參考文獻 |
Aalami, H. A., Moghaddam, M. P., & Yousefi, G. R. (2010). Demand response modeling considering Interruptible/Curtailable loads and capacity market programs. Applied Energy, 87(1), 243-250. https://doi.org/10.1016/j.apenergy.2009.05.041
Barbato, A., & Capone, A. (2014). Optimization Models and Methods for Demand-Side Management of Residential Users: A Survey. Energies, 7(9), 5787-5824. https://doi.org/10.3390/en7095787
Beck, T., Kondziella, H., Huard, G., & Bruckner, T. (2017). Optimal operation, configuration and sizing of generation and storage technologies for residential heat pump systems in the spotlight of self-consumption of photovoltaic electricity. Applied Energy, 188, 604-619. https://doi.org/10.1016/j.apenergy.2016.12.041
Beheshti, Z., & Shamsuddin, S. M. H. (2013). A review of population-based meta-heuristic algorithms. International Journal of Advances in Soft Computing and its Applications, 5(1), 1-35.
Berkeley Earth (2021). Actionable Climate Science for Policymakers. Retrieved April 27, 2022, from http://berkeleyearth.org/policy-insights
Borwein, J. M., & Lewis, A. S. (2006). Convex Analysis and Nonlinear Optimization: Theory and Examples. Springer. https://doi.org/https://doi.org/10.1007/978-0-387-31256-9
Bradley, P., Leach, M., & Torriti, J. (2013). A review of the costs and benefits of demand response for electricity in the UK. Energy Policy, 52, 312-327. https://doi.org/10.1016/j.enpol.2012.09.039
Bureau of Energy (2021). Energy Statistics Handbook 2020. R.O.C. (Taiwan) Ministry of Economic Affairs, Bureau of Energy. https://www.moeaboe.gov.tw/ECW_WEBPAGE/FlipBook/2020EnergyStaHandBook/2020EnergyStaHandBook.pdf
Bureau of Energy (2022a, November 30). Energy Statistics. Retrieved December 3, 2022, from https://www.esist.org.tw/Database
Bureau of Energy (2022b, December 1). Second meeting records of committee on feed-in tariff regarding renewable energy. Retrieved December 4, 2022, from https://www.moeaboe.gov.tw/ECW/renewable/content/ContentLink.aspx?menu_id=778
Caradonna, J. L. (2014). Sustainability: A history. Oxford University Press.
Chaianong, A., Bangviwat, A., Menke, C., Breitschopf, B., & Eichhammer, W. (2020). Customer economics of residential PV-battery systems in Thailand. Renewable Energy, 146, 297-308. https://doi.org/10.1016/j.renene.2019.06.159
Climate Change Performance Index (2021). CCPI • Results 2022. Germanwatch, NewClimate Institute & Climate Action Network.
https://ccpi.org/wp-content/uploads/CCPI-2022-Results_neu.pdf
DBAR (2022). Observations by districts - Taipei. Data Bank for Atmospheric & Hydrologic Research. Retrieved November 29, 2022, from https://dbar.pccu.edu.tw/member/SiteBlock.aspx
Deng, R. L., Yang, Z. Y., Chow, M. Y., & Chen, J. M. (2015). A Survey on Demand Response in Smart Grids: Mathematical Models and Approaches. Ieee Transactions on Industrial Informatics, 11(3), 570-582. https://doi.org/10.1109/Tii.2015.2414719
Doostizadeh, M., & Ghasemi, H. (2012). A day-ahead electricity pricing model based on smart metering and demand-side management. Energy, 46(1), 221-230. https://doi.org/10.1016/j.energy.2012.08.029
Environmental Protection Agency (2022). National Greenhouse Gas Inventory Report 2022. R.O.C. (Taiwan), Executive Yuan, Environmental Protection Agency. https://unfccc.saveoursky.org.tw/nir/2022nir/uploads/00_abstract_en.pdf
European Commission, Directorate-General for Energy, Badouard, T., Moreira de Oliveira, D., Yearwood, J., Torres, P., & Altman, M. (2020). Cost of energy (LCOE) : energy costs, taxes and the impact of government interventions on investments : final report. Publications Office. https://doi.org/doi/10.2833/779528
European Commission, Joint Research Centre, Olivier, J., Guizzardi, D., Schaaf, E., Solazzo, E., Crippa, M., Vignati, E., Banja, M., Muntean, M., Grassi, G., Monforti-Ferrario, F., & Rossi, S. (2021). GHG emissions of all world : 2021 report. Publications Office. https://doi.org/doi/10.2760/173513
European Environment Agency (2021, October 25). Greenhouse gas emission intensity of electricity generation by country. Retrieved April 27, 2022, from https://www.eea.europa.eu/data-and-maps/daviz/co2-emission-intensity-9
Fang, X., Misra, S., Xue, G. L., & Yang, D. J. (2012). Smart Grid - The New and Improved Power Grid: A Survey. Ieee Communications Surveys and Tutorials, 14(4), 944-980. https://doi.org/10.1109/Surv.2011.101911.00087
Floudas, C. A., & Lin, X. X. (2005). Mixed integer linear programming in process scheduling: Modeling, algorithms, and applications. Annals of Operations Research, 139(1), 131-162. https://doi.org/10.1007/s10479-005-3446-x
Ghazvini, M. A. F., Soares, J., Horta, N., Neves, R., Castro, R., & Vale, Z. (2015). A multi-objective model for scheduling of short-term incentive-based demand response programs offered by electricity retailers. Applied Energy, 151, 102-118. https://doi.org/10.1016/j.apenergy.2015.04.067
Ghobakhloo, M. (2020). Industry 4.0, digitization, and opportunities for sustainability. Journal of Cleaner Production, 252. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.119869
Gielen, D., Boshell, F., Saygin, D., Bazilian, M. D., Wagner, N., & Gorini, R. (2019). The role of renewable energy in the global energy transformation. Energy Strategy Reviews, 24, 38-50. https://doi.org/10.1016/j.esr.2019.01.006
Guo, M., & Shah, N. (2015). Bringing Non-energy Systems into a Bioenergy Value Chain Optimization Framework. In Computer Aided Chemical Engineering (Vol. 37, pp. 2351-2356). Elsevier.
