博碩士論文 110223017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:72 、訪客IP:3.12.161.77
姓名 王烱榮(Jiong-Rong Wang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 光聚合黏著劑應用於鋰離子電池矽負極性能探討
相關論文
★ 電場誘導有序排列之高導電度複合固態電解質★ 電場誘導聚苯醚碸摻雜複合薄膜之研究
★ 改善鋰離子電池電性之新穎電解液添加劑★ 電場誘導高離子導向之混摻高分子固態電解質
★ 以有機茂金屬觸媒合成sPS/PAMS與sPS/PPMS共聚物及其物性探討★ 以有機茂金屬觸媒合成丙烯-原冰烯之COC共聚物及其物性探討
★ 電致發光電池中電解質的結構與物性探討★ 奈米二氧化鈦-固態複合高分子電解質
★ 交聯型固態高分子電解質★ 高分子固態電解質改進高分子發光二極體之光學特性研究
★ 複合高分子電解質結構與電性之研究★ 奈米粒/管二氧化鈦複合高分子電解質之結構探討
★ 具備電子予體與受體之七環十四烷衍生物的製備及其特性★ 超分子發光二極體相容性、分子運動性與光性之研究
★ 新穎質子交換膜★ 原位聚合有機無機複合發光二極體 之分散性及光性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-1以後開放)
摘要(中) 石墨碳負極已成為目前鋰電池負極的主流,然而其理論電容量約為372 mAh/g左右,在高電流密度下充放電的電容保持率也較低。因此,科學家正積極開發一種理論電容量更高的新型材料-矽。矽擁有備受矚目的理論電容量(約3579 mAh/g),高出傳統石墨負極約十倍以上。然而,矽在充放電過程中體積不斷膨脹、收縮以及電解液分解生成的固體電解質層(SEI),最終使材料脆化,導致電子導電度較低,影響電池壽命。
本研究旨在探索一種新型光聚合方法來固化電極,利用光交聯反應形成網狀結構以保護矽負極材料。這種方法有望克服前述困難,並評估其在未來高能量鋰離子電池中的可行性。
研究的第一部分,我們將通過熱聚合反應,利用聚乙二醇(PEO)和聚乙烯醇(PVA)與聚丙烯酸(PAA)結合,探索文獻中記載最佳水性粘合劑配方。這種粘合劑能有效地覆蓋在矽電極上,通過剝離測試顯示良好的附著性,並呈現出令人滿意的電化學性能。電性表現也相當出色(PAA-PVA配方經0.2C 100個循環後電容量達764 mAh/g)。
其後,我們比較了幾種不同的光交聯劑配方,包括甘油丙氧基三丙烯酸酯(G3E)、脂肪族聚氨酯丙烯酸酯(YA)、芳香族聚氨酯丙烯酸酯(U-60),以及僅使用PAA進行光聚合以進行電極粘合。並測試了它們在0.2C下的長期循環穩定性。令人驚訝的是,直接光聚合的PAA在0.2C下經過100次循環後仍然保持著最高的電容量(450 mAh/g)。然而,在進行3M膠帶剝離測試後,發現活性材料和銅箔之間的附著性仍然不夠。添加紫外光交聯劑可以增強附著性,但令人失望的是,在紫外光固化下,性能甚至比PAA更差,這可能是交聯劑阻滯了鋰離子在活性材料之間傳輸的。這裡可以推測,附著性並非唯一影響電池壽命的因素。
為深入研究,我們使用掃描電子顯微鏡(SEM)、X射線光電子能譜(XPS)、循環伏安法(CV)和電化學阻抗譜(EIS)。實驗數據證實光交聯劑確實參與SEI層的形成,能夠減緩電解液和鋰鹽的消耗和分解。這表明紫外光交聯劑能夠緊密覆蓋電極,防止矽負極與電解液不斷反應而導致的持續容量衰減。
最後,我們通過添加電解液添加劑FEC來改善光聚合的循環壽命性能。在本研究中,我們選擇了4% G3E作為最佳粘合劑,它顯示出良好的活性材料與銅箔之間的附著性,同時具有較好的循環壽命性能。在0.5C和1C下經過100次充放電循環後,電池容量保持在904 mAh/g和785.6 mAh/g左右。在0.5C下經過200次循環後,容量保持在約340 mAh/g。相比於無添加FEC的情況,在0.2C下經過100次循環後,容量僅保持在404 mAh/g。這些實驗結果證明電解液添加劑不僅可以進一步減少電解液和鋰鹽的消耗,還能延長矽負極的循環壽命。
綜上所述,雖然光聚合並未在電容保持率方面超越水性熱聚合,但它消除了傳統水性電極製備過程中耗時且高能耗的乾燥步驟。通過解決矽負極的挑戰,光聚合展示了其作為提升高能量鋰離子電池性能和壽命的可行技術。
摘要(英) Graphite anode has become the mainstream of negative electrode for lithium battery recently. However, because of its low theoretical capacity of 372 mAh/g, and the low capacity retention rate during charge and discharge under high current density, scientists are actively pursuing a new type of material - silicon, which has a higher theoretical capacity than that of carbon negative electrode. Silicon is a high-profile material, because its theoretical capacity (about 3579 mAh/g) is about ten times higher than that of traditional carbon negative electrodes, however it suffers from continuous volume expansion and contraction and the continuous decomposition of the electrolyte during charging and discharging process. The continuous formation of the SEI layer eventually embrittles the material, resulting in lower electronic conductivity and less-than-ideal battery life. This study will explore a novel photopolymerization method to cure electrode, using photocrosslinking reaction to form a network structure to protect silicon anode materials. It is expected to overcome the aforementioned difficulties, and evaluate the feasibility of this technique for high-energy lithium-ion batteries in the future.
