博碩士論文 110223079 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:54 、訪客IP:3.140.198.173
姓名 游勝宇(Sheng-Yu You)  查詢紙本館藏   畢業系所 化學學系
論文名稱 光聚合複合型固態電解質應用於鋰離子電池之研究
相關論文
★ 電場誘導有序排列之高導電度複合固態電解質★ 電場誘導聚苯醚碸摻雜複合薄膜之研究
★ 改善鋰離子電池電性之新穎電解液添加劑★ 電場誘導高離子導向之混摻高分子固態電解質
★ 以有機茂金屬觸媒合成sPS/PAMS與sPS/PPMS共聚物及其物性探討★ 以有機茂金屬觸媒合成丙烯-原冰烯之COC共聚物及其物性探討
★ 電致發光電池中電解質的結構與物性探討★ 奈米二氧化鈦-固態複合高分子電解質
★ 交聯型固態高分子電解質★ 高分子固態電解質改進高分子發光二極體之光學特性研究
★ 複合高分子電解質結構與電性之研究★ 奈米粒/管二氧化鈦複合高分子電解質之結構探討
★ 具備電子予體與受體之七環十四烷衍生物的製備及其特性★ 超分子發光二極體相容性、分子運動性與光性之研究
★ 新穎質子交換膜★ 原位聚合有機無機複合發光二極體 之分散性及光性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-1以後開放)
摘要(中) 傳統鋰電池通常使用液體電解質作為傳導介質,並使用多孔隔離膜來區分正極和負極。然而,這種傳統方法在製作隔離膜時需要耗費大量時間並回收相關溶劑,而且液體電解質的高易燃性引發安全疑慮。因此,本研究採用光聚合方法,能夠快速製造出無需溶劑且不需要大量電解液的固態電解質,作為製造固態鋰電池的基礎。首先,從高分子的角度來看,導電需要具有長鏈分子的擺動來進行傳導,但同時不能受結晶區的影響。因此,我們使用PEGDA和MA進行共聚合,與PEO結合形成無結晶網狀交聯型高分子,提供離子傳導的功能。為了進一步提高導電性,我們添加了SCN和LiTFSI,它們之間的晶體轉換機制可以增加導電度。實驗結果顯示,在0.5C和1C的條件下,添加30%的SCN時,具有高電容量分別為148.5 mAh/g和111.7 mAh/g,並在長時間循環中保持90%以上的電容保持率。然而,由於SCN本身不是高強度分子,添加過多會降低電解質隔膜的強度。為了解決這個問題,我們添加了LAGP形成複合電解質,結合了高分子、無機陶瓷材料和添加劑三種導電途徑。然而,在電池元件中,LAGP本身的特性會與鋰金屬發生還原反應。為避免這個負面影響,我們首先鋪平LAGP混合物,然後倒入高分子液體進行光聚合,以獲得LAGP聚集在同一側(陰極端)的複合薄膜。在進一步的實驗中,添加5%的LAGP和30%的SCN表現出良好的電性,分別在0.5C和1C條件下具有154.9 mAh/g和110.1 mAh/g的高電容量。此外,材料的強度接近未添加SCN時的數值。綜上所述,本研究成功地製備了具有快速、環保、強度、安全和電性等五個關鍵指標的複合電解質,該材料展現出優異的固態鋰電池性能。
摘要(英) Traditional lithium batteries typically require liquid electrolytes as a conducting medium using porous membranes to separate the positive and negative electrodes. However, this conventional method not only involves significant time and solvent recovery efforts during the production of the membrane but also raises safety concerns due to the high flammability of liquid electrolytes. Therefore, in this study, we adopted a solvent-free and electrolyte-minimized approach using photopolymerization to rapidly produce a solid-state electrolyte.