https://doi.org/https://doi.org/10.1016/B978-0-444-63576-1.50086-8
Gurobi (2020). Tutorial: Mixed-Integer Linear Programming. Retrieved October 11, 2022, from https://www.gurobi.com/resource/tutorial-mixed-integer-linear-programming/
Hong, H., & Chen, N. W. (2017). New evidence on breaking trend functions in real GDPs from Great China Economic Area. Applied Economics Letters, 24(10), 663-667. https://doi.org/10.1080/13504851.2016.1218423
Iftikhar, H., Asif, S., Maroof, R., Ambreen, K., Khan, H. N., & Javaid, N. (2017). Biogeography Based Optimization for Home Energy Management in Smart Grid. 177-190. https://doi.org/10.1007/978-3-319-65521-5_16
International Trade Centre (2022, March 2). List of markets for the selected product Product: TOTAL All products. Retrieved March 27, 2022, from https://www.trademap.org/Index.aspx
IPCC (2022). Climate Change 2022: Impacts, Adaptation, and Vulnerability. Intergovernmental Panel on Climate Change. https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_FinalDraft_FullReport.pdf
IRENA (2021). Renewable Power Generation Costs in 2020. International Renewable Energy Agency.
https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2021/Jun/IRENA_Power_Generation_Costs_2020.pdf
Izmitligil, H., & Ozkan, H. A. (2018). A home energy management system. Transactions of the Institute of Measurement and Control, 40(8), 2498-2508. https://doi.org/10.1177/0142331217741537
Javadi, M. S., Gough, M., Lotfi, M., Nezhad, A. E., Santos, S. F., & Catalao, J. P. S. (2020). Optimal self-scheduling of home energy management system in the presence of photovoltaic power generation and batteries. Energy, 210. https://doi.org/https://doi.org/10.1016/j.energy.2020.118568
Jordehi, A. R. (2019). Optimisation of demand response in electric power systems, a review. Renewable & Sustainable Energy Reviews, 103, 308-319. https://doi.org/10.1016/j.rser.2018.12.054
Jordehi, A. R. (2020). Enhanced leader particle swarm optimisation (ELPSO): a new algorithm for optimal scheduling of home appliances in demand response programs. Artificial Intelligence Review, 53(3), 2043-2073.
https://doi.org/10.1007/s10462-019-09726-3
Khan, A. R., Mahmood, A., Safdar, A., Khan, Z. A., & Khan, N. A. (2016). Load forecasting, dynamic pricing and DSM in smart grid: A review. Renewable & Sustainable Energy Reviews, 54, 1311-1322. https://doi.org/10.1016/j.rser.2015.10.117
Khan, S. u. R., Khan, A., Mushtaq, N., Faraz, S. H., Khan, O. A., Sarwar, M. A., & Javaid, N. (2017). Genetic Algorithm and Earthworm Optimization Algorithm for Energy Management in Smart Grid. 447-459.
https://doi.org/https://doi.org/10.1007/978-3-319-69835-9_42
Lee, J. Y., Chen, C. L., & Chen, H. C. (2014). A mathematical technique for hybrid power system design with energy loss considerations. Energy Conversion and Management, 82, 301-307. https://doi.org/10.1016/j.enconman.2014.03.029
LSE (2020). Carbon pricing options for Taiwan. The London School of Economics and Political Science.
https://www.lse.ac.uk/granthaminstitute/wp-content/uploads/2020/12/Carbon-pricing-options-for-Taiwan.pdf
Ma, K., Yao, T., Yang, J., & Guan, X. P. (2016). Residential power scheduling for demand response in smart grid. International Journal of Electrical Power & Energy Systems, 78, 320-325. https://doi.org/10.1016/j.ijepes.2015.11.099
Makhadmeh, S. N., Khader, A. T., Al-Betar, M. A., & Naim, S. (2018). Multi-objective power scheduling problem in smart homes using grey wolf optimiser. Journal of Ambient Intelligence and Humanized Computing, 10(9), 3643-3667. https://doi.org/10.1007/s12652-018-1085-8
Makhadmeh, S. N., Khader, A. T., Al-Betar, M. A., Naim, S., Abasi, A. K., & Alyasseri, Z. A. A. (2019). Optimization methods for power scheduling problems in smart home: Survey. Renewable & Sustainable Energy Reviews, 115. https://doi.org/https://doi.org/10.1016/j.rser.2019.109362
Mariano, J. R. L., Liao, M. Y., & Ay, H. (2021). Performance Evaluation of Solar PV Power Plants in Taiwan Using Data Envelopment Analysis. Energies, 14(15). https://doi.org/https://doi.org/10.3390/en14154498
Ministry of the Interior (2018, August 13). Basic living standard. Retrieved December 5, 2022, from https://www.cpami.gov.tw/%E6%9C%80%E6%96%B0%E6%B6%88%E6%81%AF/%E6%B3%95%E8%A6%8F%E5%85%AC%E5%91%8A/29-%E4%BD%8F%E5%AE%85%E7%AF%87/15748-%E5%9F%BA%E6%9C%AC%E5%B1%85%E4%BD%8F%E6%B0%B4%E6%BA%96.html
Mohsenian-Rad, A. H., & Leon-Garcia, A. (2010). Optimal Residential Load Control With Price Prediction in Real-Time Electricity Pricing Environments. Ieee Transactions on Smart Grid, 1(2), 120-133. https://doi.org/https://doi.org/10.1109/TSG.2010.2055903
Muller, R. (2012). Energy for future presidents: the science behind the headlines (1st ed.). W. W. Norton.
