal-fired power plants.
First, the high-pressure gas analyzer and digital recording balance were used to measure the isothermal adsorption curves of COSMO 13X for CO2 at different temperatures. The equilibrium adsorption capacity at different temperatures and pressures was calculated to confirm that the chosen adsorbent in this experiment exhibits good separation efficiency for carbon dioxide.
Next, a two-stage vacuum pressure swing adsorption (VPSA) process was employed, with COSMO 13X chosen as the tower packing material, to separate N2 and CO2 in the flue gas emitted by the Taichung coal-fired power plant. Firstly, the first stage experiment (two-bed six-step PSA) was conducted to achieve a high carbon dioxide recovery rate. Then, through the second stage experiment (single-bed three-step PSA), the purity of carbon dioxide was increased. To investigate the influential factors in the results of the first stage experiment, a combination of experimental design and analysis was employed, using a two-level three-factor full factorial experimental design. These three factors are the time for steps 1/4, the time for steps 3/6, and the co-current depressurization pressure. By studying the effects of these factors on purity, recovery rate, and energy consumption in the experimental results, regression models were established for each response to determine the optimal operating conditions. The objective is to achieve an 80% or higher carbon dioxide recovery rate in the first stage experiment.
After comparing four different optimizations, it was determined that when the time for step 1/4 is 250 seconds, the time for step 3/6 is 40 seconds, and the Co-current depressurization pressure is 0.85 bar, the optimal result yields a carbon dioxide purity 79.11 % with recovery 87.08% in the first-stage.
關鍵字(中) ★ 變壓吸附 關鍵字(英) ★ Pressure swing adsorption
論文目次 摘要 i
ABSTRACT ii
致謝 iv
目錄 v
圖目錄 viii
表目錄 xi
第一章、 緒論 1
第二章、 簡介與文獻回顧 6
2-1 吸附之簡介 6
2-1-1 吸附基本原理 6
2-1-2 吸附劑與其選擇率 7
2-1-3 等溫吸附曲線(Adsorption isotherm) 9
2-1-4 變壓吸附程序之發展與改良 11
2-2 研究目的及文獻回顧 15
2-2-1 研究目的 15
2-2-2 文獻回顧 15
第三章、 實驗設備與方法 18
3-1 吸附劑及煙道氣組成 18
3-2 實驗儀器 20
3-2-1 等溫平衡吸附曲線實驗 20
3-2-2 真空變壓吸附實驗 24
3-2-3 製程描述 38
3-3 實驗操作步驟 41
3-3-1 等溫吸附曲線實驗 41
3-3-2 真空變壓吸附實驗 42
3-4 實驗數據計算 44
3-5 實驗設計(Design of Experiments) 46
3-5-1 全因子實驗設計(Full factorial design) 46
3-5-2 變異數分析(Analysis of Variance, ANOVA) 48
3-5-3 殘差分析圖(Residual analysis plots) 49
3-5-4 迴歸分析(Regression analysis)及最適化結果 49
第四章、 數據分析與結果討論 50
4-1 等溫吸附曲線實驗 50
4-2 兩階段真空變壓吸附 52
4-3 殘差分析圖(Analysis of residual plots) 56
4-4 變異數分析(Analysis of Variance, ANOVA) 62
4-5 迴歸分析(Regression analysis) 64
4-6 最適化結果 67
4-6-1 塔底二氧化碳回收率最大化之最適化探討 68
4-6-2 真空幫浦能耗最小化之最適化探討 69
4-6-3 二氧化碳回收率及真空幫浦能耗最小化之最適化探討 70
4-6-4 二氧化碳純度、回收率及真空幫浦之最適化探討 71
4-6-5 最適化結果之比較與探討 72
第五章、 結論 74
參考文獻 76
附錄A、真空變壓吸附裝置各元件對照表 81
附錄B、真空變壓吸附裝置流程圖元件命名法 87
附錄C、考慮不同因子及交互作用之殘差分析圖 88
附錄D、實驗設計重要性(Importance) 90