From a polymer perspective, conductivity in the solid-state electrolyte requires long-chain polymer segments for ion transport while remaining unaffected by crystalline regions. To achieve this, we utilized a co-polymerization of PEGDA and MA, combined with PEO, to form a networked crosslinked polymer matrix that provides ion conductivity and electron insulation. To further enhance the conductivity, we introduced additives such as SCN and LiTFSI, which undergo a crystalline-to-conductive transition mechanism. Experimental results demonstrated high capacity values of 148.5 mAh/g and 111.7 mAh/g at 0.5C and 1C rates, respectively, with the addition of 30% SCN. Moreover, the electrolyte maintained a capacity retention of over 90% even after numerous charge-discharge cycles. However, due to SCN′s lower molecular strength, excessive amounts led to a decline in the mechanical properties of the electrolyte membrane. To address this issue, we incorporated LAGP to form a composite electrolyte, comprising polymer, inorganic ceramic material, and additives, thereby creating three pathways for conductivity.
Nevertheless, LAGP itself undergoes reduction when it comes into contact with lithium metal. To mitigate this effect, we first applied a uniform LAGP slurry and subsequently poured the polymer liquid for photopolymerization, resulting in a composite thin film with LAGP aggregating on one side (cathode side). In further experiments, the addition of 5% LAGP and 30% SCN exhibited excellent electrochemical performance, with high capacities of 154.9 mAh/g (at 0.5C) and 110.1 mAh/g (at 1C). Additionally, the strength of the material approached values comparable to those before the addition of SCN. This study successfully developed a composite electrolyte that fulfills five key criteria: rapid production, environmental friendliness, mechanical strength, safety, and electrochemical performance for solid state lithium battery.
關鍵字(中) ★ 高分子
★ 光聚合
★ 電解質
★ 陶瓷材料
★ 電容量
★ 長圈數循環
關鍵字(英)
論文目次 摘要 i
Abstract iii
誌謝 v
目錄 vi
圖目錄 xii
表目錄 xix
第一章 緒論 1
1-1 前言 1
1-2 鋰電池固態電解質的研究困境 3
第二章 文獻回顧 5
2-1 鋰離子電池工作原理以及簡介 5
2-2 液態電解質及SEI層分析 7
2-3 有機高分子膠體電解質 10
2-3-1 高分子類電解質傳導機制 10
2-3-2 高分子類電解質實際應用例子 13
2-4 交聯聚合型高分子電解質 20
2-4-1 交聯聚合型高分子反應機制 20
2-4-2 熱聚合交聯型電解質 23
2-4-3 光聚合交聯型電解質 25
2-5 無機物類電解質 31
2-5-1 無機物類電解質簡介及導電原理 31
2-5-2 氧化物類無機電解質 35
2-5-3 硫化物類無機電解質 42
2-6 複合型固態電解質 47
2-6-1 高分子複合氧化物 47
2-6-2 高分子複合硫化物 51
2-6-3 氧化物複合硫化物 52
2-7 電解質添加劑 53
2-7-1 有機分子添加劑 53
2-7-2 無機分子添加劑 56
2-8 研究動機與設計 58
第三章 實驗手法 60
3-1 實驗藥品 60
3-2 實驗器材與儀器 62
3-3 實驗步驟 63
3-3-1 正極極片之製備 63
3-3-2 膠體電解質之製備 64
3-3-3 複合電解質之製備 64
3-3-4 組裝半電池 65
3-4 實驗儀器分析及原理 67
3-4-1 超高真空冷場發射掃描式電子顯微鏡(SEM) 67
3-4-2 超高解析穿透式電子顯微鏡(TEM) 67
3-4-3 X光繞射儀(XRD) 68
3-4-4 X射線光電子能譜儀(XPS) 68