Nan, S. B., Zhou, M., & Li, G. Y. (2018). Optimal residential community demand response scheduling in smart grid. Applied Energy, 210, 1280-1289. https://doi.org/10.1016/j.apenergy.2017.06.066
Ou, W. S., Ho, M. C., Chen, J. L., Chen, J. F., & Lo, S. C. (2008). The Study on the Typical Radiation for Solar Architecture Design of Taiwan. Journal of Architecture, 64, 103-118. https://doi.org/10.6377/JA.200806.0006
Pechmann, A., Scholer, I., & Ernst, S. (2016). Possibilities for CO2-neutral manufacturing with attractive energy costs. Journal of Cleaner Production, 138, 287-297. https://doi.org/10.1016/j.jclepro.2016.04.053
Qayyum, F. A., Naeem, M., Khwaja, A. S., Anpalagan, A., Guam, L., & Venkatesh, B. (2015). Appliance Scheduling Optimization in Smart Home Networks. Ieee Access, 3, 2176-2190. https://doi.org/10.1109/Access.2015.2496117
Rafkaoui, M. A., Khallaayoun, A., & Lghoul, M. R. (2016). Optimal Scheduling of Smart Homes Energy Consumption in Conjunction with Solar Energy Resources. Al Akhawayn University Ifrane: Ifrane, Morocco.
Rahim, S., Javaid, N., Ahmad, A., Khan, S. A., Khan, Z. A., Alrajeh, N., & Qasim, U. (2016). Exploiting heuristic algorithms to efficiently utilize energy management controllers with renewable energy sources. Energy and Buildings, 129, 452-470. https://doi.org/10.1016/j.enbuild.2016.08.008
Ranjbari, M., Esfandabadi, Z. S., Zanetti, M. C., Scagnelli, S. D., Siebers, P. O., Aghbashlo, M., Peng, W. X., Quatraro, F., & Tabatabaei, M. (2021). Three pillars of sustainability in the wake of COVID-19: A systematic review and future research agenda for sustainable development. Journal of Cleaner Production, 297. https://doi.org/https://doi.org/10.1016/j.jclepro.2021.126660
Rezaee Jordehi, A. (2020). Enhanced leader particle swarm optimisation (ELPSO): a new algorithm for optimal scheduling of home appliances in demand response programs. Artificial Intelligence Review, 53(3), 2043-2073.
https://doi.org/10.1007/s10462-019-09726-3
Shariatzadeh, F., Mandal, P., & Srivastava, A. K. (2015). Demand response for sustainable energy systems: A review, application and implementation strategy. Renewable & Sustainable Energy Reviews, 45, 343-350. https://doi.org/10.1016/j.rser.2015.01.062
Sovacool, B. K., & Brown, M. A. (2010). Competing Dimensions of Energy Security: An International Perspective. Annual Review of Environment and Resources, 35, 77-108. https://doi.org/10.1146/annurev-environ-042509-143035
Taipower (2021). Implementation Outcomes of Load Management Area. Retrieved April 28, 2022, from https://www.taipower.com.tw/en/page.aspx?mid=4523
Taipower (2022). Taiwan Power Company Rate Schedules. Retrieved December 4, 2022, from https://www.taipower.com.tw/en/page.aspx?mid=317
Talbi, E.G. (2009). Metaheuristics: from design to implementation. John Wiley & Sons.
United Nations Department of Economic Social Affairs (2022). The Sustainable Development Goals Report 2022. United Nations. https://doi.org/https://doi.org/10.18356/9789210018098
Vardakas, J. S., Zorba, N., & Verikoukis, C. V. (2015). A Survey on Demand Response Programs in Smart Grids: Pricing Methods and Optimization Algorithms. Ieee Communications Surveys and Tutorials, 17(1), 152-178. https://doi.org/10.1109/Comst.2014.2341586
Wang, J., Sun, Z., Zhou, Y., & Dai, J. (2012). Optimal dispatching model of smart home energy management system. IEEE PES innovative smart grid technologies, 1-5. https://doi.org/10.1109/ISGT-Asia.2012.6303266
Wu, Y. K., Ye, G. T., & Shaaban, M. (2016). Analysis of Impact of Integration of Large PV Generation Capacity and Optimization of PV Capacity: Case Studies in Taiwan. Ieee Transactions on Industry Applications, 52(6), 4535-4548. https://doi.org/10.1109/Tia.2016.2594283
Yang, Z., & Gao, S. (2010). On Selecting the Locations of 60MW Grid-Connected Photovoltaic Power Plant. 2010 Symposium on Photonics and Optoelectronics, 1-4. https://doi.org/10.1109/SOPO.2010.5504430
Zhang, Y., Campana, P. E., Yang, Y., Stridh, B., Lundblad, A., & Yan, J. Y. (2018). Energy flexibility from the consumer: Integrating local electricity and heat supplies in a building. Applied Energy, 223, 430-442. https://doi.org/10.1016/j.apenergy.2018.04.041
Zhang, Y. C., Islam, M., Sun, Z. Y., Yang, S. J., Dagli, C. H., & Xiong, H. Y. (2018). Optimal sizing and planning of onsite generation system for manufacturing in Critical Peaking Pricing demand response program. International Journal of Production Economics, 206, 261-267. https://doi.org/10.1016/j.ijpe.2018.10.011
Zhao, Z., Lee, W. C., Shin, Y., & Song, K. B. (2013). An Optimal Power Scheduling Method for Demand Response in Home Energy Management System. Ieee Transactions on Smart Grid, 4(3), 1391-1400. https://doi.org/10.1109/Tsg.2013.2251018
Climate Change Performance Index (2021). CCPI • Results 2022. Germanwatch, NewClimate Institute & Climate Action Network.