In the first part of this study, we explore best water based binder formula documented in literature via thermal polymerization using polyethylene oxide (PEO) as well as polyvinyl alcohol (PVA) binded with polyacrylic acid (PAA) . This binder is well-coated on the silicon electrode, and shows good adhesion with peeling tests and fair electrochemical performance. In the second part, we compared results by several different photo-crosslinkers formulations: G3E(glycerol propoxylate triacrylate, G3POTA),YA(aliphatic urethane acrylate), U-60(aromatic urethane acrylate) and we tried only PAA to photopolymerize to compare as the electrode binder, and tested their long-term cycle life stability under 0.2C. In terms of electrochemical performance, PAA directly photopolymerized maintains 450 mAh/g after 100 cycles at 0.2C, which is the best among all formulas. However, after 3M tape peeling test, it was found that the active material and the adhesion between copper foil is still poor. After adding UV binders, although the adhesion can be enhanced, they do not exhibit substantial improved cycle life performance, in fact the performance is even worse than that of PAA under UV curing , which may be related to the pore size of lithium ions transport between the active material. Here we speculate that adhesion is not the only factor determining battery life.
Further, we use scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) for in-depth investigation. Experimental data confirmed that the photocrosslinker is indeed involved in the formation of the SEI layer, and can slow down the consumption and decomposition of the electrolyte and lithium salt. We believe that UV binders can tightly cover the electrode, preventing the continuous capacity fading caused by the continuous reaction of the silicon negative electrode with the electrolyte.
Finally, we improve the cycle life performance of the photopolymerization by adding electrolyte additive FEC. In this study, we choose 4% G3E, which shows good adhesion between the active material and the copper foil and it also shows better cycle life performance. In the cycle life, it can be found that after 100 cycles of charging and discharging at 0.5C and 1C, the capacity can be maintained at 904 mAh/g and 785.6 mAh/g, and after 0.5C 200 cycles the capacity maintained at around 340 mAh/g. Compared with no addition of FEC, the capacity remains only 404 mAh/g after 100 cycles at 0.2C. This experimental prove that the electrolyte additive can not only further reduce the consumption of electrolyte and lithium salt but can prolong the cycle life of the silicon anode.
Concluding from these results, although photopolymerization does not yield superior capacity retention over water based thermal polymerization, it alleviated the time consuming and high energy issues associated with the drying process in traditional water based electrode fabrication.