3-4-5 熱重分析儀(TGA) 69
3-4-6 示差熱掃描分析儀(DSC) 69
3-4-7 傅立葉轉換紅外光譜(FTIR) 70
3-4-8 複合薄膜機械強度測試 70
3-5 鋰電池效能及電化學特性分析 71
3-5-1 離子傳導度(Ionic Conductivity) 71
3-5-2 電池充放電測試 71
3-5-3 交流阻抗分析儀(AC Impedance) 72
3-5-4 循環伏安法分析(CV) 74
第四章 結果討論 75
4-1 膠體電解質導電度分析 76
4-1-1 小分子材料選擇 76
4-1-2 小分子比例選擇 80
4-2 膠體電解質聚合反應程度 82
4-3 膠體電解質熱穩定性分析 85
4-3-1 熱重TGA分析 85
4-3-2 熱差DSC分析 86
4-4 膠體電解質張力性質分析 87
4-5 膠體電解質電池電性分析 88
4-5-1 不同SCN比例變速率充放電 88
4-5-2 不同SCN比例長圈數循環 91
4-5-3 不同SCN比例介面電阻分析 96
4-5-4 不同SCN比例循環伏安法分析 98
4-5-5 不同SCN比例電極極化分析 100
4-6 複合電解質製程分析 102
4-6-1 LAGP品質分析 102
4-6-2 LAGP摻雜方法解析 104
4-6-3 XPS分析LAGP還原反應 106
4-7 複合電解質導電度分析 108
4-8 複合電解質內部結構分析 110
4-8-1 電解質XRD晶體分析 110
4-8-2 電解質SEM表面影像分析 111
4-9 複合電解質熱穩定性分析 113
4-10 複合電解質張力性質分析 114
4-11 複合電解質電池電性分析 115
4-11-1 不同LAGP比例介面電阻分析 115
4-11-2 不同LAGP比例變速率充放電 117
4-11-3 不同LAGP比例長圈數循環 120
4-11-4 不同LAGP比例電極極化分析 124
4-12 LATP複合電解質分析 126
4-12-2 不同LATP比例介面電阻分析 127
4-12-3 不同LATP比例變速率充放電 128
第五章 結論與未來展望 130
參考文獻 134
參考文獻 [1] Khoie, R., Ugale, K. & Benefield, J. , “Renewable resources of the northern half of the United States: potential for 100% renewable electricity.”, Clean Techn Environ Policy, 2019 , 21, 1809–1827
[2] Brian J. Landi, Matthew J. Ganter, Cory D. Cress, Roberta A. DiLeo and Ryne P. Raffaelle. , “Carbon nanotubes for lithium ion batteries.” ,Energy Environ. Sci., 2009, 2, 638–654
[3] Laisuo Su, Paul Choi, Bharathy S. Parimalam, Shawn Litster, B. Reeja-Jayan, “Designing reliable electrochemical cells for operando lithium-ion battery study” , MethodsX, 2021, 8, 101562
[4] Arun Mambazhasseri Divakaran, Manickam Minakshi, Parisa Arabzadeh Bahri , Shashi Paul, Pooja Kumari, Anoop Mambazhasseri Divakaran, Krishna Nama Manjunatha. , “Rational design on materials for developing next generation lithium-ion secondary battery” , Progress in Solid State Chemistry,2021, 62, 100298
[5] Satu Kristiina Heiskanen, Jongjung Kim, and Brett L. Lucht,
“Generation and Evolution of the Solid Electrolyte Interphase of Lithium-Ion Batteries”, Joule, 2019, Volume 3, Issue 10,2322–2333
[6] Shun Tang, Xiaokun Zhang, Yan Li, Jie Tian, Yuming Zhao, Liqiang Mai, Lianzhou Wang, Yuan-Cheng Cao, Weixin Zhang,“A fast ionic conductor and stretchable solid electrolyte artificial interphase layer for Li metal protection in lithium batteries” , Journal of Alloys and Compounds,2020, Volume 843, 155839

[7] D.E.Fenton, J.M.Parker and P.V.Wright, “Complexes of alkali metal ions with poly(ethylene oxide) ” , Polymer, 1973, Volume 14, Issue 11, 589
[8] Faiz Ahmed, Daeho Kim, Jin Lei, Taewook Ryu, Sujin Yoon, Wei Zhang, Hyunmin Lim, Giseok Jang, Hohyoun Jang, and Whangi Kim
, “UV-Cured Cross-Linked Astounding Conductive Polymer Electrolyte for Safe and High-Performance Li-Ion Batteries” , ACS Applied Materials & Interfaces, 2021, 13 , (29), 34102–34113