https://ccpi.org/wp-content/uploads/CCPI-2022-Results_neu.pdf
DBAR (2022). Observations by districts - Taipei. Data Bank for Atmospheric & Hydrologic Research. Retrieved November 29, 2022, from https://dbar.pccu.edu.tw/member/SiteBlock.aspx
Deng, R. L., Yang, Z. Y., Chow, M. Y., & Chen, J. M. (2015). A Survey on Demand Response in Smart Grids: Mathematical Models and Approaches. Ieee Transactions on Industrial Informatics, 11(3), 570-582. https://doi.org/10.1109/Tii.2015.2414719
Doostizadeh, M., & Ghasemi, H. (2012). A day-ahead electricity pricing model based on smart metering and demand-side management. Energy, 46(1), 221-230. https://doi.org/10.1016/j.energy.2012.08.029
Environmental Protection Agency (2022). National Greenhouse Gas Inventory Report 2022. R.O.C. (Taiwan), Executive Yuan, Environmental Protection Agency. https://unfccc.saveoursky.org.tw/nir/2022nir/uploads/00_abstract_en.pdf
European Commission, Directorate-General for Energy, Badouard, T., Moreira de Oliveira, D., Yearwood, J., Torres, P., & Altman, M. (2020). Cost of energy (LCOE) : energy costs, taxes and the impact of government interventions on investments : final report. Publications Office. https://doi.org/doi/10.2833/779528
European Commission, Joint Research Centre, Olivier, J., Guizzardi, D., Schaaf, E., Solazzo, E., Crippa, M., Vignati, E., Banja, M., Muntean, M., Grassi, G., Monforti-Ferrario, F., & Rossi, S. (2021). GHG emissions of all world : 2021 report. Publications Office. https://doi.org/doi/10.2760/173513
European Environment Agency (2021, October 25). Greenhouse gas emission intensity of electricity generation by country. Retrieved April 27, 2022, from https://www.eea.europa.eu/data-and-maps/daviz/co2-emission-intensity-9
Fang, X., Misra, S., Xue, G. L., & Yang, D. J. (2012). Smart Grid - The New and Improved Power Grid: A Survey. Ieee Communications Surveys and Tutorials, 14(4), 944-980. https://doi.org/10.1109/Surv.2011.101911.00087
Floudas, C. A., & Lin, X. X. (2005). Mixed integer linear programming in process scheduling: Modeling, algorithms, and applications. Annals of Operations Research, 139(1), 131-162. https://doi.org/10.1007/s10479-005-3446-x
Ghazvini, M. A. F., Soares, J., Horta, N., Neves, R., Castro, R., & Vale, Z. (2015). A multi-objective model for scheduling of short-term incentive-based demand response programs offered by electricity retailers. Applied Energy, 151, 102-118. https://doi.org/10.1016/j.apenergy.2015.04.067
Ghobakhloo, M. (2020). Industry 4.0, digitization, and opportunities for sustainability. Journal of Cleaner Production, 252. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.119869
Gielen, D., Boshell, F., Saygin, D., Bazilian, M. D., Wagner, N., & Gorini, R. (2019). The role of renewable energy in the global energy transformation. Energy Strategy Reviews, 24, 38-50. https://doi.org/10.1016/j.esr.2019.01.006
Guo, M., & Shah, N. (2015). Bringing Non-energy Systems into a Bioenergy Value Chain Optimization Framework. In Computer Aided Chemical Engineering (Vol. 37, pp. 2351-2356). Elsevier.
https://doi.org/https://doi.org/10.1016/B978-0-444-63576-1.50086-8
Gurobi (2020). Tutorial: Mixed-Integer Linear Programming. Retrieved October 11, 2022, from https://www.gurobi.com/resource/tutorial-mixed-integer-linear-programming/
Hong, H., & Chen, N. W. (2017). New evidence on breaking trend functions in real GDPs from Great China Economic Area. Applied Economics Letters, 24(10), 663-667. https://doi.org/10.1080/13504851.2016.1218423
Iftikhar, H., Asif, S., Maroof, R., Ambreen, K., Khan, H. N., & Javaid, N. (2017). Biogeography Based Optimization for Home Energy Management in Smart Grid. 177-190. https://doi.org/10.1007/978-3-319-65521-5_16
International Trade Centre (2022, March 2). List of markets for the selected product Product: TOTAL All products. Retrieved March 27, 2022, from https://www.trademap.org/Index.aspx
IPCC (2022). Climate Change 2022: Impacts, Adaptation, and Vulnerability. Intergovernmental Panel on Climate Change. https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_FinalDraft_FullReport.pdf
IRENA (2021). Renewable Power Generation Costs in 2020. International Renewable Energy Agency.
https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2021/Jun/IRENA_Power_Generation_Costs_2020.pdf
Izmitligil, H., & Ozkan, H. A. (2018). A home energy management system. Transactions of the Institute of Measurement and Control, 40(8), 2498-2508. https://doi.org/10.1177/0142331217741537
Javadi, M. S., Gough, M., Lotfi, M., Nezhad, A. E., Santos, S. F., & Catalao, J. P. S. (2020). Optimal self-scheduling of home energy management system in the presence of photovoltaic power generation and batteries. Energy, 210. https://doi.org/https://doi.org/10.1016/j.energy.2020.118568
Jordehi, A. R. (2019). Optimisation of demand response in electric power systems, a review. Renewable & Sustainable Energy Reviews, 103, 308-319. https://doi.org/10.1016/j.rser.2018.12.054
Jordehi, A. R. (2020). Enhanced leader particle swarm optimisation (ELPSO): a new algorithm for optimal scheduling of home appliances in demand response programs. Artificial Intelligence Review, 53(3), 2043-2073.