關鍵字(中) ★ 光聚合黏著劑
★ 矽負極
★ 光交聯
關鍵字(英) ★ UV-curing binder
★ silicon anode
★ crosslinking
論文目次 摘要 i
Abstract i
誌謝 vii
目錄 ix
圖目錄 xiii
表目錄 xix
第一章 緒論 1
1-1 前言 1
1-2 光聚合介紹 3
第二章 原理介紹與文獻回顧 5
2-1 鋰電池工作原理 5
2-2 矽負極材料特性 8
2-3 矽負極黏著劑種類 8
2-3-1 提升黏著劑彈性 10
2-3-2 光聚合高分子材料簡介 24
2-4 固態鈍化層介面簡介 33
2-4-1 Solid Electrolyte Interphase (SEI)固態鈍化層介面介紹 33
2-4-2 電解液添加劑(Electrolyte Additive)介紹 36
2-5 研究動機與設計 43
第三章 實驗介紹 45
3-1 實驗藥品、器材與儀器設備 45
3-1-1 實驗藥品 45
3-1-2 實驗設備 47
3-1-3 實驗器材 48
3-2 實驗方法 49
3-2-1 黏著劑聚合方式 49
3-2-2 負極極片製備 50
3-2-3 鈕扣型半電池製備 53
3-3 實驗儀器原理介紹 54
3-3-1 超高解析冷場發射掃描式電子顯微鏡(CFE-SEM) 54
3-3-2 超高解析穿透式電子顯微鏡(TEM) 55
3-3-3 X-光光電子能譜儀(XPS) 56
3-4 鋰電池效能及其電化學活性分析 57
3-4-1 電池充放電測試 57
3-4-2 循環伏安法(Cyclic Voltammetry, CV) 57
3-4-3 交流阻抗分析儀(AC impendance) 58
第四章 結果與討論 60
4-1 傳統水性熱聚合黏著劑選用 60
4-1-0 材料相鑑定-XRD 62
4-1-1 材料官能基鑑定-ATR-FTIR 62
4-1-2 水性黏著劑電性比較 65
4-1-3水性黏著劑循環伏安法比較 68
4-1-4 水性黏著劑剝落測試 70
4-2 光聚合單體以及寡聚物的選用 72
4-2-1 不同分子量PAA的選用-變速率充放電 73
4-2-2光聚合黏著劑之反應鑑定- G3E 74
4-2-3 變速率充放電與循環壽命測試- G3E 76
4-2-4 交流阻抗測試- G3E 78
4-3光聚合黏著劑之反應鑑定- YA 80
4-3-1 變速率充放電與長時間循環壽命-YA 81
4-3-2 交流阻抗測試- YA 84
4-4光聚合黏著劑之反應鑑定- U-60 85
4-4-1 變速率充放電與長時間循環壽命-U-60 86
4-4-2 交流阻抗測試U-60 88
4-5 PAA官能基有無照光條件下差異-ATR-FTIR 89
4-5-1 變速率充放電與長時間循環壽命 91
4-5-2 交流阻抗測試 93
4-6 循環伏安法測試-傳統水性熱聚合和光聚合 94
4-7掃描式電子顯微鏡(SEM)之電極表面型態分析 95
4-8 穿透式電子顯微鏡(TEM)之電極型態分析 100
4-9 電池極化分析 104
4-10 X-光光電子能譜儀(XPS)之鈍化層探討 106
4-11 3M膠帶剝落測試(Peeling Test) 118
4-12 電解液添加劑FEC- 4% G3E 120
4-12-1 G3E添加FEC與傳統水性PAA-PVA電性比較 124
第五章 結論與展望 127
參考文獻 129
參考文獻 [1]工研院產科國際所ITIS研究團隊(2022/11),取自https://www.moea.gov.tw/MNS/doit/industrytech/IndustryTech.aspx?menu_id=13545&it_id=451
[2]https://zh.wikipedia.org/zhtw/%E5%85%89%E8%81%9A%E5%90%88%E7%89%A9
[3]https://www.moneydj.com/kmdj/wiki/wikiviewer.aspx?keyid=8833fcf9-22ed-47f4-bfaf-e7b75a45e4f8
[4] https://kknews.cc/news/zxygmaq.html
[5] Xiuyun Zhao, Svetlana Niketic, Chae-Ho Yim, Jigang Zhou, Jian Wang, and Yaser Abu-Lebdeh, “Revealing the Role of Poly(vinylidene fluoride) Binder in Si/Graphite Composite Anode for Li-Ion Batteries” , ACS Omega 2018, 3, 11684−11690.