[9] Shan Cheng, Xiaowei Li, Yongwei Zheng, Derrick M. Smith, Christopher Y. Li,“Anisotropic ion transport in 2D polymer single crystal-based solid polymer electrolytes ” , Giant, 2020, Volume 2, 100021
[10] Vincent St-Onge, Mengyang Cui, Sylviane Rochon, Jean-Christophe Daigle & Jerome P. Claverie. , “Reducing crystallinity in solid polymer electrolytes for lithium-metal batteries via statistical copolymerization” ,Communications Materials, 2021, Volume 2, 83
[11] Jingyu Xi, Xinping Qiu, Jian Li, Xiaozhen Tang, Wentao Zhu, Liquan Chen,“PVDF–PEO blends based microporous polymer electrolyte: Effect of PEO on pore configurations and ionic conductivity” , Journal of Power Sources, 2006, Volume 157, Issue 1, 501–506,
[12] Chen, P., Liang, X., Wang, J. et al. , “PEO/PVDF-based gel polymer electrolyte by incorporating nano-TiO2 for electrochromic glass” , J Sol-Gel Sci Technol , 2017,81, 850–858
[13] R. Arunkumar, Ravi Shanker Babu, M. Usha Rani, S. Kalainathan. , “Effect of PBMA on PVC-based polymer blend electrolytes” , J. Appl. Polym. Sci. , 2017, 134, 44939
[14] Martin, Halie; Luo, Huimin; Chen, Hao; Do-Thanh, Chi-Linh; Kearney, Logan T; Mayes, Richard T; Naskar, Amit K; Dai, Sheng , “ Effect of the Ionic Liquid Structure on the Melt Processability of Polyacrylonitrile Fibers” , ACS Appl. Mater. Interfaces, 2020, 12, 7, 8663–8673
[15] Priyanka Dhatarwal, Shobhna Choudhary, R.J. Sengwa,“Electrochemical performance of Li+-ion conducting solid polymer electrolytes based on PEO–PMMA blend matrix incorporated with various inorganic nanoparticles for the lithium ion batteries” , Composites Communications, 2018, Volume 10, 11–17
[16] Isabella Nicotera, Luigi Coppola, Cesare Oliviero, Marco Castriota , Enzo Cazzanelli, “Investigation of ionic conduction and mechanical properties of PMMA–PVdF blend-based polymer electrolytes” , Solid State Ionics, 2006, 177, 581–588
[17] Pei Xu, Hanyang Chen, Xin Zhou, Hongfa Xiang,“Gel polymer electrolyte based on PVDF-HFP matrix composited with rGO-PEG-NH2 for high-performance lithium ion battery”, Journal of Membrane Science, 2021, Volume 617, 118660,
[18] https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Organic_Chemistry_(Morsch_et_al.)/06%3A_An_Overview_of_Organic_Reactions/6.03%3A_Radical_Reactions


[19] Xiaoyu Ji, Lin-Lin Xiao, Yiruo Zhang, Kan Yue, Xingui Zhou, and Zi-Hao Guo,“Unveiling the Side-Chain Effect on Ionic Conductivity of Poly(ethylene oxide)-Based Polymer-Brush Electrolytes”, ACS Appl. Energy Mater. , 2022, 5, 7, 8410–8418
[20] https://en.wikipedia.org/wiki/Azobisisobutyronitrile