https://doi.org/10.1007/s10462-019-09726-3
Khan, A. R., Mahmood, A., Safdar, A., Khan, Z. A., & Khan, N. A. (2016). Load forecasting, dynamic pricing and DSM in smart grid: A review. Renewable & Sustainable Energy Reviews, 54, 1311-1322. https://doi.org/10.1016/j.rser.2015.10.117
Khan, S. u. R., Khan, A., Mushtaq, N., Faraz, S. H., Khan, O. A., Sarwar, M. A., & Javaid, N. (2017). Genetic Algorithm and Earthworm Optimization Algorithm for Energy Management in Smart Grid. 447-459.
https://doi.org/https://doi.org/10.1007/978-3-319-69835-9_42
Lee, J. Y., Chen, C. L., & Chen, H. C. (2014). A mathematical technique for hybrid power system design with energy loss considerations. Energy Conversion and Management, 82, 301-307. https://doi.org/10.1016/j.enconman.2014.03.029
LSE (2020). Carbon pricing options for Taiwan. The London School of Economics and Political Science.
https://www.lse.ac.uk/granthaminstitute/wp-content/uploads/2020/12/Carbon-pricing-options-for-Taiwan.pdf
Ma, K., Yao, T., Yang, J., & Guan, X. P. (2016). Residential power scheduling for demand response in smart grid. International Journal of Electrical Power & Energy Systems, 78, 320-325. https://doi.org/10.1016/j.ijepes.2015.11.099
Makhadmeh, S. N., Khader, A. T., Al-Betar, M. A., & Naim, S. (2018). Multi-objective power scheduling problem in smart homes using grey wolf optimiser. Journal of Ambient Intelligence and Humanized Computing, 10(9), 3643-3667. https://doi.org/10.1007/s12652-018-1085-8
Makhadmeh, S. N., Khader, A. T., Al-Betar, M. A., Naim, S., Abasi, A. K., & Alyasseri, Z. A. A. (2019). Optimization methods for power scheduling problems in smart home: Survey. Renewable & Sustainable Energy Reviews, 115. https://doi.org/https://doi.org/10.1016/j.rser.2019.109362
Mariano, J. R. L., Liao, M. Y., & Ay, H. (2021). Performance Evaluation of Solar PV Power Plants in Taiwan Using Data Envelopment Analysis. Energies, 14(15). https://doi.org/https://doi.org/10.3390/en14154498
Ministry of the Interior (2018, August 13). Basic living standard. Retrieved December 5, 2022, from https://www.cpami.gov.tw/%E6%9C%80%E6%96%B0%E6%B6%88%E6%81%AF/%E6%B3%95%E8%A6%8F%E5%85%AC%E5%91%8A/29-%E4%BD%8F%E5%AE%85%E7%AF%87/15748-%E5%9F%BA%E6%9C%AC%E5%B1%85%E4%BD%8F%E6%B0%B4%E6%BA%96.html
Mohsenian-Rad, A. H., & Leon-Garcia, A. (2010). Optimal Residential Load Control With Price Prediction in Real-Time Electricity Pricing Environments. Ieee Transactions on Smart Grid, 1(2), 120-133. https://doi.org/https://doi.org/10.1109/TSG.2010.2055903
Muller, R. (2012). Energy for future presidents: the science behind the headlines (1st ed.). W. W. Norton.
Nan, S. B., Zhou, M., & Li, G. Y. (2018). Optimal residential community demand response scheduling in smart grid. Applied Energy, 210, 1280-1289. https://doi.org/10.1016/j.apenergy.2017.06.066
Ou, W. S., Ho, M. C., Chen, J. L., Chen, J. F., & Lo, S. C. (2008). The Study on the Typical Radiation for Solar Architecture Design of Taiwan. Journal of Architecture, 64, 103-118. https://doi.org/10.6377/JA.200806.0006
Pechmann, A., Scholer, I., & Ernst, S. (2016). Possibilities for CO2-neutral manufacturing with attractive energy costs. Journal of Cleaner Production, 138, 287-297. https://doi.org/10.1016/j.jclepro.2016.04.053
Qayyum, F. A., Naeem, M., Khwaja, A. S., Anpalagan, A., Guam, L., & Venkatesh, B. (2015). Appliance Scheduling Optimization in Smart Home Networks. Ieee Access, 3, 2176-2190. https://doi.org/10.1109/Access.2015.2496117
Rafkaoui, M. A., Khallaayoun, A., & Lghoul, M. R. (2016). Optimal Scheduling of Smart Homes Energy Consumption in Conjunction with Solar Energy Resources. Al Akhawayn University Ifrane: Ifrane, Morocco.
Rahim, S., Javaid, N., Ahmad, A., Khan, S. A., Khan, Z. A., Alrajeh, N., & Qasim, U. (2016). Exploiting heuristic algorithms to efficiently utilize energy management controllers with renewable energy sources. Energy and Buildings, 129, 452-470. https://doi.org/10.1016/j.enbuild.2016.08.008
Ranjbari, M., Esfandabadi, Z. S., Zanetti, M. C., Scagnelli, S. D., Siebers, P. O., Aghbashlo, M., Peng, W. X., Quatraro, F., & Tabatabaei, M. (2021). Three pillars of sustainability in the wake of COVID-19: A systematic review and future research agenda for sustainable development. Journal of Cleaner Production, 297. https://doi.org/https://doi.org/10.1016/j.jclepro.2021.126660
Rezaee Jordehi, A. (2020). Enhanced leader particle swarm optimisation (ELPSO): a new algorithm for optimal scheduling of home appliances in demand response programs. Artificial Intelligence Review, 53(3), 2043-2073.