[6] Yonhua Tzeng, Cheng-Ying Jhan, Guan-Yu Chen, Kuo-Ming Chiu, Yi-Chen Wu, and Pin-Sen Wang, “Hydrogen Bond-Enabled High-ICE Anode for Lithium-Ion Battery Using Carbonized Citric Acid-Coated Silicon Flake in PAA Binder” ACS Omega 2023, 8, 8001−8010.
[7] Pritesh Parikh, Mahsa Sina, Abhik Banerjee, Xuefeng Wang, Macwin Savio D’Souza, Jean-Marie Doux, Erik A. Wu, Osman Y. Trieu, Yongbai Gong, Qian Zhou, Kent Snyder, and Ying Shirley Meng, “ Role of Polyacrylic Acid (PAA) Binder on the Solid Electrolyte Interphase in Silicon Anodes” Chem. Mater. 2019, 31, 2535−2544.
[8] Qianye Huang, Chaoying Wan, Melanie Loveridge, and Rohit Bhagat, “Partially Neutralized Polyacrylic Acid/Poly(vinyl alcohol) Blends as Effective Binders for High-Performance Silicon Anodes in Lithium-Ion Batteries ACS Appl. Energy Mater. 2018, 1, 6890−6898.
[9] Shibin Liu, Xiangcai Meng, Jing Wang, Jianwei Xu, Hongbo Li School of Materials Science and Engineering, Jiamusi University, Jiamusi 154007, China, “Application of a Cross-linked Polyacrylic Acid-Polyethylene Oxide (PAA-PEO) Copolymer as a Binder for Si@C@PDA
Composite Anode Materials in Li-ion Batteries, Int. J. Electrochem. Sci. 2022, Article Number: 22025, doi: 10.20964.
[10] Chao Chen, Sang Ha Lee, Misuk Cho, Jaehoon Kim, and Youngkwan Lee, “Cross-Linked Chitosan as an Efficient Binder for Si Anode of Li-ion Batteries”, ACS Appl. Mater. Interfaces 2016, 8, 4, 2658–2665.
[11] Zhimeng Liu, Chen Fang, Xin He, Yangzhi Zhao, Hualiang Xu, Jingxin Lei, and Gao Liu, “In Situ-Formed Novel Elastic Network Binder for a Silicon Anode in Lithium-Ion Batteries” ACS Appl. Mater. Interfaces 2021, 13, 39, 46518–46525.
[12] Yitian Bie, Jun Yang, Xiaolin Liu, Jiulin Wang, Yanna Nuli, and Wei Lu, “Polydopamine Wrapping Silicon Cross-linked with Polyacrylic Acid as High-Performance Anode for Lithium-Ion Batteries”, ACS Appl. Mater. Interfaces 2016, 8, 5, 2899–2904.
[13] Jiangxuan Song , Mingjiong Zhou , Ran Yi , Terrence Xu , Mikhail L. Gordin , Duihai Tang ,Zhaoxin Yu , Michael Regula , and Donghai Wang, “Interpenetrated Gel Polymer Binder for High-Performance Silicon Anodes in Lithium-ion Batteries”, Article in Advanced Functional Materials. October 2014,DOI: 10.1002/adfm.201401269.
[14] Yongjing Hu,Dan Shao,Yutong Chen, Jianping Peng, Shuqi Dai, Mingjun Huang, Zi-Hao Guo, Xiangyi Luo, and Kan Yue, “A Physically Cross-Linked Hydrogen-Bonded Polymeric Composite Binder for High-Performance Silicon Anodes”, ACS Appl. Energy Mater.2021,4, 10886−10895.
[15] Lei Ma, Sulin Niu, Fangfang Zhao, Ruixian Tang, Yu Zhang, Wenda Su, Liangming Wei,Gen Tang, Yue Wang, Aimin Pang,and Wei Li, “A High-Performance Polyurethane−Polydopamine Polymeric Binder for Silicon Microparticle Anodes in Lithium-Ion Batteries”, ACS Appl. Energy Mater. 2022, 5, 7571−7581.