[21] Zongjie Sun,Yuhan Li,Shuyang Zhang,Lei Shi,Hu Wu,Huaitian Bub,Shujiang Ding,“g-C3N4 nanosheets enhanced solid polymer electrolytes with excellent electrochemical performance, mechanical properties, and thermal stability”, J. Mater. Chem. A, 2019,7, 11069–11076
[22] https://en.wikipedia.org/wiki/Norrish_reaction
[23] Camila Stofella Sodré, Pedro Paulo A.C. Albuquerque, Cristina P. Isolan, Rafael R. Moraes, Luis Felipe Schneider,“Relative photon absorption determination and the influence of photoinitiator system and water content on C=C conversion, water sorption/solubility of experimental self-etch adhesives”, International Journal of Adhesion and Adhesives, 2015,Volume 63, 152–157,
[24] https://en.wikipedia.org/wiki/Norrish_reaction
[25] Fuat Bayrakçeken, “Triplet–triplet optical energy transfer from benzophenone to naphthalene in the vapor phase” ,Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2008, Volume 71, Issue 2, 603–608,




[26] Matthew W. Logan, Spencer Langevin,Bing Tan, Adam W. Freeman,Christopher Hoffman, Jr., Douglas B. Trigg and Konstantinos Gerasopoulos, “UV-cured eutectic gel polymer electrolytes for safe and robust Li-ion batteries”, J. Mater. Chem. A, 2020,8, 8485–8495
[27] Yijie Liu, Ping He, Haoshen Zhou,“Rechargeable Solid-State Li-Air and Li-S Batteries: Materials, Construction, and Challenges” , Advanced Energy Materials, 2017, Volume 8, Issue 4, 1701602
[28] Jinghua Wu, Sufu Liu, Fudong Han, Xiayin Yao, Chunsheng Wang, “Lithium/Sulfide All-Solid-State Batteries using Sulfide Electrolytes” , Advanced Energy Materials, 2020, Volume33, Issue 6, 2000751
[29] Bingkai Zhang, Rui Tan, Luyi Yang, Jiaxin Zheng, Kecheng Zhang, Sijia Mo, Zhan Lin, Feng Pan, “Mechanisms and properties of ion-transport in inorganic solid electrolytes” , Energy Storage Materials ,2018, Volume 10, 139–159,
[30] Yuantao Cui, Morsi M. Mahmoud, Magnus Rohde, Carlos Ziebert, Hans Juergen Seifert,“Thermal and ionic conductivity studies of lithium aluminum germanium phosphate solid-state electrolyte”, Solid State Ionics, 2016, Volume 289, 125–132,
[31] Chang Zhang, Qilin Hu, Yanran Shen, Wei Liu, “Fast-Charging Solid-State Lithium Metal Batteries: A Review”, Advanced Energy and Sustainability Research, 2022, Volume3, Issue6, 2100203


[32] Ming Zhang, Keita Takahashi, Ichiro Uechi, Yasuo Takeda, Osamu Yamamoto, Dongmin Im, Dong-Jonne Lee, Bo Chi, Jian Pu, Jian Li, Nobuyuki Imanishi, “Water-stable lithium anode with Li1.4Al0.4Ge1.6(PO4)3–TiO2 sheet prepared by tape casting method for lithium-air batteries” , Journal of Power Sources, 2013, Volume 235, 117–121
[33] Weiss, M.; Weber, D. A.; Senyshyn, A.; Janek, J.; Zeier, W. G. , “Correlating Transport and Structural Properties in Li1+xAlxGe2–x(PO4)3 (LAGP) Prepared from Aqueous Solution. ” , ACS Appl. Mater. Interfaces, 2018,Vol. 10 ,No. 13, 10935–10944,.