https://doi.org/10.1007/s10462-019-09726-3
Shariatzadeh, F., Mandal, P., & Srivastava, A. K. (2015). Demand response for sustainable energy systems: A review, application and implementation strategy. Renewable & Sustainable Energy Reviews, 45, 343-350. https://doi.org/10.1016/j.rser.2015.01.062
Sovacool, B. K., & Brown, M. A. (2010). Competing Dimensions of Energy Security: An International Perspective. Annual Review of Environment and Resources, 35, 77-108. https://doi.org/10.1146/annurev-environ-042509-143035
Aalami, H. A., Moghaddam, M. P., & Yousefi, G. R. (2010). Demand response modeling considering Interruptible/Curtailable loads and capacity market programs. Applied Energy, 87(1), 243-250. https://doi.org/10.1016/j.apenergy.2009.05.041
Barbato, A., & Capone, A. (2014). Optimization Models and Methods for Demand-Side Management of Residential Users: A Survey. Energies, 7(9), 5787-5824. https://doi.org/10.3390/en7095787
Beck, T., Kondziella, H., Huard, G., & Bruckner, T. (2017). Optimal operation, configuration and sizing of generation and storage technologies for residential heat pump systems in the spotlight of self-consumption of photovoltaic electricity. Applied Energy, 188, 604-619. https://doi.org/10.1016/j.apenergy.2016.12.041
Beheshti, Z., & Shamsuddin, S. M. H. (2013). A review of population-based meta-heuristic algorithms. International Journal of Advances in Soft Computing and its Applications, 5(1), 1-35.
Berkeley Earth (2021). Actionable Climate Science for Policymakers. Retrieved April 27, 2022, from http://berkeleyearth.org/policy-insights
Borwein, J. M., & Lewis, A. S. (2006). Convex Analysis and Nonlinear Optimization: Theory and Examples. Springer. https://doi.org/https://doi.org/10.1007/978-0-387-31256-9
Bradley, P., Leach, M., & Torriti, J. (2013). A review of the costs and benefits of demand response for electricity in the UK. Energy Policy, 52, 312-327. https://doi.org/10.1016/j.enpol.2012.09.039
Bureau of Energy (2021). Energy Statistics Handbook 2020. R.O.C. (Taiwan) Ministry of Economic Affairs, Bureau of Energy. https://www.moeaboe.gov.tw/ECW_WEBPAGE/FlipBook/2020EnergyStaHandBook/2020EnergyStaHandBook.pdf
Bureau of Energy (2022a, November 30). Energy Statistics. Retrieved December 3, 2022, from https://www.esist.org.tw/Database
Bureau of Energy (2022b, December 1). Second meeting records of committee on feed-in tariff regarding renewable energy. Retrieved December 4, 2022, from https://www.moeaboe.gov.tw/ECW/renewable/content/ContentLink.aspx?menu_id=778
Caradonna, J. L. (2014). Sustainability: A history. Oxford University Press.
Chaianong, A., Bangviwat, A., Menke, C., Breitschopf, B., & Eichhammer, W. (2020). Customer economics of residential PV-battery systems in Thailand. Renewable Energy, 146, 297-308. https://doi.org/10.1016/j.renene.2019.06.159
Climate Change Performance Index (2021). CCPI • Results 2022. Germanwatch, NewClimate Institute & Climate Action Network.
https://ccpi.org/wp-content/uploads/CCPI-2022-Results_neu.pdf
DBAR (2022). Observations by districts - Taipei. Data Bank for Atmospheric & Hydrologic Research. Retrieved November 29, 2022, from https://dbar.pccu.edu.tw/member/SiteBlock.aspx
Deng, R. L., Yang, Z. Y., Chow, M. Y., & Chen, J. M. (2015). A Survey on Demand Response in Smart Grids: Mathematical Models and Approaches. Ieee Transactions on Industrial Informatics, 11(3), 570-582. https://doi.org/10.1109/Tii.2015.2414719
Doostizadeh, M., & Ghasemi, H. (2012). A day-ahead electricity pricing model based on smart metering and demand-side management. Energy, 46(1), 221-230. https://doi.org/10.1016/j.energy.2012.08.029
Environmental Protection Agency (2022). National Greenhouse Gas Inventory Report 2022. R.O.C. (Taiwan), Executive Yuan, Environmental Protection Agency. https://unfccc.saveoursky.org.tw/nir/2022nir/uploads/00_abstract_en.pdf
European Commission, Directorate-General for Energy, Badouard, T., Moreira de Oliveira, D., Yearwood, J., Torres, P., & Altman, M. (2020). Cost of energy (LCOE) : energy costs, taxes and the impact of government interventions on investments : final report. Publications Office. https://doi.org/doi/10.2833/779528
European Commission, Joint Research Centre, Olivier, J., Guizzardi, D., Schaaf, E., Solazzo, E., Crippa, M., Vignati, E., Banja, M., Muntean, M., Grassi, G., Monforti-Ferrario, F., & Rossi, S. (2021). GHG emissions of all world : 2021 report. Publications Office. https://doi.org/doi/10.2760/173513
European Environment Agency (2021, October 25). Greenhouse gas emission intensity of electricity generation by country. Retrieved April 27, 2022, from https://www.eea.europa.eu/data-and-maps/daviz/co2-emission-intensity-9
Fang, X., Misra, S., Xue, G. L., & Yang, D. J. (2012). Smart Grid - The New and Improved Power Grid: A Survey. Ieee Communications Surveys and Tutorials, 14(4), 944-980. https://doi.org/10.1109/Surv.2011.101911.00087
Floudas, C. A., & Lin, X. X. (2005). Mixed integer linear programming in process scheduling: Modeling, algorithms, and applications. Annals of Operations Research, 139(1), 131-162. https://doi.org/10.1007/s10479-005-3446-x
Ghazvini, M. A. F., Soares, J., Horta, N., Neves, R., Castro, R., & Vale, Z. (2015). A multi-objective model for scheduling of short-term incentive-based demand response programs offered by electricity retailers. Applied Energy, 151, 102-118. https://doi.org/10.1016/j.apenergy.2015.04.067
Ghobakhloo, M. (2020). Industry 4.0, digitization, and opportunities for sustainability. Journal of Cleaner Production, 252. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.119869
Gielen, D., Boshell, F., Saygin, D., Bazilian, M. D., Wagner, N., & Gorini, R. (2019). The role of renewable energy in the global energy transformation. Energy Strategy Reviews, 24, 38-50. https://doi.org/10.1016/j.esr.2019.01.006
Guo, M., & Shah, N. (2015). Bringing Non-energy Systems into a Bioenergy Value Chain Optimization Framework. In Computer Aided Chemical Engineering (Vol. 37, pp. 2351-2356). Elsevier.