參考文獻 [1] P. Friedlingstein, M. W. Jones, M. O′Sullivan, R. M. Andrew, D. C. E. Bakker,J. Hauck, C. L. Quéré, G. P. Peters, W. Peters, J. Pongratz, S. Sitch, J. G. Canadell, P. Ciais, R. B. Jackson, S. R. Alin, P. Anthoni, N. R. Bates, M. Becker, N. Bellouin, L. Bopp, T. T. T. Chau, F. Chevallier, L. P. Chini, M. Cronin, K. I. Currie, B. Decharme, L. M. Djeutchouang, X. Dou, W. Evans, R. A. Feely, L. Feng, T. Gasser, D. Gilfillan, T. Gkritzalis, G. Grassi, L. Gregor, N. Gruber, Ö . Gürses, I. Harris, R. A. Houghton, G. C. Hurtt, Y. Iida, T. Ilyina, I. T. Luijkx, A. Jain, S. D. Jones, E. Kato, D. Kennedy, K. K. Goldewijk, J. Knauer, J. I. Korsbakken, A. Körtzinger, P. Landschützer, S. K. Lauvset, N. Lefèvre, S. Lienert, J. Liu, G. Marland, P. C. McGuire, J. R. Melton, D. R. Munro, J. E. M. S. Nabel, S. I. Nakaoka, Y. Niwa, T. Ono, D. Pierrot, B. Poulter, G. Rehder, L. Resplandy, E. Robertson, C. Rödenbeck, T. M. Rosan, J. Schwinger, C. Schwingshackl, R. Séférian, A. J. Sutton, C. Sweeney, T. Tanhua, P. P. Tans, H. Tian, B. Tilbrook, F. Tubiello, G. R. V. D. Werf, N. Vuichard, C. Wada, R. Wanninkhof, A. J. Watson, D. Willis, A. J. Wiltshire, W. Yuan, C. Yue, X. Yue, S. Zaehle and J. Zeng, Global carbon budget 2021, Earth System Science Data, vol. 14, no. 4, pp. 1917-2005, 2022.
[2] International Energy Agency (IEA), CO2 Emissions in 2022, 2023. https://www.iea.org/reports/co2-emissions-in-2022
[3] 台灣電力股份有限公司, 火力發電結構比, 民國 111 年 05 月 05 日. https://www.taipower.com.tw/tc/page.aspx?mid=216
[4] M.M. F. Hasan, E. L. First, F. Boukouvala and C. A. Floudas, A multi-scale framework for CO2 capture, utilization, and sequestration: CCUS and CCU, Computers & Chemical Engineering, vol. 81, pp. 2-21, 2015.
[5] 談駿嵩,王志盈, 二氧化碳捕獲, 科學發展, 510 期, pp. 32-37, 2015.
[6] 張育誠、吳國光、焦鴻文、簡國祥、歐陽湘,富氧燃燒技術之應用與分析,台灣能源期刊, 第2卷3期, 頁323-331, 2015.
[7] R. T. Yang, Gas separation by adsorption processes, vol. 1, Imperial College Press, London, 1997.
[8] S. U. Rege and R. T. Yang, A simple parameter for selecting an adsorbent for gas separation by pressure swing adsorption, Separation Science and Technology, vol. 36, no. 15, pp. 3355-3365, 2001.
[9] C.W. Skarstrom, Method and apparatus for fractionating gaseous mixtures by
adsorption, US Patent 2944627, 1960.
[10] A. E. Rodrigues, M. D. LeVan and D. Tondeur, Adsorption: Science and
Technology. Springer Science & Business Media, Berlin, 2012.
[11] W.-K. Choi, T. I. Kwon, Y. K. Yeo, H. Lee, H. K. Song and B. K. Na, Optimal operation of the pressure swing adsorption (PSA) process for CO2 recovery, Korean Journal of Chemical Engineering, vol. 20, no. 4, pp. 617-623, 2003.
[12] Martunus, Z. Helwani, A. D. Wiheeb, J. Kim and M. R. Othman, In situ carbon dioxide capture and fixation from a hot flue gas, International Journal of Greenhouse Gas Control, Vol. 6, pp. 179-188, 2012.
[13] E. S. Kikkinides, R.T. Yang and S.H. Cho, Concentration and recovery of CO2 from flue gas by pressure swing adsorption, Industrial & Engineering Chemistry Research, vol.32, pp.2714-2720, 1993.
[14] P. E. Jahromi, S. Fatemia, A. Vatania, J. A. Ritter and A. D. Ebnerb, Purification of helium from a cryogenic natural gas nitrogen rejection unit by pressure swing adsorption, Separation and Purification Technology, vol. 193, pp. 91-102, 2018.