[34] Seunghwan Lee, Sehun Jung, Sungeun Yang, Jong-Ho Lee, Hyunjung Shin, Joosun Kim, Sangbaek Park, “Revisiting the LiPON/Li thin film as a bifunctional interlayer for NASICON solid electrolyte-based lithium metal batteries”, Applied Surface Science, 2022, Volume 586, 152790
[35] Hu Fei, YuYu Li, Ying Wei, Jiayi Yang, Pei Hu, Zhixiang Rao, Xue Chen, Lixia Yuan, and Zhen Li, “Construct an Ultrathin Bismuth Buffer for Stable Solid-state Lithium Metal Batteries” , ACS Appl. Mater. Interfaces ,2020, 12, 11, 12793–12800
[36] Yutao Li, Xi Chen, Andrei Dolocan, Zhiming Cui, Sen Xin, Leigang Xue, Henghui Xu, Kyusung Park, and John B. Goodenough, “Garnet Electrolyte with an Ultralow Interfacial Resistance for Li-Metal Batteries” ,J. Am. Chem. Soc. ,2018, 140, 20, 6448–6455


[37] Kun (Kelvin) Fu, Yunhui Gong, Boyang Liu, Yizhou Zhu, Shaomao Xu, Yonggang Yao, Wei Luo,Chengwei Wang, Steven D. Lacey, Jiaqi Dai, Yanan Chen,Yifei Mo, Eric Wachsman, Liangbing Hu, “Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface” ,Science Advances, 2017, Vol 3, Issue 4, 1601659
[38] Nataly Carolina Rosero-Navarro, Ryunosuke Kajiura, Randy Jalem, Yoshitaka Tateyama, Akira Miura, and Kiyoharu Tadanaga, “Significant Reduction in the Interfacial Resistance of Garnet-Type Solid Electrolyte and Lithium Metal by a Thick Amorphous Lithium Silicate Layer” , ACS Appl. Energy Mater. , 2020, 3, 6, 5533–5541
[39] Xiang Gao,Craig A. J. Fisher, Teiichi Kimura,Yumi H. Ikuhara, Akihide Kuwabara, Hiroki Moriwake, Hideki Oki, Takeshi Tojigamori, Keiichi Kohama and Yuichi Ikuhara, “Domain boundary structures in lanthanum lithium titanates” , J. Mater. Chem. A, 2014, 2, 843
[40] Luis K. Ono, Matthew R. Leyden, Shenghao Wanga Yabing Qi , “Organometal halide perovskite thin films and solar cells by vapor deposition” , J. Mater. Chem. A, 2016,4, 6693–6713
[41] Andrea Paolella, Wen Zhu, Giovanni Bertoni, Alexis Perea, Hendrix Demers, Sylvio Savoie, Gabriel Girard, Nicolas Delaporte, Abdelbast Guerfi, Matthias Rumpel, Henning Lorrmann, George P. Demopoulos, Karim Zaghib,“Toward an All-Ceramic Cathode–Electrolyte Interface with Low-Temperature Pressed NASICON Li1.5Al0.5Ge1.5(PO4)3 Electrolyte” ,Advanced Materials Interfaces, 2020, Volume7, Issue12
[42] LI Yitao, SHEN Kaier, PANG Quanquan, “Advance in organics enhanced sulfide-based solid-state batteries” , Energy Storage Science and Technology, 2022, Vol. 11 ,Issue (6), 1902–1918
[43] Akitoshi Hayashi, Shigenori Hama, Hideyuki Morimoto, Masahiro Tatsumisago, and Tsutomu Minami, “Preparation of Li2S–P2S5 Amorphous Solid Electrolytes by Mechanical Milling” , Journal of the American Ceramic Society, 2001, Volume84, Issue 2, 477–479
[44] Akane Ito, Takuya Kimura, Atsushi Sakuda, Masahiro Tatsumisago & Akitoshi Hayashi, “Liquid-phase synthesis of Li3PS4 solid electrolyte using ethylenediamine”, J Sol-Gel Sci Technol , 2022, 101, 2–7
[45] Ohmin Kwon, Masaaki Hirayama, Kota Suzuki, Yuki Kato, Toshiya Saito, Masao Yonemura, Takashi Kamiyama, Ryoji Kanno, “Synthesis, Structure, and Conduction Mechanism of the Lithium Superionic Conductor Li10+δGe1+δP2-δS12” , J. Mater. Chem. A, 2015,3, 438–446