https://doi.org/https://doi.org/10.1016/B978-0-444-63576-1.50086-8
Gurobi (2020). Tutorial: Mixed-Integer Linear Programming. Retrieved October 11, 2022, from https://www.gurobi.com/resource/tutorial-mixed-integer-linear-programming/
Hong, H., & Chen, N. W. (2017). New evidence on breaking trend functions in real GDPs from Great China Economic Area. Applied Economics Letters, 24(10), 663-667. https://doi.org/10.1080/13504851.2016.1218423
Iftikhar, H., Asif, S., Maroof, R., Ambreen, K., Khan, H. N., & Javaid, N. (2017). Biogeography Based Optimization for Home Energy Management in Smart Grid. 177-190. https://doi.org/10.1007/978-3-319-65521-5_16
International Trade Centre (2022, March 2). List of markets for the selected product Product: TOTAL All products. Retrieved March 27, 2022, from https://www.trademap.org/Index.aspx
IPCC (2022). Climate Change 2022: Impacts, Adaptation, and Vulnerability. Intergovernmental Panel on Climate Change. https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_FinalDraft_FullReport.pdf
IRENA (2021). Renewable Power Generation Costs in 2020. International Renewable Energy Agency.
https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2021/Jun/IRENA_Power_Generation_Costs_2020.pdf
Izmitligil, H., & Ozkan, H. A. (2018). A home energy management system. Transactions of the Institute of Measurement and Control, 40(8), 2498-2508. https://doi.org/10.1177/0142331217741537
Javadi, M. S., Gough, M., Lotfi, M., Nezhad, A. E., Santos, S. F., & Catalao, J. P. S. (2020). Optimal self-scheduling of home energy management system in the presence of photovoltaic power generation and batteries. Energy, 210. https://doi.org/https://doi.org/10.1016/j.energy.2020.118568
Jordehi, A. R. (2019). Optimisation of demand response in electric power systems, a review. Renewable & Sustainable Energy Reviews, 103, 308-319. https://doi.org/10.1016/j.rser.2018.12.054
Jordehi, A. R. (2020). Enhanced leader particle swarm optimisation (ELPSO): a new algorithm for optimal scheduling of home appliances in demand response programs. Artificial Intelligence Review, 53(3), 2043-2073.
https://doi.org/10.1007/s10462-019-09726-3
Khan, A. R., Mahmood, A., Safdar, A., Khan, Z. A., & Khan, N. A. (2016). Load forecasting, dynamic pricing and DSM in smart grid: A review. Renewable & Sustainable Energy Reviews, 54, 1311-1322. https://doi.org/10.1016/j.rser.2015.10.117
Khan, S. u. R., Khan, A., Mushtaq, N., Faraz, S. H., Khan, O. A., Sarwar, M. A., & Javaid, N. (2017). Genetic Algorithm and Earthworm Optimization Algorithm for Energy Management in Smart Grid. 447-459.
https://doi.org/https://doi.org/10.1007/978-3-319-69835-9_42
Lee, J. Y., Chen, C. L., & Chen, H. C. (2014). A mathematical technique for hybrid power system design with energy loss considerations. Energy Conversion and Management, 82, 301-307. https://doi.org/10.1016/j.enconman.2014.03.029
LSE (2020). Carbon pricing options for Taiwan. The London School of Economics and Political Science.
https://www.lse.ac.uk/granthaminstitute/wp-content/uploads/2020/12/Carbon-pricing-options-for-Taiwan.pdf
Ma, K., Yao, T., Yang, J., & Guan, X. P. (2016). Residential power scheduling for demand response in smart grid. International Journal of Electrical Power & Energy Systems, 78, 320-325. https://doi.org/10.1016/j.ijepes.2015.11.099
Makhadmeh, S. N., Khader, A. T., Al-Betar, M. A., & Naim, S. (2018). Multi-objective power scheduling problem in smart homes using grey wolf optimiser. Journal of Ambient Intelligence and Humanized Computing, 10(9), 3643-3667. https://doi.org/10.1007/s12652-018-1085-8
Makhadmeh, S. N., Khader, A. T., Al-Betar, M. A., Naim, S., Abasi, A. K., & Alyasseri, Z. A. A. (2019). Optimization methods for power scheduling problems in smart home: Survey. Renewable & Sustainable Energy Reviews, 115. https://doi.org/https://doi.org/10.1016/j.rser.2019.109362
Mariano, J. R. L., Liao, M. Y., & Ay, H. (2021). Performance Evaluation of Solar PV Power Plants in Taiwan Using Data Envelopment Analysis. Energies, 14(15). https://doi.org/https://doi.org/10.3390/en14154498
Ministry of the Interior (2018, August 13). Basic living standard. Retrieved December 5, 2022, from https://www.cpami.gov.tw/%E6%9C%80%E6%96%B0%E6%B6%88%E6%81%AF/%E6%B3%95%E8%A6%8F%E5%85%AC%E5%91%8A/29-%E4%BD%8F%E5%AE%85%E7%AF%87/15748-%E5%9F%BA%E6%9C%AC%E5%B1%85%E4%BD%8F%E6%B0%B4%E6%BA%96.html
Mohsenian-Rad, A. H., & Leon-Garcia, A. (2010). Optimal Residential Load Control With Price Prediction in Real-Time Electricity Pricing Environments. Ieee Transactions on Smart Grid, 1(2), 120-133. https://doi.org/https://doi.org/10.1109/TSG.2010.2055903
Muller, R. (2012). Energy for future presidents: the science behind the headlines (1st ed.). W. W. Norton.