[15] M. P. G. De and D. Daniel, Process for separating a binary gaseous mixture by adsorption, U.S. Patent 3155468, 1964.
[16] Michelle_Wu, 實驗設計 (DOE)入門:經典篩選設計與全因子設計, 2021. https://community.jmp.com/t5/JMP-Blog/DOE/ba-p/423195
[17] 林柏瑋, 利用真空變壓吸附法純化生質沼氣之模擬暨實驗設計研究, 國立中央大學, 碩士論文, 2020.
[18] B. K. Na, H. L. Lee, K. K. Koo and H. K. Song, Effect of rinse and recycle methods on the pressure swing adsorption process to recover CO2 from power plant flue gas using activated carbon, Industrial & Engineering Chemistry Research, vol. 41, no. 22, pp. 5498-5503, 2002.
[19] K. Chihara and M. Suzuki, Air drying by pressure swing adsorption, Journal of Chemical Engineering of Japan, vol. 16, no. 4, pp. 293-299, 1983.
[20] J. J. Collins, Air separation by adsorption, U.S. Patent 4026680, 1975.
[21] S. Doong and R. Yang, Hydrogen purification by the multibed pressure swing adsorption process, Reactive Polymers, Ion Exchangers, Sorbents, vol. 6, no. 1, pp. 7-13, 1987.
[22] L. Jiang, V. G. Fox and L. T. Biegler, Simulation and optimal design of multiple‐bed pressure swing adsorption systems, AIChE Journal, vol. 50, no. 11, pp. 2904-2917, 2004.
[23] A. Fuderer and E. Rudelstorfer, Selective adsorption process, U.S. Patent no.3986849,1976.
[24] C. Shen, Z. Liu, P. Li and J. Yu, Two-Stage VPSA process for CO2 capture from flue gas using activated carbon beads, Industrial & Engineering Chemistry Research, vol. 51, pp. 5011–5021, 2012.
[25] J. H. Park, H. T. Beum, J. N. Kim and S. H. Cho, Numerical analysis on the power
consumption of the PSA process for recovering CO2 from flue gas, Industrial & Engineering Chemistry Research, vol. 41, pp. 4122-4131, 2002.
[26] T. L. P. Dantsa, F. M. T. Luna, I. J. Silva Jr., A. E. B. Torres, D. C. S. de Azevedo, A. E. Rodrigues and R. F. P. M. Moreira, Carbon dioxide–nitrogen separation through pressure swing adsorption, Chemical Engineering Journal, Vol. 172, pp. 698-704, 2011.
[27] L. Riboldi, O. Bolland, Evaluating pressure swing adsorption as a CO2 separation technique in coal-fired power plants, International Journal of Greenhouse Gas Control, vol.39, pp 1-16, 2015.
[28] J. Ling, P. Xiao, A. Ntiamoah, D. Xu, P. Webley and Y. Zhai, Strategies for CO2 capture from different CO2 emission sources by vacuum swing adsorption technology, Chinese Journal of Chemical Engineering, vol. 24, no. 4, pp. 460-467, 2016.
[29] L. Wang, Y. Yang, W. Shen, X. Kong, P. Li, J. Yu and A. E. Rodrigues, CO2 capture from flue gas in an existing coal-fired power plant by two successive pilot-scale VPSA units, Industrial & Engineering Chemistry Research, vol. 52, pp. 7947-7955, 2013.
[30] S. H. Cho, J. H. Park, H. T. Beum, S. S. Han and J. N. Kim, A 2-stage PSA process for the recovery of CO2 from flue gas and its power consumption, Studies in Surface Science and Catalysis, vol. 153, pp. 405-410, 2014.
[31] 李念祖, 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗, 國立中央大學, 碩士論文, 2015.
[32] D. C. Montgomery, Design and analysis of experiments, John Wiley & Sons, New Jersey, 2017.
[33] 林耀庭, 利用全因子實驗設計進行三塔十二步驟真空變壓吸附法捕獲燃煤電廠 1-kW 煙道氣中二氧化碳之最適化研究, 國立中央大學, 碩士論文, 2022.
[34] 洪佳渝, 利用兩階段真空變壓吸附製程捕獲發電廠煙道氣中二氧化碳之實驗設計分析, 國立中央大學, 碩士論文, 2022.