[46] Qilin Hu, Zhetao Sun, Lu Nie, Shaojie Chen, Jiameng Yu, Wei Liu, “High-safety composite solid electrolyte based on inorganic matrix for solid-state lithium-metal batteries” , Materials Today Energy, 2022, Volume 27, 101052,
[47] Feng, J., Wang, L., Chen, Y. et al. ,“PEO based polymer-ceramic hybrid solid electrolytes: a review.”, Nano Convergence ,2021,8,2


[48] Lingguang Yi, Changfei Zou, Xiaoyi Chen, Jiali Liu, Shuang Cao, Xiyuan Tao, Zihao Zang, Li Liu, Baobao Chang, Yongqiang Shen, and Xianyou Wang,“One-Step Synthesis of PVDF-HFP/PMMA-ZrO2 Gel Polymer Electrolyte to Boost the Performance of a Lithium Metal Battery”, ACS Appl. Energy Mater. , 2022, 5, 6, 7317–7327
[49] Tian Liang, Wei-Hua Liang, Jian-Hua Cao, and Da-Yong Wu, “Enhanced Performance of High Energy Density Lithium Metal Battery with PVDF-HFP/LAGP Composite Separator”, ACS Appl. Energy Mater. , 2021, 4, 3, 2578–2585
[50] Marisa Falco, Laurent Castro, Jijeesh Ravi Nair, Federico Bella, Fanny Bardé, Giuseppina Meligrana, and Claudio Gerbaldi, “UV-Cross-Linked Composite Polymer Electrolyte for High-Rate, Ambient Temperature Lithium Batteries” , ACS Appl. Energy Mater. ,2019, 2, 3, 1600–1607
[51] Sreejith O. V., Sona Elsin Abraham, and Murugan Ramaswamy, “Free-Standing and Flexible Garnet-PVDF Ceramic Polymer Electrolyte Membranes for Solid-State Batteries” , Energy Fuels ,2023, 37, 3, 2401–2409
[52] Nataly Carolina Rosero-Navarro, Ryunosuke Kajiura, Akira Miura, and Kiyoharu Tadanaga, “Organic–Inorganic Hybrid Materials for Interface Design in All-Solid-State Batteries with a Garnet-Type Solid Electrolyte” , ACS Appl. Energy Mater. ,2020, 3, 11,
[53] H. Huo, Y. Chen, J. Luo, X. Yang, X. Guo and X. Sun, “Rational Design of Hierarchical “Ceramic-in-Polymer” and “Polymer-in-Ceramic” Electrolytes for Dendrite-Free Solid-State Batteries”, Adv. Energy Mater., 2019, Volume 9, Issue 17, 1804004
[54] Long Chen, Yutao Li, Shuai-Peng Li, Li-Zhen Fan, Ce-Wen Nan, John B. Goodenough, “PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic” ” , Nano Energy, 2018, Volume 46, 176–184,
[55] Meirong Li, Martin Kolek, Joop Enno Frerichs, Wei Sun, Xu Hou, Michael Ryan Hansen, Martin Winter, and Peter Bieker, “Investigation of Polymer/Ceramic Composite Solid Electrolyte System: The Case of PEO/LGPS Composite Electrolytes” , ACS Sustainable Chem. Eng. , 2021 , 9, 34, 11314–11322
[56] Young Seon Park,Jae Min Lee ,Eun Jeong Yi ,Ji-Woong Moon, Haejin Hwang , “All-Solid-State Lithium-Ion Batteries with Oxide/Sulfide Composite Electrolytes” ,Materials ,2021, 14, 1998
[57] Dr. Mohammed I. Alomari, “Conformational Relative Stability and Thermal Properties of Succinonitrile in Gas and Condensed Phases: Using CCSD and DFT Calculations” , ChemistrySelect, 2020,Volume5, Issue27, 8078–8085
[58] Ryoma Sasaki, Makoto Moriya, Yuki Watanabe, Kazunori Nishio, Taro Hitosugi, Yoshitaka Tateyama,“Peculiarly Fast Li-ion Conduction Mechanism in a SuccinonitrileBased Molecular Crystal Electrolyte: A Molecular Dynamics Study” , J. Mater. Chem. A, 2021,9, 14897–14903