Nan, S. B., Zhou, M., & Li, G. Y. (2018). Optimal residential community demand response scheduling in smart grid. Applied Energy, 210, 1280-1289. https://doi.org/10.1016/j.apenergy.2017.06.066
Ou, W. S., Ho, M. C., Chen, J. L., Chen, J. F., & Lo, S. C. (2008). The Study on the Typical Radiation for Solar Architecture Design of Taiwan. Journal of Architecture, 64, 103-118. https://doi.org/10.6377/JA.200806.0006
Pechmann, A., Scholer, I., & Ernst, S. (2016). Possibilities for CO2-neutral manufacturing with attractive energy costs. Journal of Cleaner Production, 138, 287-297. https://doi.org/10.1016/j.jclepro.2016.04.053
Qayyum, F. A., Naeem, M., Khwaja, A. S., Anpalagan, A., Guam, L., & Venkatesh, B. (2015). Appliance Scheduling Optimization in Smart Home Networks. Ieee Access, 3, 2176-2190. https://doi.org/10.1109/Access.2015.2496117
Rafkaoui, M. A., Khallaayoun, A., & Lghoul, M. R. (2016). Optimal Scheduling of Smart Homes Energy Consumption in Conjunction with Solar Energy Resources. Al Akhawayn University Ifrane: Ifrane, Morocco.
Rahim, S., Javaid, N., Ahmad, A., Khan, S. A., Khan, Z. A., Alrajeh, N., & Qasim, U. (2016). Exploiting heuristic algorithms to efficiently utilize energy management controllers with renewable energy sources. Energy and Buildings, 129, 452-470. https://doi.org/10.1016/j.enbuild.2016.08.008
Ranjbari, M., Esfandabadi, Z. S., Zanetti, M. C., Scagnelli, S. D., Siebers, P. O., Aghbashlo, M., Peng, W. X., Quatraro, F., & Tabatabaei, M. (2021). Three pillars of sustainability in the wake of COVID-19: A systematic review and future research agenda for sustainable development. Journal of Cleaner Production, 297. https://doi.org/https://doi.org/10.1016/j.jclepro.2021.126660
Rezaee Jordehi, A. (2020). Enhanced leader particle swarm optimisation (ELPSO): a new algorithm for optimal scheduling of home appliances in demand response programs. Artificial Intelligence Review, 53(3), 2043-2073.
https://doi.org/10.1007/s10462-019-09726-3
Shariatzadeh, F., Mandal, P., & Srivastava, A. K. (2015). Demand response for sustainable energy systems: A review, application and implementation strategy. Renewable & Sustainable Energy Reviews, 45, 343-350. https://doi.org/10.1016/j.rser.2015.01.062
Sovacool, B. K., & Brown, M. A. (2010). Competing Dimensions of Energy Security: An International Perspective. Annual Review of Environment and Resources, 35, 77-108. https://doi.org/10.1146/annurev-environ-042509-143035
Taipower (2021). Implementation Outcomes of Load Management Area. Retrieved April 28, 2022, from https://www.taipower.com.tw/en/page.aspx?mid=4523
Taipower (2022). Taiwan Power Company Rate Schedules. Retrieved December 4, 2022, from https://www.taipower.com.tw/en/page.aspx?mid=317
Talbi, E.G. (2009). Metaheuristics: from design to implementation. John Wiley & Sons.
United Nations Department of Economic Social Affairs (2022). The Sustainable Development Goals Report 2022. United Nations. https://doi.org/https://doi.org/10.18356/9789210018098
Vardakas, J. S., Zorba, N., & Verikoukis, C. V. (2015). A Survey on Demand Response Programs in Smart Grids: Pricing Methods and Optimization Algorithms. Ieee Communications Surveys and Tutorials, 17(1), 152-178. https://doi.org/10.1109/Comst.2014.2341586
Wang, J., Sun, Z., Zhou, Y., & Dai, J. (2012). Optimal dispatching model of smart home energy management system. IEEE PES innovative smart grid technologies, 1-5. https://doi.org/10.1109/ISGT-Asia.2012.6303266
Wu, Y. K., Ye, G. T., & Shaaban, M. (2016). Analysis of Impact of Integration of Large PV Generation Capacity and Optimization of PV Capacity: Case Studies in Taiwan. Ieee Transactions on Industry Applications, 52(6), 4535-4548. https://doi.org/10.1109/Tia.2016.2594283
Yang, Z., & Gao, S. (2010). On Selecting the Locations of 60MW Grid-Connected Photovoltaic Power Plant. 2010 Symposium on Photonics and Optoelectronics, 1-4. https://doi.org/10.1109/SOPO.2010.5504430
Zhang, Y., Campana, P. E., Yang, Y., Stridh, B., Lundblad, A., & Yan, J. Y. (2018). Energy flexibility from the consumer: Integrating local electricity and heat supplies in a building. Applied Energy, 223, 430-442. https://doi.org/10.1016/j.apenergy.2018.04.041
Zhang, Y. C., Islam, M., Sun, Z. Y., Yang, S. J., Dagli, C. H., & Xiong, H. Y. (2018). Optimal sizing and planning of onsite generation system for manufacturing in Critical Peaking Pricing demand response program. International Journal of Production Economics, 206, 261-267. https://doi.org/10.1016/j.ijpe.2018.10.011
Zhao, Z., Lee, W. C., Shin, Y., & Song, K. B. (2013). An Optimal Power Scheduling Method for Demand Response in Home Energy Management System. Ieee Transactions on Smart Grid, 4(3), 1391-1400. https://doi.org/10.1109/Tsg.2013.2251018 |