[35] R. V. Lenth, Quick and easy analysis of unreplicated factorials, Technometrics, vol. 31, no. 4, pp. 469-473, 1989.
[36] E. N. Fuller, K. Ensley and J. C. Giddings, Diffusion of Halogenated Hydrocarbons in Helium, The effect of structure on collision cross sections, The Journal of Physical Chemistry, vol. 73, pp. 3679-3685, 1969.
[37] P. Xiao, J. Zhang, P. Webley, G. Li, R. Singh and R. Todd, Capture of CO2 from flue gas streams with zeolite 13X by vacuum-pressure swing adsorption, Adsorption, Vol. 14, pp. 575-582, 2008.
[38] 李柏霖, 利用二階段真空變壓吸附程序捕獲發電廠煙道氣中二氧化碳之模
擬研究與實驗設計分析, 國立中央大學, 碩士論文, 2021.
[39] 郭家禎, 利用三塔式真空變壓吸附法捕獲燃煤電廠煙道氣中二氧化碳之實
驗研究, 國立中央大學, 碩士論文, 2020.
[40] A. Agarwal, Advanced strategies for optimal design and operation of pressure swing adsorption processess, PhD thesis, Carnegie Mellon University, Pittsburgh, 2010.
[41] W. L. McCabe, J. C. Smith and P. Harriott, Unit operations of chemical engineering, 7th ed., McGraw-Hill, New York, 2005.
[42] 台灣電力公司, 台電環境白皮書, 民國 108 年. https://www.taipower.com.tw/upload/1456/2020072311363049674.pdf
[43] S. Krishnamurthy, V. R. Rao, S. Guntuka, P. Sharratt, R. Haghpanah, A. Rajendran, M. Amanullah, I. A. Karimi and S. Farooq, CO2 capture from dry flue gas by vacuum swing adsorption: A Pilot Plant Study, AIChE Journal, vol. 60, pp. 1830-1842, 2014.
[44] C. Y. Wen and L. T. Fan, Models for flow systems and chemical reactors, Marcel Dekker, New York, 1975.
[45] R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport phenomena, 2nd ed., Wiley, New York, 2007.
[46] E. N. Fuller, P. D. Schettler, and J. C. Giddings, A comparison of methods for predicting gaseous diffusion coefficients, Journal of Chromatography, vol. 3, pp. 222-227, 1965.
[47] P. G. de Montgareuil and D. Domine, Process for separating a binary gaseous mixture by adsorption. US Patent 3155468, 1964.
[48] D. D. Do, Adsorption analysis: Equilibria and Kinetics, World Scientific, London, 1998.
[49] L. Wang, Z. Liu, P. Li, J. Wang and J. Yu, CO2 capture from flue gas by two successive VPSA units using 13XAPG, Adsorption, vol. 18, no. 5-6, pp. 445-459, 2012.
[50] J. A. Delgado, M. A. Uguina, J. L. Sotelo, V. I. Agueda, A. Sanz and P. Gomez, Numerical analysis of CO2 concentration and recovery from flue gas by a novel vacuum swing adsorption cycle, Computers & Chemical Engineering, vol. 35, pp. 1010-1019, 2011.
[51] Minitab, Determining the weight in response optimization, 2023
https://support.minitab.com/en-us/minitab/20/help-and-how-to/statistical-modeling/using-fitted-models/supporting-topics/response-optimization/determining-the-weight/
[52] Minitab, What is importance in response optimization, 2023
https://support.minitab.com/en-us/minitab/20/help-and-how-to/statistical-modeling/using-fitted-models/supporting-topics/response-optimization/what-is-importance-in-response-optimization/
[53] Minitab, What are individual desirability and composite desirability, 2023
https://support.minitab.com/en-us/minitab/20/help-and-how-to/statistical-modeling/using-fitted-models/supporting-topics/response-optimization/what-are-individual-desirability-and-composite-desirability/
[54] Minitab, Setting the Weight for the Desirability Function, 2023
https://www.pinzhi.org/Minitab/DOE/DOE_Resp_Opti/Setting_the_weight_for_the_desirability_function.htm
[55] Minitab, Composite desirability, 2023
https://support.minitab.com/en-us/minitab/20/help-and-how-to/statistical-modeling/using-fitted-models/how-to/response-optimizer/methods-and-formulas/composite-desirability/
指導教授 周正堂(Cheng-Tung Chou) 審核日期 2023-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明