[59] Yumei Zhou, Fengrui Zhang, Peixin He, Yuhong Zhang, Yiyang Sun, Jingjing Xu, Jianchen Hu, Haiyang Zhang, Xiaodong Wu, “Quasi-solid-state polymer plastic crystal electrolyte for subzero lithium-ion batteries” , Journal of Energy Chemistry, 2020, Volume 46, 87–93
[60] Xingwen Yu, Yijie Liu, John B. Goodenough, and Arumugam Manthiram, “Rationally Designed PEGDA–LLZTO Composite Electrolyte for Solid-State Lithium Batteries” , ACS Appl. Mater. Interfaces ,2021, 13, 26, 30703–30711
[61] https://www.kanto.co.jp/english/products/organics/ionic_liquids.html
[62] Mohd. Suleman, Yogesh Kumar, and S. A. Hashmi“Structural and Electrochemical Properties of Succinonitrile-Based Gel Polymer Electrolytes: Role of Ionic Liquid Addition” , J. Phys. Chem. B, 2013, 117, 24, 7436–7443
[63] Dr. Man Xie, Shuaijie Li, Yongxin Huang, Ziheng Wang, Ying Jiang, Min Wang, Prof. Feng Wu, Prof. Renjie Chen,“An Ionic Liquid/Poly(vinylidene fluoride-co-hexafluoropropylene) Gel-Polymer Electrolyte with a Compatible Interface for Sodium-Based Batteries” ,ChemElectroChem, 2019, Volume6, Issue9, 2423–2429
[64] Wenya Lei, Chaofan Zhang, Rui Qiao, Mahalingam Ravivarma, Haixia Chen, Farshad Boorboor Ajdari, Masoud Salavati-Niasari, and Jiangxuan Song,“Stable Li|LAGP Interface Enabled by Confining Solvate Ionic Liquid in a Hyperbranched Polyanionic Copolymer for NASICON-Based Solid-State Batteries” , ACS Appl. Energy Mater. , 2023, 6, 8, 4363–4371
[65] Qian Wu, Yun Yang, Chenchong Ma, Zheng Chen, Qinting Su, Caizhen Zhu, Yuan Gao, Rui Ma, and Cuihua Li, “Flexible Nanocomposite Polymer Electrolyte Based on UV-Cured Polyurethane Acrylate for Lithium Metal Batteries” , ACS Sustainable Chem. Eng. , 2021, 9, 16, 5631–5641

[66] Sahin Yakut, Kemal Ulutaş, Deniz Bozoglu, Melisa Adıbelli, Tolga Ceper, Nergis Arsu, Deniz Deger, “Dielectric properties of AuNPs/PEGMEA/PEGDA nanocomposite film prepared with an α−amino ketone by in-situ photochemical method, ” , Physica B: Condensed Matter, 2018, Volume 542, 6–11
[67] Choi, U.H., Jung, B.M.,“Ion Conduction, Dielectric and Mechanical Properties of Epoxy-Based Solid Polymer Electrolytes Containing Succinonitrile ”,Macromol. Res. ,2018,26, 459–465
[68] John W. Ostrander, Carolyn Torres, Fride Vullum-Breuer, Dale Teeters. , “Pressure Induced Changes in Grain Boundary Conditions of Lithium Conducting Ceramics Characterized by Impedance Spectroscopy” ,Research Square, 2021
[69] K. Arbi, W. Bucheli, R. Jiménez, J. Sanz, “High lithium ion conducting solid electrolytes based on NASICON Li1+xAlxM2−x(PO4)3 materials (M=Ti, Ge and 0≤x≤0.5) ”,
Journal of the European Ceramic Society ,2015, Volume 35, Issue 5, 1477–1484
[70] Jianneng Liang, Jing Luo, Qian Sun, Xiaofei Yang, Ruying Li, Xueliang Sun, “Recent progress on solid-state hybrid electrolytes for solid-state lithium batteries” Energy Storage Materials ,2019,308-334
指導教授 諸柏仁 審核日期 2023-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明