[16] Wonseok Jang, Rajeev K. K., Gaurav M. Thorat, Sangwook Kim, Yumi Kang, and Tae-Hyun Kim, “Lambda Carrageenan as a Water-Soluble Binder for Silicon Anodes in Lithium-Ion Batteries”, ACS Sustainable Chem. Eng. 2022, 10, 12620−12629.
[17] Patteth S. Salini, Sumol V. Gopinadh, Athira Kalpakasseri, Bibin John, and Mercy Thelakkattu Devassy, “Toward Greener and Sustainable Li-Ion Cells: An Overview of Aqueous-Based Binder Systems.”, ACS Sustainable Chem. Eng. 2020, pp.4003-4025.
[18] Herman F.Mark, “Enocyclopedia of polymer science and technology.”, Wiley Online Library 2004, vol. 10.
[19] Manmeet Kaur, A. K. Srivastava, “PHOTOPOLYMERIZATION: A REVIEW.”, Journal of Macromolecular Science 2002, vol. 42, pp.481-512.
[20] Katharina Hunger, Laura Buschhaus, Nadine Schmeling, Claudia Staudt, Anna Pfeifera, Karl Kleinermanns, “Characterization of maleimide dimers in photo-cross-linked copolyimide films.”, Phys. Chem. Chem. Phys.2012, issue. 13 , pp.4538-4547.
[21] Yuanmei Cao, Xiaofeng Ren, Hamideh Shokouhi Mehr, Mark D.Soucek, “UV-Curable bismaleimides part I: Synthesis and photo-cure kinetics.”, Progress in Organic Coatings 2016, vol. 100, pp.118-128.
[22] Fengguo Liu, Ying Wang, Xiangxin Xue, and He Yang School of Metallurgy, Northeastern University, “Photopolymerization of UV Curable Coatings Monitored by Raman Spectroscopy”, Polymer(Korea), 2016, Vol. 40, No. 3, pp. 390-396.
[23] Zhen Luo , Ying Xu , Cui-Ran Gong , Yang-Qing Zheng , Zhao-Xi Zhou , Li-Ming Yu, “An ultraviolet curable silicon/ graphite electrode binder for long-cycling lithium ion batteries”, Journal of Power Sources. 2021, 4852-29348.
[24] V. A. Agubra, J. W. Fergus, “The Formation and Stability of the Solid Electrolyte Interface on the Graphite Anode.”, Journal of Power Sources. 2014, vol. 268, pp. 153–162.
[25]Aurelie Gu´eguen,´Daniel Streich, Minglong He, Manuel Mendez,Frederick F. Chesneau, Petr. Novak, and Erik J. Berg, “Decomposition of LiPF6 in High Energy Lithium-Ion Batteries Studied with Online Electrochemical Mass Spectrometry”, Journal of The Electrochemical Society. 2016, 163 (6) A1095-A1100.
[26] Cao Cuong Nguyen and Brett L. Lucht, Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, USA, “Comparative Study of Fluoroethylene Carbonate and Vinylene Carbonate for Silicon Anodes in Lithium Ion Batteries”, Journal of The Electrochemical Society. 2014, 161 (12) A1933-A1938.
[27]Chao Xu,Fredrik Lindgren, Bertrand Philippe, Mihaela Gorgoi,Fredrik Björefors, Kristina Edström, and Torbjörn Gustafsson, “Improved Performance of the Silicon Anode for Li-Ion Batteries: Understanding the Surface Modification Mechanism of Fluoroethylene Carbonate as an Effective Electrolyte Additive”, Chem. Mater. 2015, 27, 7, 2591–2599.
https://doi.org/10.1021/acs.chemmater.5b00339
[28] 江恆瑋,“提升矽陽極鋰離子電池之循環穩定性之研究,”國立臺灣師範大學化學系碩士論文, 2013.
[29] Jun Wang , Shengli Li, Yi Zhao, Juan Shi, Lili Lv, Huazhi Wang, Zhiya Zhang and Wangjun Feng,“The influence of different Si[thin space (1/6-em)]:[thin space (1/6-em)]C ratios on the electrochemical performance of silicon/carbon layered film anodes for lithium-ion batteries”, RSC Adv. 2018, 8, 6660.
指導教授 諸柏仁(Po-Jen Chu) 審核日期 2023-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明